Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
PPPLOT Statement

Summary of Theoretical Distributions

You can use the PPPLOT statement to request P-P plots based on the theoretical distributions summarized in the following table:

Table 8.12: Distributions and Parameters
      Parameters
Family Distribution Function F(x) Range Location Scale Shape
      
Beta\int_{\theta}^x
\frac{(t-\theta )^{\alpha-1}(\theta+\sigma-t)^{\beta-1}}
{B(\alpha,\beta)\sigma^{(\alpha+\beta-1)}} dt\theta\lt x \lt\theta+\sigma\theta\sigma\alpha, \beta
Exponential1-\exp(-\frac{x-\theta}{\sigma})x \geq \theta \theta\sigma 
Gamma\int_{\theta}^x
\frac{1}{\sigma\Gamma(\alpha)}
(\frac{t-\theta}{\sigma})^{\alpha-1}
\exp(-\frac{t-\theta}{\sigma}) dtx\gt\theta\theta\sigma\alpha
Lognormal\int_{\theta}^x
\frac{1}{\sigma\sqrt{2\pi}(t-\theta)}
\exp(-\frac{(\log(t-\theta)-\zeta)^2}{2\sigma^2}) dtx\gt\theta\theta\zeta\sigma
Normal\int_{-\infty}^x
\frac{1}{\sigma\sqrt{2\pi}}
\exp(-\frac{(t-\mu)^2}{2\sigma^2}) dtall x\mu\sigma 
Weibull1-\exp(-(\frac{x-\theta}{\sigma})^c)x\gt\theta\theta\sigmac
      

You can request these distributions with the BETA, EXPONENTIAL, GAMMA, LOGNORMAL, NORMAL, and WEIBULL options, respectively. If you do not specify a distribution option, a normal P-P plot is created.

To create a P-P plot, you must provide all of the parameters for the theoretical distribution. If you do not specify parameters, then default values or estimates are substituted, as summarized by the following table:

Table 8.13: Defaults for Parameters
Family Default Values Estimated Values
Beta\theta=0, \sigma=1maximum likelihood estimates for \alpha and \beta
Exponential\theta=0maximum likelihood estimate for \sigma
Gamma\theta=0maximum likelihood estimates for \sigma and \alpha
Lognormal\theta=0maximum likelihood estimates for \sigma and \zeta
NormalNonesample estimates for \mu and \sigma
Weibull\theta=0maximum likelihood estimates for \sigma and c

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.