Example 34.1: Investigating the Effect of Model Specification
on Prediction
In the "Getting Started" section of
the chapter on the VARIOGRAM procedure,
a particular variogram is chosen for
the coal seam thickness data. The chosen variogram
is Gaussian with a scale (sill) of c0=7.5,
and a range of a0=30. This choice of the variogram
is based on a visual fit -
a comparison of the plots of the regular and robust
sample variograms and the Gaussian variogram
for various scale (sill) and range values.
Another possible choice of model is the spherical
variogram with the same scale (sill) of c0=7.5
but with a range of a0=60. This choice of range is
again based on a visual fit; while not as good as the
Gaussian model, the fit is reasonable.
It is generally held that spatial prediction is
robust against model specification, while the
standard error computation is not so robust.
This example investigates the effect of using
these different models on the prediction and associated
standard errors.
data thick;
input east north thick @@;
datalines;
0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4
13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;
/*- Run KRIGE2D on original Gaussian model ------------*/
proc krige2d data=thick outest=est1;
pred var=thick r=60;
model scale=7.5 range=30 form=gauss;
coord xc=east yc=north;
grid x=0 to 100 by 10 y=0 to 100 by 10;
run;
/*- Run KRIGE2D using Spherical Model, modified range -*/
proc krige2d data=thick outest=est2;
pred var=thick r=60;
model scale=7.5 range=60 form=spherical;
coord xc=east yc=north;
grid x=0 to 100 by 10 y=0 to 100 by 10;
run;
data compare ;
merge est1(rename=(estimate=g_est stderr=g_std))
est2(rename=(estimate=s_est stderr=s_std));
est_dif=g_est-s_est;
std_dif=g_std-s_std;
run;
proc print data=compare;
title 'Comparison of Gaussian and Spherical Models';
title2 'Differences of Estimates and Standard Errors';
var gxc gyc npoints g_est s_est est_dif g_std s_std
std_dif;
run;
Output 34.1.1: Comparison of Gaussian and Spherical Models
Comparison of Gaussian and Spherical Models |
Differences of Estimates and Standard Errors |
Obs |
GXC |
GYC |
NPOINTS |
g_est |
s_est |
est_dif |
g_std |
s_std |
std_dif |
1 |
0 |
0 |
23 |
43.9408 |
42.6700 |
1.27087 |
0.68260 |
2.05947 |
-1.37687 |
2 |
0 |
10 |
28 |
41.6828 |
41.6780 |
0.00483 |
0.55909 |
2.03464 |
-1.47554 |
3 |
0 |
20 |
31 |
38.9601 |
39.7285 |
-0.76843 |
0.30185 |
1.93478 |
-1.63293 |
4 |
0 |
30 |
32 |
36.1701 |
37.3275 |
-1.15739 |
0.12705 |
1.54844 |
-1.42139 |
5 |
0 |
40 |
39 |
33.8376 |
35.4320 |
-1.59440 |
0.04872 |
1.37821 |
-1.32949 |
6 |
0 |
50 |
38 |
32.8375 |
34.3930 |
-1.55550 |
0.02983 |
1.22584 |
-1.19602 |
7 |
0 |
60 |
35 |
33.9576 |
34.3155 |
-0.35785 |
0.00195 |
0.54122 |
-0.53927 |
8 |
0 |
70 |
30 |
36.9502 |
37.6669 |
-0.71673 |
0.04006 |
1.20451 |
-1.16444 |
9 |
0 |
80 |
31 |
41.1097 |
41.1016 |
0.00812 |
0.04705 |
0.99544 |
-0.94839 |
10 |
0 |
90 |
28 |
43.6671 |
42.5216 |
1.14546 |
0.10236 |
1.57357 |
-1.47121 |
11 |
0 |
100 |
23 |
41.9443 |
42.6511 |
-0.70681 |
0.53646 |
2.20792 |
-1.67146 |
12 |
10 |
0 |
25 |
44.6795 |
44.1959 |
0.48355 |
0.07833 |
1.09743 |
-1.01910 |
13 |
10 |
10 |
31 |
42.8397 |
42.7496 |
0.09008 |
0.10982 |
1.46686 |
-1.35703 |
14 |
10 |
20 |
34 |
40.3120 |
40.3634 |
-0.05140 |
0.05315 |
1.54889 |
-1.49574 |
15 |
10 |
30 |
39 |
37.7593 |
37.7648 |
-0.00544 |
0.00889 |
0.94136 |
-0.93247 |
16 |
10 |
40 |
44 |
35.6365 |
35.5471 |
0.08940 |
0.00595 |
0.75920 |
-0.75325 |
17 |
10 |
50 |
44 |
35.0603 |
34.7042 |
0.35612 |
0.01564 |
1.05033 |
-1.03469 |
18 |
10 |
60 |
41 |
36.0716 |
35.4737 |
0.59794 |
0.01321 |
1.18277 |
-1.16957 |
19 |
10 |
70 |
36 |
38.1196 |
38.1040 |
0.01565 |
0.00315 |
0.89157 |
-0.88842 |
20 |
10 |
80 |
33 |
41.2799 |
41.0734 |
0.20644 |
0.02446 |
1.22772 |
-1.20326 |
21 |
10 |
90 |
30 |
43.2193 |
42.8904 |
0.32890 |
0.05988 |
1.49438 |
-1.43450 |
22 |
10 |
100 |
26 |
41.0358 |
43.1350 |
-2.09918 |
0.19050 |
1.93434 |
-1.74384 |
23 |
20 |
0 |
29 |
44.4890 |
44.4359 |
0.05317 |
0.06179 |
1.23618 |
-1.17439 |
24 |
20 |
10 |
35 |
43.3391 |
43.2938 |
0.04531 |
0.00526 |
0.95512 |
-0.94986 |
25 |
20 |
20 |
39 |
41.1293 |
40.9885 |
0.14079 |
0.00675 |
1.18544 |
-1.17870 |
26 |
20 |
30 |
43 |
38.6060 |
38.5300 |
0.07598 |
0.00898 |
1.08973 |
-1.08075 |
27 |
20 |
40 |
49 |
36.5013 |
36.5275 |
-0.02623 |
0.03037 |
1.33620 |
-1.30583 |
28 |
20 |
50 |
49 |
36.1158 |
35.7959 |
0.31990 |
0.02535 |
1.31986 |
-1.29451 |
29 |
20 |
60 |
49 |
36.8115 |
36.5397 |
0.27182 |
0.00835 |
1.11490 |
-1.10656 |
30 |
20 |
70 |
39 |
38.4308 |
38.5182 |
-0.08746 |
0.00257 |
0.89419 |
-0.89162 |
31 |
20 |
80 |
36 |
41.0601 |
41.0449 |
0.01511 |
0.00766 |
1.18548 |
-1.17781 |
32 |
20 |
90 |
33 |
43.1788 |
43.1073 |
0.07144 |
0.00613 |
0.94924 |
-0.94311 |
33 |
20 |
100 |
27 |
42.7757 |
43.4689 |
-0.69313 |
0.06770 |
1.52094 |
-1.45324 |
34 |
30 |
0 |
35 |
43.3601 |
43.9579 |
-0.59779 |
0.04662 |
1.32306 |
-1.27644 |
35 |
30 |
10 |
39 |
43.1539 |
43.1448 |
0.00912 |
0.00245 |
0.72413 |
-0.72167 |
36 |
30 |
20 |
44 |
41.2400 |
41.2166 |
0.02336 |
0.00528 |
1.10234 |
-1.09706 |
37 |
30 |
30 |
52 |
38.9296 |
39.0178 |
-0.08816 |
0.00489 |
1.04501 |
-1.04012 |
38 |
30 |
40 |
57 |
37.2813 |
37.3412 |
-0.05992 |
0.00804 |
0.89242 |
-0.88438 |
39 |
30 |
50 |
57 |
36.7198 |
36.7558 |
-0.03597 |
0.00652 |
0.83517 |
-0.82865 |
40 |
30 |
60 |
55 |
37.2047 |
37.3407 |
-0.13597 |
0.00682 |
1.00330 |
-0.99648 |
41 |
30 |
70 |
48 |
38.8856 |
38.8919 |
-0.00628 |
0.00285 |
1.01430 |
-1.01145 |
42 |
30 |
80 |
43 |
41.0627 |
41.0663 |
-0.00359 |
0.00260 |
0.97336 |
-0.97077 |
43 |
30 |
90 |
36 |
43.0969 |
43.0465 |
0.05038 |
0.00194 |
0.51312 |
-0.51118 |
44 |
30 |
100 |
29 |
44.5840 |
43.3474 |
1.23663 |
0.13593 |
1.57267 |
-1.43674 |
45 |
40 |
0 |
36 |
42.8186 |
43.5157 |
-0.69706 |
0.01976 |
1.25689 |
-1.23713 |
46 |
40 |
10 |
40 |
42.8970 |
42.9168 |
-0.01984 |
0.00301 |
0.95163 |
-0.94862 |
47 |
40 |
20 |
52 |
41.1025 |
41.1824 |
-0.07989 |
0.00193 |
0.96204 |
-0.96012 |
48 |
40 |
30 |
60 |
39.3288 |
39.2992 |
0.02960 |
0.00451 |
1.05561 |
-1.05111 |
49 |
40 |
40 |
67 |
38.2096 |
37.9680 |
0.24161 |
0.01791 |
1.29139 |
-1.27349 |
50 |
40 |
50 |
68 |
37.3139 |
37.5055 |
-0.19150 |
0.04039 |
1.51095 |
-1.47056 |
51 |
40 |
60 |
64 |
37.3353 |
37.9400 |
-0.60462 |
0.02973 |
1.45391 |
-1.42418 |
52 |
40 |
70 |
58 |
39.2288 |
39.2541 |
-0.02528 |
0.00271 |
0.93775 |
-0.93503 |
53 |
40 |
80 |
53 |
41.0334 |
41.0063 |
0.02715 |
0.00081 |
0.72274 |
-0.72193 |
54 |
40 |
90 |
43 |
42.6291 |
42.4154 |
0.21372 |
0.02307 |
1.25552 |
-1.23246 |
55 |
40 |
100 |
33 |
44.1642 |
42.7534 |
1.41071 |
0.27397 |
1.76406 |
-1.49010 |
56 |
50 |
0 |
35 |
42.5825 |
43.0164 |
-0.43392 |
0.02145 |
1.19943 |
-1.17798 |
57 |
50 |
10 |
43 |
42.5996 |
42.5198 |
0.07972 |
0.00374 |
0.95597 |
-0.95223 |
58 |
50 |
20 |
52 |
41.0230 |
41.0736 |
-0.05060 |
0.00190 |
0.80091 |
-0.79901 |
59 |
50 |
30 |
64 |
39.5184 |
39.5140 |
0.00449 |
0.00460 |
0.99050 |
-0.98590 |
60 |
50 |
40 |
71 |
38.3804 |
38.4002 |
-0.01977 |
0.02814 |
1.41467 |
-1.38654 |
61 |
50 |
50 |
72 |
37.1603 |
38.0278 |
-0.86749 |
0.07057 |
1.69401 |
-1.62344 |
62 |
50 |
60 |
68 |
37.6008 |
38.3635 |
-0.76274 |
0.04500 |
1.50710 |
-1.46210 |
63 |
50 |
70 |
58 |
39.4703 |
39.4391 |
0.03119 |
0.00467 |
0.94172 |
-0.93705 |
64 |
50 |
80 |
52 |
40.9501 |
40.8713 |
0.07884 |
0.00418 |
1.11901 |
-1.11483 |
65 |
50 |
90 |
44 |
42.2058 |
42.1254 |
0.08044 |
0.01048 |
0.71614 |
-0.70566 |
66 |
50 |
100 |
35 |
43.5303 |
42.4478 |
1.08245 |
0.25062 |
1.62033 |
-1.36971 |
67 |
60 |
0 |
35 |
42.2662 |
42.4700 |
-0.20384 |
0.02755 |
1.15384 |
-1.12629 |
68 |
60 |
10 |
42 |
42.2378 |
42.1038 |
0.13400 |
0.00956 |
1.01338 |
-1.00382 |
69 |
60 |
20 |
51 |
40.9834 |
40.9730 |
0.01036 |
0.00760 |
1.13076 |
-1.12316 |
70 |
60 |
30 |
61 |
39.5977 |
39.6665 |
-0.06880 |
0.00558 |
0.99476 |
-0.98918 |
71 |
60 |
40 |
66 |
37.9681 |
38.6875 |
-0.71935 |
0.02987 |
1.48938 |
-1.45951 |
72 |
60 |
50 |
70 |
37.1422 |
38.2826 |
-1.14040 |
0.06112 |
1.70395 |
-1.64284 |
73 |
60 |
60 |
68 |
37.9842 |
38.5250 |
-0.54087 |
0.03955 |
1.57370 |
-1.53415 |
74 |
60 |
70 |
54 |
39.5706 |
39.5196 |
0.05102 |
0.01233 |
1.10246 |
-1.09013 |
75 |
60 |
80 |
46 |
40.5708 |
40.7059 |
-0.13513 |
0.01457 |
1.09420 |
-1.07963 |
76 |
60 |
90 |
42 |
41.6046 |
41.7339 |
-0.12934 |
0.03151 |
1.16079 |
-1.12929 |
77 |
60 |
100 |
35 |
41.4345 |
42.0550 |
-0.62052 |
0.09857 |
1.60124 |
-1.50267 |
78 |
70 |
0 |
35 |
41.7605 |
42.1236 |
-0.36312 |
0.08049 |
1.52418 |
-1.44368 |
79 |
70 |
10 |
38 |
41.7842 |
41.7844 |
-0.00018 |
0.00461 |
0.66583 |
-0.66122 |
80 |
70 |
20 |
47 |
40.7629 |
40.8773 |
-0.11440 |
0.01291 |
1.15745 |
-1.14454 |
81 |
70 |
30 |
52 |
39.7303 |
39.7416 |
-0.01127 |
0.00205 |
0.71282 |
-0.71077 |
82 |
70 |
40 |
57 |
38.5335 |
38.8522 |
-0.31867 |
0.01477 |
1.37830 |
-1.36353 |
83 |
70 |
50 |
62 |
37.9375 |
38.4673 |
-0.52985 |
0.02498 |
1.45962 |
-1.43464 |
84 |
70 |
60 |
56 |
38.6802 |
38.7377 |
-0.05750 |
0.02250 |
1.50287 |
-1.48037 |
85 |
70 |
70 |
47 |
39.6669 |
39.5180 |
0.14887 |
0.01535 |
1.21800 |
-1.20265 |
86 |
70 |
80 |
42 |
40.5276 |
40.5466 |
-0.01904 |
0.00726 |
0.87303 |
-0.86577 |
87 |
70 |
90 |
37 |
41.2246 |
41.3097 |
-0.08508 |
0.04701 |
1.30379 |
-1.25678 |
88 |
70 |
100 |
33 |
39.9290 |
41.6639 |
-1.73498 |
0.20448 |
1.77135 |
-1.56686 |
89 |
80 |
0 |
31 |
41.6827 |
41.8330 |
-0.15024 |
0.05229 |
1.32478 |
-1.27249 |
90 |
80 |
10 |
35 |
41.6503 |
41.6131 |
0.03723 |
0.00202 |
0.70805 |
-0.70604 |
91 |
80 |
20 |
43 |
40.8009 |
40.7935 |
0.00746 |
0.00375 |
0.72766 |
-0.72391 |
92 |
80 |
30 |
47 |
40.0556 |
39.8526 |
0.20295 |
0.01814 |
1.34578 |
-1.32764 |
93 |
80 |
40 |
52 |
39.2875 |
39.0467 |
0.24085 |
0.01159 |
1.22214 |
-1.21055 |
94 |
80 |
50 |
50 |
38.5870 |
38.5990 |
-0.01203 |
0.00074 |
0.65595 |
-0.65521 |
95 |
80 |
60 |
49 |
38.9292 |
38.8683 |
0.06096 |
0.00258 |
1.03199 |
-1.02941 |
96 |
80 |
70 |
45 |
39.6483 |
39.5615 |
0.08682 |
0.00349 |
1.12472 |
-1.12123 |
97 |
80 |
80 |
37 |
40.6906 |
40.3853 |
0.30529 |
0.01635 |
1.22567 |
-1.20932 |
98 |
80 |
90 |
33 |
41.1603 |
41.0230 |
0.13723 |
0.06477 |
1.39154 |
-1.32678 |
99 |
80 |
100 |
31 |
39.9106 |
41.3872 |
-1.47665 |
0.21764 |
1.51630 |
-1.29866 |
100 |
90 |
0 |
28 |
41.6452 |
41.5506 |
0.09467 |
0.01214 |
0.79513 |
-0.78299 |
101 |
90 |
10 |
31 |
41.3929 |
41.3776 |
0.01531 |
0.00213 |
0.73545 |
-0.73333 |
102 |
90 |
20 |
36 |
40.4533 |
40.7600 |
-0.30663 |
0.02865 |
1.43345 |
-1.40480 |
103 |
90 |
30 |
41 |
40.0628 |
39.9885 |
0.07429 |
0.04942 |
1.67601 |
-1.62659 |
104 |
90 |
40 |
41 |
39.4289 |
39.2936 |
0.13531 |
0.02642 |
1.37536 |
-1.34895 |
105 |
90 |
50 |
44 |
38.8618 |
38.8703 |
-0.00850 |
0.00042 |
0.51538 |
-0.51496 |
106 |
90 |
60 |
39 |
39.1550 |
39.0936 |
0.06138 |
0.00418 |
0.98673 |
-0.98255 |
107 |
90 |
70 |
32 |
39.6165 |
39.6119 |
0.00467 |
0.00080 |
0.79697 |
-0.79618 |
108 |
90 |
80 |
27 |
40.1824 |
40.2622 |
-0.07974 |
0.01010 |
0.89490 |
-0.88480 |
109 |
90 |
90 |
26 |
41.0182 |
40.7950 |
0.22323 |
0.03405 |
1.18818 |
-1.15413 |
110 |
90 |
100 |
25 |
41.6405 |
41.1315 |
0.50896 |
0.05499 |
0.77000 |
-0.71500 |
111 |
100 |
0 |
26 |
43.4372 |
41.2850 |
2.15225 |
0.16375 |
1.82802 |
-1.66427 |
112 |
100 |
10 |
27 |
42.6488 |
41.1598 |
1.48896 |
0.09281 |
1.74294 |
-1.65013 |
113 |
100 |
20 |
31 |
41.5685 |
40.7558 |
0.81271 |
0.21441 |
1.93836 |
-1.72394 |
114 |
100 |
30 |
33 |
41.7093 |
40.1598 |
1.54955 |
0.20921 |
1.99653 |
-1.78732 |
115 |
100 |
40 |
34 |
39.9971 |
39.6565 |
0.34063 |
0.08372 |
1.71559 |
-1.63187 |
116 |
100 |
50 |
34 |
39.3376 |
39.4252 |
-0.08764 |
0.05489 |
1.33611 |
-1.28122 |
117 |
100 |
60 |
34 |
39.5622 |
39.5883 |
-0.02604 |
0.01056 |
0.92205 |
-0.91149 |
118 |
100 |
70 |
27 |
39.4602 |
39.7773 |
-0.31713 |
0.03231 |
1.24455 |
-1.21223 |
119 |
100 |
80 |
24 |
39.3618 |
40.1209 |
-0.75906 |
0.03926 |
1.24930 |
-1.21005 |
120 |
100 |
90 |
23 |
41.4052 |
40.4980 |
0.90718 |
0.12795 |
1.43988 |
-1.31192 |
121 |
100 |
100 |
23 |
44.5381 |
40.7383 |
3.79975 |
0.41616 |
1.80688 |
-1.39072 |
|
The predicted values at each of the grid locations do not
differ greatly for the two variogram models. However,
the standard error of prediction for the spherical model is
substantially larger than the Gaussian model.
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.