
Lecture 23: Polymers:  How to think about polymer conformations    23.1 
Why does the random coil work so well?   
To be followed by discussions of DNA packing and protein folding.     
Problem Set 4, officially due Nov. 8 but will be accepted Wednesday, Nov. 10. 
Reading for Lectures 22—24: PKT Chapter 8 
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What interactions contribute to En? 
“Short-range” interactions along the axis of the chain, including covalent bond geometry and flexibility, 
steric interactions, and bond-angle restrictions. 
“Long-range” interactions, i.e., interactions with other monomers that are “distant” in terms of labeling 
along the chain but get close in space because the chain loops back on itself, e.g., self-avoidance and 
specific interactions between monomeric units (charges, hydrogen bonding, salt bridges, etc.). 
 
We will now look back at the “random-coil” polymer and see how it is modified by interactions: 
Recall from Lect. 10: 
For random +/-a steps in 1D: 
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For random steps along cubic axes in 3D: 
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Q:  How general are these results? 
A:  In the absence of long-range interactions, they are quite general, except that the step-length a may 
change and even become temperature dependent.  Distribution remains Gaussian. 
 
Short-Range interactions only:  Random-Coil models 
Consider a general model of N links (N+1 monomers)   
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where the average is over all configurations. 
If the links are independent, then 
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Example 1:  The freely-jointed chain: 
Suppose the step-length is fixed at a but the links are freely jointed (and if we ignore self-            
aviodance/steric effects), then each link is distributed freely over a sphere, so 
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I haven’t shown you that the distribution of end-to-end length is as given above.  But, it is. 



         23.2 
I am now going to introduce you to a series of models for which 
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called the “Kuhn length.” 
For the freely jointed chain: L=Na and   
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 The significance of the “Kuhn length” is that it is the segment length into which you have to break up 
the chain, so that (on this length scale) it looks like a freely jointed chain:  Thus, for a polymer of 

contour length L, the number of “Kuhn segments” would be 
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More examples: 
As long as the direction of the steps is random, the step length does not have to be fixed: 

2.  The links might have independently some random length distribution 
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Then, we calculate: 
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3.  The links might be alternating in length as in an A-B--A-B—A-B--… heteropolymer.  Then, 
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But, because of short-range interactions, the successive links are NOT generally independent of one 
another for real polymers.   
The reason for this is that—contrary to the assumptions of the random-walk-type models--the direction 
of the nth link is limited by/dependent on the configuration of the (n-1)th link.  It’s just chemical 
bonding and steric hinderance.  So, it is not yet entirely clear, why the random-coil results should carry 
over to real polymers. 
Thus, it is still far from clear why a random-walk result should continue to hold. 
To get a feel for why this might still carry over, I am going to consider three examples, one a lattice 
model (not very realistic chemically) and the other a (semi-realistic) model of alkane chains, and finally 
an important continuum model. 
 
4.  Another cubic-lattice model:  Suppose that at each step we forbid the immediate reversal, so there are 
now z=5 possibilities instead of z=6 (3D) that we would have in a random lattice walk. 
This reflects steric hinderance and/or local (but not global) self-avoidance (i.e., hard-core repulsion). 

In this situation, it is easy to see that 
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etc.  
Here’s the rigorous argument: 
The straight configuration always contributes and gives the (1/5)n contribution. Transverse bonds are 
irrelevant, since they always contribute “0” to the dot product.  Thus, the average of the dot product is 
just (1/5)n times the net excess of forward bonds at the nth step.  But, except for the straight 
configuration, every configuration includes a least one transverse bond.  Any trajectory with a forward 
nth bond can be paired with a trajectory with a backwards one simply by reflecting in the transverse 



plane containing that bond.  And, similarly for any trajectory with a backwards nth bond.             23.3  
Thus, the only uncompensated nth bond is from the straight configuration (and it goes forward).   
Thus,  
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which for large N is just the same as a random walk with 
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Note for future reference the geometric (i.e., exponential) decrease of the directional correlations! 
Again, I have not shown you that the whole distribution is Gaussian.  But, it is.  Upshot:  at long 
distance you can’t distinguish this from a random walk with the step-length bK. 
5.  Alkane model 
This model was introduced in tutorial yesterday.  Chemistry of bonding fixes  
(quite tightly) the angle between   
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The argument is made by pairing the opposite points on the 
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The same logic can be applied iteratively. 
Upshot: 
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Thus, finally, 
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Note:  the Kuhn length diverges as 
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" # 0, illustrating increased “persistence” of the forward direction. 
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