Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
The MODEL Procedure

Derivatives

Nonlinear modeling techniques require the calculation of derivatives of certain variables with respect to other variables. The MODEL procedure includes an analytic differentiator that determines the model derivatives and generates program code to compute these derivatives. When parameters are estimated, the MODEL procedure takes the derivatives of the equation with respect to the parameters. When the model is solved, Newton's method requires the derivatives of the equations with respect to the variables solved for.

PROC MODEL uses exact mathematical formulas for derivatives of non-user-defined functions. For other functions, numerical derivatives are computed and used.

The differentiator differentiates the entire model program, including conditional logic and flow of control statements. Delayed definitions, as when the LAG of a program variable is referred to before the variable is assigned a value, are also differentiated correctly.

The differentiator includes optimization features that produce efficient code for the calculation of derivatives. However, when flow of control statements such as GOTO statements are used, the optimization process is impeded, and less efficient code for derivatives may be produced. Optimization is also reduced by conditional statements, iterative DO loops, and multiple assignments to the same variable.

The table of derivatives is printed with the LISTDER option. The code generated for the computation of the derivatives is printed with the LISTCODE option.

Derivative Variables

When the differentiator needs to generate code to evaluate the expression for the derivative of a variable, the result is stored in a special derivative variable. Derivative variables are not created when the derivative expression reduces to a previously computed result, a variable, or a constant. The names of derivative variables, which may sometimes appear in the printed output, have the form @obj/@wrt, where obj is the variable whose derivative is being taken and wrt is the variable that the differentiation is with respect to. For example, the derivative variable for the derivative of Y with respect to X is named @Y/@X.

The derivative variables cannot be accessed or used as part of the model program.

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.