Chapter Contents |
Previous |
Next |
The UNIVARIATE Procedure |
Alias: | PROB |
Default: | Normal probability plot |
Restriction: | You can specify only one theoretical distribution. |
Tip: | You can use multiple PROBPLOT statements. |
Main discussion: | |
Featured in: | Quantile-Quantile and Probability Plots |
PROBPLOT <variable(s)> </ option(s)>; |
To do this: | Use this option: | |
---|---|---|
Request a distribution | ||
Specify beta probability plot with required shape parameters , . | BETA(beta-suboptions) | |
Specify exponential probability plot | EXPONENTIAL(exponential-suboptions) | |
Specify gamma probability plot with a required shape parameter | GAMMA(gamma-suboptions) | |
Specify lognormal probability plot with a required shape parameter | LOGNORMAL(lognormal-suboptions) | |
Specify normal probability plot | NORMAL(normal-suboptions) | |
Specify three-parameter Weibull probability plot with a required shape parameter | WEIBULL(Weibull-suboptions) | |
Specify two-parameter Weibull probability plot | WEIBULL2(Weibull2-suboptions) | |
Distribution suboptions | ||
Specify shape parameter for the beta or gamma distribution | ALPHA= | |
Specify shape parameter for the beta distribution | BETA= | |
Specify shape parameter for the Weibull distribution or for distribution reference line of the Weibull2 distribution | C= | |
Specify for distribution reference line for the normal distribution | MU= | |
Specify for distribution reference line for the beta, exponential, gamma, normal, Weibull, or Weibull2 distribution or the required shape parameter for the lognormal option | SIGMA= | |
Specify slope of distribution reference line for the lognormal or Weibull2 distribution | SLOPE= | |
Specify for distribution reference line for the beta, exponential, gamma, lognormal, or Weibull distribution, or the lower known threshold for the Weibull2 distribution | THETA= | |
Specify for distribution reference line for the lognormal distribution | ZETA= | |
Control appearance of distribution reference line | ||
Specify color of distribution reference line | COLOR= | |
Specify line type of distribution reference line | L= | |
Specify width of distribution reference line | W= | |
Control general plot layout | ||
Create a grid | GRID | |
Specify reference lines perpendicular to the horizontal axis | HREF= | |
Specify labels for HREF lines | HREFLABELS= | |
Specify a line style for grid lines | LGRID= | |
Adjust sample size when computing percentiles | NADJ= | |
Suppress frame around plotting area | NOFRAME | |
Request minor tick marks for percentile axis | PCTLMINOR | |
Specify tick mark labels for percentile axis | PCTLORDER= | |
Adjust ranks when computing percentiles | RANKADJ= | |
Display plot in square format | SQUARE | |
Specify reference lines perpendicular to the vertical axis | VREF= | |
Specify labels for VREF lines | VREFLABELS= | |
Enhance the probability plot | ||
Specify annotate data set | ANNOTATE= | |
Specify color for axis | CAXIS= | |
Specify color for frame | CFRAME= | |
Specify color for HREF= lines | CHREF= | |
Specify color for text | CTEXT= | |
Specify color for VREF= lines | CVREF= | |
Specify description for plot in graphics catalog | DESCRIPTION= | |
Specify software font for text | FONT= | |
Specify number of horizontal minor tick marks | HMINOR= | |
Specify line style for HREF= lines | LHREF= | |
Specify line style for VREF= lines | LVREF= | |
Specify name for plot in graphics catalog | NAME= | |
Specify number of vertical minor tick marks | VMINOR= | |
Enhance the comparative probability plot | ||
Apply annotation requested in ANNOTATE= data set to key cell only | ANNOKEY | |
Specify color for filling frame for row labels | CFRAMESIDE= | |
Specify color for filling frame for column labels | CFRAMETOP= | |
Specify distance between tiles | INTERTILE= | |
Specify number of columns in comparative probability plot | NCOLS= | |
Specify number of rows in comparative probability plot | NROWS= |
Arguments |
Default: | If you omit variable(s) in the PROBPLOT statement then the procedure creates a probability plot for each variable that you list in the VAR statement, or for each numeric variable in the DATA= data set if you omit a VAR statement. |
Requirement: | If you specify a VAR statement, use a subset of the variable(s) that you list in the VAR statement. Otherwise, variable(s) are any numeric variables in the DATA= data set. |
Options |
Requirement: | Enclose this suboption in parentheses following the BETA or GAMMA options. |
Tip: | To compute a maximum likelihood estimate for , specify ALPHA=EST. |
Requirement: | This option is ignored unless you specify the CLASS statement. |
Tip: | Use the KEYLEVEL= option in the CLASS statement to specify the key cell. |
See also: | the KEYLEVEL= option |
Alias: | ANNO= |
Tip: | The ANNOTATE = data set that you specify in the PROBPLOT statement is used by all plots that this statement creates. You can also specify an ANNOTATE= data set in the PROC UNIVARIATE statement to enhance all the graphics displays that the procedure creates. |
See also: | the ANNOTATE= option in the PROC UNIVARIATE statement |
Requirement: | You must specify the shape parameters with the ALPHA= and BETA= suboptions. |
Interaction: | To create a plot that is based on maximum likelihood estimates for and , specify ALPHA=EST and BETA=EST. |
Tip: | To obtain graphical estimates of
and
, specify lists of values in the ALPHA= and BETA= suboptions.
Then select the combination of
and
that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line that corresponds to the lower threshold parameter and the scale parameter with the THETA= and SIGMA= suboptions. Alternatively, you can add a line that corresponds to estimated values of and with THETA=EST and SIGMA=EST. Agreement between the reference line and the point pattern indicates that the beta distribution with parameters , , , and is a good fit. |
Main discussion: | Beta Distribution |
See also: | the ALPHA= suboption and BETA= suboption |
Alias: | B= |
Requirement: | Enclose this suboption in parentheses after the BETA option. |
Tip: | To compute a maximum likelihood estimate for , specify BETA=EST. |
Requirement: | Enclose this suboption in parentheses after the WEIBULL option or WEIBULL2 option. |
Interaction: | To request a distribution reference line in the WEIBULL2 option, you must specify both the C= and SIGMA= suboptions. |
Tip: | To compute a maximum likelihood estimate for , specify C=EST. |
Alias: | CAXES= |
Default: | the first color in the device color list |
Interaction: | This option overrides any COLOR= specification. |
Default: | the area is not filled |
Default: | These areas are not filled. |
Requirement: | This option is ignored unless you specify the CLASS statement. |
Default: | These areas are not filled. |
Requirement: | This option does not apply unless you specify the CLASS statement. |
Default: | the first color in the device color list |
Default: | the first color in the device color list |
Requirement: | You must enclose this suboption in parentheses after a distribution option keyword. |
Default: | the color that you specify for the CTEXT= option in the GOPTIONS statement. If you omit the GOPTIONS statement, the default is the first color in the device color list. |
Alias: | CV= |
Default: | the first color in the device color list |
Alias: | DES= |
Default: | the variable name |
Alias: | EXP |
Tip: | To assess the point pattern, add a diagonal
distribution reference line that corresponds to
and
with the THETA= and SIGMA= suboptions. Alternatively, you
can add a line that corresponds to estimated values of the threshold parameter
and the scale parameter
with the THETA=EST and SIGMA=EST suboptions.
Agreement between the reference line and the point pattern indicates that the exponential distribution with parameters and is a good fit. |
Main discussion: | Exponential Distribution |
See also: | the SIGMA= suboption and the THETA= suboption |
Default: | hardware characters |
Interaction: | FONT=font takes precedence over the FTEXT=font that you specify in the GOPTIONS statement. |
Requirement: | You must specify the shape parameter with the ALPHA= suboption. |
Interaction: | To create a plot that is based on a maximum likelihood estimate for , specify ALPHA=EST. |
Tip: | To obtain a graphical estimate of
, specify a list of values in the ALPHA= suboption. Then
select the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line that corresponds to the threshold parameter and the scale parameter with the THETA= and SIGMA= suboptions. Alternatively, you can add a line that corresponds to estimated values of and with THETA=EST and SIGMA=EST. Agreement between the reference line and the point pattern indicates that the exponential distribution with parameters , , and is a good fit. |
Main discussion: | Gamma Distribution |
See also: | the ALPHA= suboption, SIGMA suboption , and THETA suboption |
Default: | 1 |
Alias: | HM= |
Default: | 0 |
See also: | CHREF= option |
Alias: | HREFLABEL= and HREFLAB= |
Restriction: | The number of labels must equal the number of reference lines. Labels can have up to 16 characters. |
1 | positions the labels at the left of the plot |
2 | positions the labels along the top of the plot |
3 | positions the labels from top to bottom |
Default: | 1 |
Default: | The tiles are contiguous. |
Requirement: | This option is ignored unless you specify the CLASS statement. |
Default: | 1, which produces a solid line |
Requirement: | You must enclose this suboption in parentheses after a distribution option. |
Default: | 1, which produces solid lines |
Alias: | LH= |
Default: | 2, which produces a dashed line |
Alias: | LNORM |
Requirement: | You must specify the shape parameter with the SIGMA= suboption. |
Interaction: | To compute a maximum likelihood estimate for , specify SIGMA=EST. |
Tip: | To obtain a graphical estimate of
, specify a list of values for the SIGMA= suboption, and
select the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line that corresponds to the threshold parameter and the scale parameter with the THETA= and ZETA= suboptions. Alternatively, you can add a line that corresponds to estimated values of and with THETA=EST and ZETA=EST. Agreement between the reference line and the point pattern indicates that the lognormal distribution with parameters , , and is a good fit. |
Main discussion: | Lognormal Distribution |
See also: | the SIGMA= suboption , SLOPE= suboption , THETA= suboption , and ZETA= suboption |
Default: | 2, which produces a dashed line |
Default: | the sample mean |
Requirement: | You must enclose this suboption in parentheses after the NORMAL option. |
Tip: | Specify the MU= and SIGMA= suboptions together to request a distribution reference line. Specify MU=EST to request a distribution reference line with equal to the sample mean. |
Featured in: | Displaying a Reference Line on a Normal Probability Plot |
Default: | as recommended by Blom (1958) |
Default: | UNIVAR |
Alias: | NCOL= |
Default: | NCOLS=1, if you specify only one class variable, and NCOLS=2, if you specify two class variables. |
Requirement: | This option is ignored unless you specify the CLASS statement. |
Interaction: | If you specify two class variables, you can use the NCOLS= option with the NROWS= option. |
Tip: | To assess the point pattern, add a diagonal
distribution reference line that corresponds to
and
with the MU= and SIGMA= suboptions. Alternatively, you
can add a line that corresponds to estimated values of
and
with the THETA=EST and SIGMA=EST; the estimates of the
mean
and the standard deviation
are the sample mean and sample standard deviation.
Agreement between the reference line and the point pattern indicates that the normal distribution with parameters and is a good fit. |
Main discussion: | Normal Distribution |
See also: | the MU= suboption and SIGMA= suboption |
Featured in: | Displaying a Reference Line on a Normal Probability Plot |
Alias: | NROW= |
Default: | 2 |
Requirement: | This option is ignored unless you specify the CLASS statement. |
Interaction: | If you specify two class variables, you can use the NCOLS= option with the NROWS= option. |
Featured in: | Displaying a Reference Line on a Normal Probability Plot |
Default: | 1, 5, 10, 25, 50, 75, 90, 95, and 99 |
Range: | 0 value 100 |
Restriction: | The values that you specify must be in increasing order and cover the plotted percentile range. Otherwise, PROC UNIVARIATE uses the default. |
Default: | as recommended by Blom (1958) |
See also: | the SIGMA= suboption and ZETA= suboption |
See also: | the ALPHA= suboption , SIGMA= suboption , and C= suboption |
Distribution Option | Uses of the SIGMA= Option |
---|---|
BETA, EXPONENTIAL GAMMA, WEIBULL |
THETA= and SIGMA= request a distribution reference line that corresponds to and . |
LOGNORMAL | SIGMA= requests probability plots with shape parameters . The SIGMA= option is required. |
NORMAL | MU= and SIGMA= request a distribution reference line that corresponds to and . SIGMA=EST requests a line with equal to the sample standard deviation. |
WEIBULL2 | SIGMA= and C= request a distribution reference line that corresponds to and . |
Requirement: | You must enclose this suboption in parentheses after the distribution option. |
Tip: | To compute a maximum likelihood estimate for , specify SIGMA=EST. |
Featured in: | Displaying a Reference Line on a Normal Probability Plot |
Requirement: | You must enclose this suboption in parentheses after the distribution option. |
Tip: | When you use the LOGNORMAL option and SLOPE=
to request the line, you must also specify a threshold parameter value
with the THETA= suboption. SLOPE= is an alternative to
the ZETA= suboption for specifying
, because the slope is equal to
.
When you use the WEIBULL2 option and SLOPE= option to request the line, you must also specify a scale parameter value with the SIGMA= suboption. SLOPE= is an alternative to the C= suboption for specifying , because the slope is equal to . For example, the first and second PROBPLOT statements produce the same probability plots as the third and fourth PROBPLOT statements: proc univariate data=measures; probplot width /lognormal(sigma=2 theta=0 zeta=0); probplot width /lognormal(sigma=2 theta=0 slope=1); probplot width /weibull2(sigma=2 theta=0 c=.25); probplot width /weibull2(sigma=2 theta=0 slope=4); |
Main Discussion: | Three-Parameter Weibull Distribution |
Default: | rectangular frame |
Default: | 0 |
Requirement: | You must enclose this suboption in parentheses after the distribution option. |
Interaction: | When you use the WEIBULL2 option,
the THETA= suboption specifies the known lower threshold
, which by default is 0.
When you use the THETA= suboption with another distribution option, THETA= specifies for a distribution reference line. To compute a maximum likelihood estimate for , specify THETA=EST. To request the line, you must also specify a scale parameter. |
Alias: | VM= |
Default: | 0 |
See also: | CVREF= option and LVREF= option . |
Alias: | VREFLABEL= and VREFLAB= |
Restriction: | The number of labels must equal the number of reference lines. Labels can have up to 16 characters. |
Default: | 1 |
Requirement: | You must enclose this suboption in parentheses after the distribution option. |
Alias: | WEIB |
Requirement: | You must specify the shape parameter with the C= suboption. |
Interaction: | To create a plot that is based on a maximum likelihood estimate for , specify C=EST. |
Tip: | To obtain a graphical estimate of
, specify a list of values in the C= suboption. Then select
the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line that corresponds to and with the THETA= and SIGMA= suboptions. Alternatively, you can add a line that corresponds to estimated values of and with THETA=EST and SIGMA=EST. Agreement between the reference line and the point pattern indicates that the Weibull distribution with parameters , , and is a good fit. |
Main discussion: | Three-Parameter Weibull Distribution |
See also | the C= suboption , SIGMA= suboption , and THETA= suboption |
Alias: | W2 |
Tip: | An advantage of the two-parameter Weibull plot over the three-parameter Weibull plot is that the parameters and can be estimated from the slope and intercept of the point pattern. A disadvantage is that the two-parameter Weibull distribution applies only in situations where the threshold parameter is known. |
Tip: | To obtain a graphical estimate of
, specify a list of values for the C= suboption. Then select
the value that most nearly linearizes the point pattern.
To assess the point pattern, add a diagonal distribution reference line that corresponds to and with the SIGMA= and C= suboptions. Alternatively, you can add a distribution reference line that corresponds to estimated values of and with SIGMA=EST and C=EST. Agreement between the reference line and the point pattern indicates that the Weibull2 distribution with parameters , , and is a good fit. |
Main discussion: | Two-Parameter Weibull Distribution |
See also: | the C= suboption , SIGMA= suboption , SLOPE= suboption , and THETA= suboption |
Requirement: | You must enclose this suboption in parentheses after the LOGNORMAL option. |
Interaction: | To request a distribution reference line with intercept and slope , specify THETA= and ZETA= . |
Chapter Contents |
Previous |
Next |
Top of Page |
Copyright 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.