Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
The KRIGE2D Procedure

Example 34.1: Investigating the Effect of Model Specification on Prediction

In the "Getting Started" section of the chapter on the VARIOGRAM procedure, a particular variogram is chosen for the coal seam thickness data. The chosen variogram is Gaussian with a scale (sill) of c0=7.5, and a range of a0=30. This choice of the variogram is based on a visual fit - a comparison of the plots of the regular and robust sample variograms and the Gaussian variogram for various scale (sill) and range values.

Another possible choice of model is the spherical variogram with the same scale (sill) of c0=7.5 but with a range of a0=60. This choice of range is again based on a visual fit; while not as good as the Gaussian model, the fit is reasonable.

It is generally held that spatial prediction is robust against model specification, while the standard error computation is not so robust.

This example investigates the effect of using these different models on the prediction and associated standard errors.

   data thick;
      input east north thick @@;
      datalines;
       0.7  59.6  34.1   2.1  82.7  42.2   4.7  75.1  39.5 
       4.8  52.8  34.3   5.9  67.1  37.0   6.0  35.7  35.9
       6.4  33.7  36.4   7.0  46.7  34.6   8.2  40.1  35.4   
      13.3   0.6  44.7  13.3  68.2  37.8  13.4  31.3  37.8
      17.8   6.9  43.9  20.1  66.3  37.7  22.7  87.6  42.8 
      23.0  93.9  43.6  24.3  73.0  39.3  24.8  15.1  42.3
      24.8  26.3  39.7  26.4  58.0  36.9  26.9  65.0  37.8 
      27.7  83.3  41.8  27.9  90.8  43.3  29.1  47.9  36.7
      29.5  89.4  43.0  30.1   6.1  43.6  30.8  12.1  42.8
      32.7  40.2  37.5  34.8   8.1  43.3  35.3  32.0  38.8
      37.0  70.3  39.2  38.2  77.9  40.7  38.9  23.3  40.5
      39.4  82.5  41.4  43.0   4.7  43.3  43.7   7.6  43.1
      46.4  84.1  41.5  46.7  10.6  42.6  49.9  22.1  40.7
      51.0  88.8  42.0  52.8  68.9  39.3  52.9  32.7  39.2
      55.5  92.9  42.2  56.0   1.6  42.7  60.6  75.2  40.1
      62.1  26.6  40.1  63.0  12.7  41.8  69.0  75.6  40.1
      70.5  83.7  40.9  70.9  11.0  41.7  71.5  29.5  39.8
      78.1  45.5  38.7  78.2   9.1  41.7  78.4  20.0  40.8
      80.5  55.9  38.7  81.1  51.0  38.6  83.8   7.9  41.6
      84.5  11.0  41.5  85.2  67.3  39.4  85.5  73.0  39.8 
      86.7  70.4  39.6  87.2  55.7  38.8  88.1   0.0  41.6
      88.4  12.1  41.3  88.4  99.6  41.2  88.8  82.9  40.5 
      88.9   6.2  41.5  90.6   7.0  41.5  90.7  49.6  38.9 
      91.5  55.4  39.0  92.9  46.8  39.1  93.4  70.9  39.7 
      94.8  71.5  39.7  96.2  84.3  40.3  98.2  58.2  39.5
      ;

   /*- Run KRIGE2D on original Gaussian model  ------------*/ 
   proc krige2d data=thick outest=est1;
      pred var=thick r=60;
      model scale=7.5 range=30 form=gauss;
      coord xc=east yc=north;
      grid x=0 to 100 by 10 y=0 to 100 by 10;
   run;

   /*- Run KRIGE2D using Spherical Model, modified range  -*/ 
   proc krige2d data=thick outest=est2;
      pred var=thick r=60;
      model scale=7.5 range=60 form=spherical;
      coord xc=east yc=north;
      grid x=0 to 100 by 10 y=0 to 100 by 10;
   run;

   data compare ;
      merge est1(rename=(estimate=g_est stderr=g_std))
            est2(rename=(estimate=s_est stderr=s_std));
      est_dif=g_est-s_est;
      std_dif=g_std-s_std;
   run;                     

   proc print data=compare;
      title 'Comparison of Gaussian and Spherical Models';
      title2 'Differences of Estimates and Standard Errors';
      var gxc gyc npoints g_est s_est est_dif  g_std s_std 
                          std_dif;
   run;

Output 34.1.1: Comparison of Gaussian and Spherical Models

Comparison of Gaussian and Spherical Models
Differences of Estimates and Standard Errors

Obs GXC GYC NPOINTS g_est s_est est_dif g_std s_std std_dif
1 0 0 23 43.9408 42.6700 1.27087 0.68260 2.05947 -1.37687
2 0 10 28 41.6828 41.6780 0.00483 0.55909 2.03464 -1.47554
3 0 20 31 38.9601 39.7285 -0.76843 0.30185 1.93478 -1.63293
4 0 30 32 36.1701 37.3275 -1.15739 0.12705 1.54844 -1.42139
5 0 40 39 33.8376 35.4320 -1.59440 0.04872 1.37821 -1.32949
6 0 50 38 32.8375 34.3930 -1.55550 0.02983 1.22584 -1.19602
7 0 60 35 33.9576 34.3155 -0.35785 0.00195 0.54122 -0.53927
8 0 70 30 36.9502 37.6669 -0.71673 0.04006 1.20451 -1.16444
9 0 80 31 41.1097 41.1016 0.00812 0.04705 0.99544 -0.94839
10 0 90 28 43.6671 42.5216 1.14546 0.10236 1.57357 -1.47121
11 0 100 23 41.9443 42.6511 -0.70681 0.53646 2.20792 -1.67146
12 10 0 25 44.6795 44.1959 0.48355 0.07833 1.09743 -1.01910
13 10 10 31 42.8397 42.7496 0.09008 0.10982 1.46686 -1.35703
14 10 20 34 40.3120 40.3634 -0.05140 0.05315 1.54889 -1.49574
15 10 30 39 37.7593 37.7648 -0.00544 0.00889 0.94136 -0.93247
16 10 40 44 35.6365 35.5471 0.08940 0.00595 0.75920 -0.75325
17 10 50 44 35.0603 34.7042 0.35612 0.01564 1.05033 -1.03469
18 10 60 41 36.0716 35.4737 0.59794 0.01321 1.18277 -1.16957
19 10 70 36 38.1196 38.1040 0.01565 0.00315 0.89157 -0.88842
20 10 80 33 41.2799 41.0734 0.20644 0.02446 1.22772 -1.20326
21 10 90 30 43.2193 42.8904 0.32890 0.05988 1.49438 -1.43450
22 10 100 26 41.0358 43.1350 -2.09918 0.19050 1.93434 -1.74384
23 20 0 29 44.4890 44.4359 0.05317 0.06179 1.23618 -1.17439
24 20 10 35 43.3391 43.2938 0.04531 0.00526 0.95512 -0.94986
25 20 20 39 41.1293 40.9885 0.14079 0.00675 1.18544 -1.17870
26 20 30 43 38.6060 38.5300 0.07598 0.00898 1.08973 -1.08075
27 20 40 49 36.5013 36.5275 -0.02623 0.03037 1.33620 -1.30583
28 20 50 49 36.1158 35.7959 0.31990 0.02535 1.31986 -1.29451
29 20 60 49 36.8115 36.5397 0.27182 0.00835 1.11490 -1.10656
30 20 70 39 38.4308 38.5182 -0.08746 0.00257 0.89419 -0.89162
31 20 80 36 41.0601 41.0449 0.01511 0.00766 1.18548 -1.17781
32 20 90 33 43.1788 43.1073 0.07144 0.00613 0.94924 -0.94311
33 20 100 27 42.7757 43.4689 -0.69313 0.06770 1.52094 -1.45324
34 30 0 35 43.3601 43.9579 -0.59779 0.04662 1.32306 -1.27644
35 30 10 39 43.1539 43.1448 0.00912 0.00245 0.72413 -0.72167
36 30 20 44 41.2400 41.2166 0.02336 0.00528 1.10234 -1.09706
37 30 30 52 38.9296 39.0178 -0.08816 0.00489 1.04501 -1.04012
38 30 40 57 37.2813 37.3412 -0.05992 0.00804 0.89242 -0.88438
39 30 50 57 36.7198 36.7558 -0.03597 0.00652 0.83517 -0.82865
40 30 60 55 37.2047 37.3407 -0.13597 0.00682 1.00330 -0.99648
41 30 70 48 38.8856 38.8919 -0.00628 0.00285 1.01430 -1.01145
42 30 80 43 41.0627 41.0663 -0.00359 0.00260 0.97336 -0.97077
43 30 90 36 43.0969 43.0465 0.05038 0.00194 0.51312 -0.51118
44 30 100 29 44.5840 43.3474 1.23663 0.13593 1.57267 -1.43674
45 40 0 36 42.8186 43.5157 -0.69706 0.01976 1.25689 -1.23713
46 40 10 40 42.8970 42.9168 -0.01984 0.00301 0.95163 -0.94862
47 40 20 52 41.1025 41.1824 -0.07989 0.00193 0.96204 -0.96012
48 40 30 60 39.3288 39.2992 0.02960 0.00451 1.05561 -1.05111
49 40 40 67 38.2096 37.9680 0.24161 0.01791 1.29139 -1.27349
50 40 50 68 37.3139 37.5055 -0.19150 0.04039 1.51095 -1.47056
51 40 60 64 37.3353 37.9400 -0.60462 0.02973 1.45391 -1.42418
52 40 70 58 39.2288 39.2541 -0.02528 0.00271 0.93775 -0.93503
53 40 80 53 41.0334 41.0063 0.02715 0.00081 0.72274 -0.72193
54 40 90 43 42.6291 42.4154 0.21372 0.02307 1.25552 -1.23246
55 40 100 33 44.1642 42.7534 1.41071 0.27397 1.76406 -1.49010
56 50 0 35 42.5825 43.0164 -0.43392 0.02145 1.19943 -1.17798
57 50 10 43 42.5996 42.5198 0.07972 0.00374 0.95597 -0.95223
58 50 20 52 41.0230 41.0736 -0.05060 0.00190 0.80091 -0.79901
59 50 30 64 39.5184 39.5140 0.00449 0.00460 0.99050 -0.98590
60 50 40 71 38.3804 38.4002 -0.01977 0.02814 1.41467 -1.38654
61 50 50 72 37.1603 38.0278 -0.86749 0.07057 1.69401 -1.62344
62 50 60 68 37.6008 38.3635 -0.76274 0.04500 1.50710 -1.46210
63 50 70 58 39.4703 39.4391 0.03119 0.00467 0.94172 -0.93705
64 50 80 52 40.9501 40.8713 0.07884 0.00418 1.11901 -1.11483
65 50 90 44 42.2058 42.1254 0.08044 0.01048 0.71614 -0.70566
66 50 100 35 43.5303 42.4478 1.08245 0.25062 1.62033 -1.36971
67 60 0 35 42.2662 42.4700 -0.20384 0.02755 1.15384 -1.12629
68 60 10 42 42.2378 42.1038 0.13400 0.00956 1.01338 -1.00382
69 60 20 51 40.9834 40.9730 0.01036 0.00760 1.13076 -1.12316
70 60 30 61 39.5977 39.6665 -0.06880 0.00558 0.99476 -0.98918
71 60 40 66 37.9681 38.6875 -0.71935 0.02987 1.48938 -1.45951
72 60 50 70 37.1422 38.2826 -1.14040 0.06112 1.70395 -1.64284
73 60 60 68 37.9842 38.5250 -0.54087 0.03955 1.57370 -1.53415
74 60 70 54 39.5706 39.5196 0.05102 0.01233 1.10246 -1.09013
75 60 80 46 40.5708 40.7059 -0.13513 0.01457 1.09420 -1.07963
76 60 90 42 41.6046 41.7339 -0.12934 0.03151 1.16079 -1.12929
77 60 100 35 41.4345 42.0550 -0.62052 0.09857 1.60124 -1.50267
78 70 0 35 41.7605 42.1236 -0.36312 0.08049 1.52418 -1.44368
79 70 10 38 41.7842 41.7844 -0.00018 0.00461 0.66583 -0.66122
80 70 20 47 40.7629 40.8773 -0.11440 0.01291 1.15745 -1.14454
81 70 30 52 39.7303 39.7416 -0.01127 0.00205 0.71282 -0.71077
82 70 40 57 38.5335 38.8522 -0.31867 0.01477 1.37830 -1.36353
83 70 50 62 37.9375 38.4673 -0.52985 0.02498 1.45962 -1.43464
84 70 60 56 38.6802 38.7377 -0.05750 0.02250 1.50287 -1.48037
85 70 70 47 39.6669 39.5180 0.14887 0.01535 1.21800 -1.20265
86 70 80 42 40.5276 40.5466 -0.01904 0.00726 0.87303 -0.86577
87 70 90 37 41.2246 41.3097 -0.08508 0.04701 1.30379 -1.25678
88 70 100 33 39.9290 41.6639 -1.73498 0.20448 1.77135 -1.56686
89 80 0 31 41.6827 41.8330 -0.15024 0.05229 1.32478 -1.27249
90 80 10 35 41.6503 41.6131 0.03723 0.00202 0.70805 -0.70604
91 80 20 43 40.8009 40.7935 0.00746 0.00375 0.72766 -0.72391
92 80 30 47 40.0556 39.8526 0.20295 0.01814 1.34578 -1.32764
93 80 40 52 39.2875 39.0467 0.24085 0.01159 1.22214 -1.21055
94 80 50 50 38.5870 38.5990 -0.01203 0.00074 0.65595 -0.65521
95 80 60 49 38.9292 38.8683 0.06096 0.00258 1.03199 -1.02941
96 80 70 45 39.6483 39.5615 0.08682 0.00349 1.12472 -1.12123
97 80 80 37 40.6906 40.3853 0.30529 0.01635 1.22567 -1.20932
98 80 90 33 41.1603 41.0230 0.13723 0.06477 1.39154 -1.32678
99 80 100 31 39.9106 41.3872 -1.47665 0.21764 1.51630 -1.29866
100 90 0 28 41.6452 41.5506 0.09467 0.01214 0.79513 -0.78299
101 90 10 31 41.3929 41.3776 0.01531 0.00213 0.73545 -0.73333
102 90 20 36 40.4533 40.7600 -0.30663 0.02865 1.43345 -1.40480
103 90 30 41 40.0628 39.9885 0.07429 0.04942 1.67601 -1.62659
104 90 40 41 39.4289 39.2936 0.13531 0.02642 1.37536 -1.34895
105 90 50 44 38.8618 38.8703 -0.00850 0.00042 0.51538 -0.51496
106 90 60 39 39.1550 39.0936 0.06138 0.00418 0.98673 -0.98255
107 90 70 32 39.6165 39.6119 0.00467 0.00080 0.79697 -0.79618
108 90 80 27 40.1824 40.2622 -0.07974 0.01010 0.89490 -0.88480
109 90 90 26 41.0182 40.7950 0.22323 0.03405 1.18818 -1.15413
110 90 100 25 41.6405 41.1315 0.50896 0.05499 0.77000 -0.71500
111 100 0 26 43.4372 41.2850 2.15225 0.16375 1.82802 -1.66427
112 100 10 27 42.6488 41.1598 1.48896 0.09281 1.74294 -1.65013
113 100 20 31 41.5685 40.7558 0.81271 0.21441 1.93836 -1.72394
114 100 30 33 41.7093 40.1598 1.54955 0.20921 1.99653 -1.78732
115 100 40 34 39.9971 39.6565 0.34063 0.08372 1.71559 -1.63187
116 100 50 34 39.3376 39.4252 -0.08764 0.05489 1.33611 -1.28122
117 100 60 34 39.5622 39.5883 -0.02604 0.01056 0.92205 -0.91149
118 100 70 27 39.4602 39.7773 -0.31713 0.03231 1.24455 -1.21223
119 100 80 24 39.3618 40.1209 -0.75906 0.03926 1.24930 -1.21005
120 100 90 23 41.4052 40.4980 0.90718 0.12795 1.43988 -1.31192
121 100 100 23 44.5381 40.7383 3.79975 0.41616 1.80688 -1.39072


The predicted values at each of the grid locations do not differ greatly for the two variogram models. However, the standard error of prediction for the spherical model is substantially larger than the Gaussian model.

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.