Chapter Contents |
Previous |
Next |
The NLMIXED Procedure |
Therefore, a line-search algorithm is an iterative process that optimizes a nonlinear function of one parameter () within each iteration k of the optimization technique. Since the outside iteration process is based only on the approximation of the objective function, the inside iteration of the line-search algorithm does not have to be perfect. Usually, it is satisfactory that the choice of significantly reduces (in a minimization) the objective function. Criteria often used for termination of line-search algorithms are the Goldstein conditions (refer to Fletcher 1987).
You can select various line-search algorithms by specifying the LIS= option. The line-search method LIS=2 seems to be superior when function evaluation consumes significantly less computation time than gradient evaluation. Therefore, LIS=2 is the default method for Newton-Raphson, (dual) quasi-Newton, and conjugate gradient optimizations.
You can modify the line-search methods LIS=2 and LIS=3 to be exact line searches by using the LSPRECISION= option and specifying the parameter described in Fletcher (1987). The line-search methods LIS=1, LIS=2, and LIS=3 satisfy the left-hand side and right-hand side Goldstein conditions (refer to Fletcher 1987). When derivatives are available, the line-search methods LIS=6, LIS=7, and LIS=8 try to satisfy the right-hand side Goldstein condition; if derivatives are not available, these line-search algorithms use only function calls.
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.