
Name ______________________   Date(YY/MM/DD) ______/_________/_______ 
St.No. __ __ __ __  __-__ __ __ __ Section__________

UNIT 9:  TWO-DIMENSIONAL COLLISIONS
Approximate Classroom Time: Two 110 minute sessions

   

It is difficult even to attach a precise meaning to the term 
"scientific truth."  Thus, the meaning of the word "truth" 
varies according to whether we deal with a fact of experi-
ence, a mathematical proposition, or a scientific theory.  

         A. Einstein

OBJECTIVES 
 
1. To explore the applicability of conservation of momentum to 
the mutual interactions among objects that experience no exter-
nal forces (so that the system of objects is isolated).

2. To calculate momentum changes for an isolated system con-
sisting of two very unequal masses and to observe momentum 
changes for a system consisting of two equal masses.

3. To devise a mathematical definition of the centre of mass of an 
isolated system so that the total momentum of the system (which 
we now know is constant) can be easily determined during inter-
actions. 

4. To understand why, by definition, the centre of mass of a sys-
tem of interacting objects that experiences no outside forces will 
always move with a constant velocity if its momentum is con-
served.

5. To learn how to find the centre of mass of extended objects 
(which are not just mathematical points). 

6. To use centre-of-mass concepts to verify experimentally that 
the Law of Conservation of Momentum holds for two-
dimensional collisions in isolated systems. 
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OVERVIEW
10 min 

You have tested Newton's third law under different condi-
tions in the last two units.  It always seems to hold.  The 
implications of that are profound, because whenever an 
object experiences a force, another entity must also be ex-
periencing a force of the same magnitude.  A single force is 
only half of an interaction.  Whenever there are interac-
tions between two or more objects, it is often possible to 
draw a boundary around a system of objects and say there 
is no net external force on it.  A closed system with no ex-
ternal forces on it is known as an isolated system.  Some 
examples of isolated systems are shown in the diagrams 
below.

Carts with almost frictionless bearings 

interact. (Frictional forces from the track 

are considered negligible.) Pucks riding on a cushion of air on  

an air table interact with each other 

before hitting the walls of the table.  

(Friction forces with the surface of  

the table are negligible.)

Gas molecules interact with each other  

and with the walls of their container.  

(Other forces, such as those of the table 

holding up the container and gravity are  

considered to have a negligible effect on the  

motions of the molecules and the container.)

An orbiting satellite and the Earth interact. 

(Forces on these objects due to other objects 

such as the sun and the moon are considered 

negligible.) 

Figure 9-1: Examples of isolated systems in which the influence 
of outside forces is negligible.

As a consequence of Newton's laws, momentum is believed 
to be conserved in isolated systems.  This means that, no 
matter how many internal interactions occur, the total 
momentum of each of the systems pictured above should 
remain constant.  When one of the objects gains some mo-
mentum another part of the system must lose the same 
amount of momentum.  If momentum doesn't seem to be 
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conserved then we believe that there is an outside force 
acting on the system.  Thus, by extending the boundary of 
the system to include the source of that force we can save 
our Law of Momentum Conservation.  The ultimate iso-
lated system is the whole universe.  Most astrophysicists 
believe that momentum is conserved in the universe!

You will begin this unit by examining a situation in which 
it appears that momentum is not conserved and then see-
ing how the Law of Conservation of Momentum can hold 
when the whole isolated system is considered.  In the next 
activity you will make qualitative observations using two 
carts of equal mass moving toward each other at the same 
speed.  You will observe momentum changes for several 
types of interactions, including an elastic and inelastic col-
lision and an explosion. 

Next, a new quantity, called the centre of mass of a system, 
will be introduced as an alternative way to keep track of 
the momentum associated with a system or an extended 
body.  You will use this concept to demonstrate that the 
Law of Conservation of Momentum holds for both one-
dimensional and two-dimensional interactions in isolated 
systems.  Several other attributes of the centre of mass of a 
system will be studied.
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SESSION ONE:  MOMENTUM CONSERVATION AND CENTRE OF MASS
15 min 

Review of Homework Assignment
Come prepared to ask questions about the homework as-
signments on momentum conservation.

 5 min
When an Irresistible Force Meets an Immovable Ob-
ject
Let's assume that a superball and the moon (with an as-
tronaut on it) are the objects in a closed system.  (The pull 
of the Earth doesn't affect the falling ball, the astronaut, or 
the moon nearly as much as they affect each other.)  Sup-
pose that the astronaut drops the superball and it falls to-
ward the moon so that it rebounds at the same speed it 
had just before it hit.  If momentum is conserved in the in-
teraction between the ball and the moon, can we notice the 
moon recoil? 

✍ Activity 9-1: Wapping the Moon with a Superball
(a) Suppose a small ball is dropped and falls toward the surface 
of the moon so that it hits the ground and rebounds with the 
same speed.  According to the Law of Conservation of Momen-
tum, about how big is the velocity of recoil of the moon?

(b) Will the astronaut notice the jerk as the moon recoils 
from him?  Why or why not?

(c) Consider the ball and the moon as an interacting sys-
tem with no other outside forces.  Why might the astro-
naut (who hasn't taken physics yet!) have the illusion 
that momentum isn't conserved in the interaction be-
tween the ball and the moon?

(d) Why might an introductory physics student here on 
Earth have the impression when throwing a ball against 
the floor or a wall that momentum isn't conserved?
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There are no 
immovable
objects !

Forces are
irresistable !

...most physicists believe that no matter
what, momentum is always conserved !

Figure 9-2: The moral of the moon and superball story.

25 min
Collisions with Equal Masses: What Do You Know?
Let's use momentum conservation to predict the results of 
some simple collisions.  The diagrams below show objects 
of equal mass moving toward each other.  If the track ex-
erts negligible friction on them then the two cart system is 
isolated.  Assume that the carts have opposite velocities so 

that   

€ 

r 
v 1,i = −

r 
v 2,i  and observe what actually happens. You can 

use relatively frictionless carts with springs, magnets, and 
Velcro. You'll need:

• 2 dynamics carts with equal masses (outfitted 
with springs, magnets, and Velcro)

• A track for the carts
   

✍ Activity 9-2: Predictions of the Outcome of Colli-
sions
(a) Sketch a predicted result of the interaction between two carts 
that bounce off each other so their speeds remain unchanged as a 
result of the collision.  Use arrows to indicate the direction and 
magnitude of the velocity of each object after the collision.
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                    Bouncy carts (with magnets)
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Figure 9-3: Elastic collision

(b) Observe a bouncy collision (also known as an elastic collision) 
and discuss whether or not the outcome was what you predicted 
it to be.  If not, draw a new sketch with arrows indicating the 
magnitudes and directions of the velocities.  What is the appar-

ent relationship between the final velocities       

€ 

r 
v 1,f  and      

€ 

r 
v 2,f  ?  How 

do their magnitudes compare to those of the initial velocities?

(c) Sketch the predicted result of the interaction between two 
objects that stick together.  Use arrows to indicate the direction 
and magnitude of the velocity of each object after the collision.
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                    Bouncy carts (with magnets)
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                        Sticky carts (with Velcro)
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Figure 9-4: Inelastic collision

(d) Observe a sticky collision (also known as an inelastic colli-
sion) and discuss whether or not the outcome was what you pre-
dicted it to be.  If not, draw a new sketch with arrows indicating 
the magnitudes and directions of the velocities. What is the ap-

parent relationship between the final velocities       

€ 

r 
v 1,f  and       

€ 

r 
v 2,f ?  

How do their magnitudes compare to those of the initial veloci-
ties?

(e) Sketch a predicted result of the interaction between two ob-
jects that collide and then explode.  Use arrows to indicate the 
direction and magnitude of the velocity of each object after the 
collision.

                 Exploding carts (with loaded springs)
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Figure 9-5: Exploding collision

Workshop Physics II: Unit 9 – Two-Dimensional Collisions Page 9-7
Author: Priscilla Laws  

© 1992-93 Dept. of Physics and Astronomy, Dickinson College   Supported by FIPSE (U.S. Dept. of Ed.) 
and NSF. Modified for SFU by N. Alberding & S. Johnson, 2005.



(f) Observe an exploding or "superelastic" collision and discuss 
whether or not the outcome was what you predicted it to be.  If 
not, draw a new sketch with arrows indicating the magnitudes 
and directions of the velocities.  What is the apparent relation-

ship between the final velocities       

€ 

r 
v 1,f  and       

€ 

r 
v 2,f ?  How do their 

magnitudes compare to those of the initial velocities?

(g) What is the total momentum (i.e. the vector sum of the initial 
momenta) before the collision or explosion in all three situations?

(h) Does momentum appear to be conserved in each case?  Is the 
final total momentum the same as the initial total momentum of 
the two cart system?

35 min
Defining a Centre for a Two Particle System
What happens to the average position of a system in which 
two moving carts having the same mass interact with each 
other?  That is, what happens to
 

            

€ 

x =
x1 + x2
2         

as time goes by? What might the motion of the average po-
sition have to do with the total momentum of the system?  
To study this situation you will need:

• A video analysis system
• A track
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• Two dynamics carts with magnets attached
• Digital movie of 1D collision from Unit 8

In making these observations you'll need to look at the pat-
tern of data points which you place over the frames.  You 
will not need to create graphs or work with numbers.

✍ Activity 9-3: Motion of the Average Position
(a) Imagine interactions between identical carts moving toward 
each other at the same speed as described in Activity 9-2.  Does 
the average position of the carts move before, during, or after the 
collision or explosion in each case?  Might this have anything to 
do with the fact that the total momentum of such a system is 
zero?

(b) Let's use video analysis to study a real situation in which the 
total momentum of the system is not zero.  Do the following:

1. Make a movie of cart 1 colliding with cart 2 where cart 2 
begins at rest. (Be sure to save a copy of the movie file as 
you will need to look at it again later in the unit.)
2. Using the Add Point function, step through the movie 
one frame at a time and click on the position average (i.e. 
halfway between the centres of the two carts).  

How does the position average appear to move?  Might this mo-
tion have anything to do with the fact that the total momentum 
of the system is directed to the right along the positive x-axis?

(c) You should have found that if the momentum of the carts is 
constant then the average position moves at a constant rate also. 
 Suppose the masses of the carts are unequal?  How does the av-
erage position of the two objects move then?  Lets have a look at 
a collision between unequal masses.  Open the movie you made 
at the end of Unit 8.  Once again track the motion of the average 
position by clicking halfway between the centres of the two carts. 
 Is the motion of this average position uniform?
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(d) You should have found that the average position of a system 
of two unequal masses does not move at a constant velocity.  We 
need to define a new quantity called the centre of mass which is 
at the centre of two equal masses but somewhere else when one 
of the masses is larger.  Use the video analysis system and the 
movie you just analysed to find a "centre-of-mass location".  The 
centre of mass is a location in the isolated system that moves at 
a constant velocity before, during, and after the collision.  

Note: You should be able to make some intelligent guesses.  De-
scribe what you tried and the outcomes in the space below.

20 min
Defining Centre of Mass in One Dimension
In the last activity you should have discovered that the av-
erage position of a system of two carts having equal masses 
moves at a constant rate.  However, if the carts have dif-
ferent masses, we cannot calculate a simple average posi-
tion and expect it to move at a constant rate.  You will find 
that it is convenient to define a new quantity called the 
centre of mass which always moves at a steady rate in an 
isolated system of particles.  Let's turn to the Law of Con-
servation of Momentum for hints on how to develop the 
idea of centre of mass.  We can start with the special case 
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of two particles of different masses moving along a line at 
different velocities and perhaps colliding with each other.  
They experience no outside forces.

                              

€ 

r 
p 1 = m1

r 
v 1             

€ 

r 
p 2 = m2

r 
v 2

  

  Figure 9-6: Two particles about to collide.

In homework assignment SP-2  you will prove that the vec-
tor sum of the momentum of the two particles can be 
treated as a constant that is characterized as being caused 
by a mass equal to the sum of the individual masses (M) 
moving at a constant velocity vcm, where vcm is the velocity 
of the centre of mass:

     

€ 

r 
p =

r 
p 1 +

r 
p 2 =

d(m1x1 + m2x2)
dt

ˆ i = M
r 
v cm

We can easily extend the definition of centre of mass to two 
and three dimensions.  Now we'll turn to exercises involv-
ing the calculation of the centre of mass of a system.

20 min
Centre of Mass of a Simple 1-D Particle System 
Let's apply the definition of the centre of mass to some real 
systems available in the classroom that are made up of 
"point-like" particles.  For this activity you will need:

• modelling clay
• A bamboo skewer
• A balance
• A ruler

   

m
1

m
2

x=0

Centre of mass

x
1

x
2

x
cm

Figure 9-7: Notation for the mass and position of a two-mass 
system
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For two masses  m1 and m2 that are a distance x1 and x2 
from the x-axis, respectively, the x coordinate of the centre 
of mass is given by the equation

                     

€ 

xcm =
m1x1 + m2x2( )

M
   
where M is the total mass of the system (M = m1 + m2). 

Create a two-mass system with two clay balls and a skewer 
like that shown in Figure 9-7. Make the balls a reasonable 
size. You can measure the masses of the balls and calculate 
the x-value of the centre of mass (CM) for your two-mass 
system.

✍ Activity 9-4: Calculating the CM for Two Masses
(a) Determine the total mass of the system, M.  Then pull the 
more massive ball of clay off the end of the skewer.  Determine 
its mass m1.  Next determine the mass of the lighter ball and its 
attached skewer, m2.  Assume that the mass of the skewer is 
small compared to the masses of the balls and ignore it.  Record 
the values below.

M =   m1 =        m2 = 

(b) Set x1 = 10 cm, measure the distance between the masses, 
and calculate x2 from the distance between the masses d.

x1 =      d =   x2 =

(c) Calculate the centre of mass, Xcm, of the system.  
Note: Remember that neither of the masses is at the origin of 
our coordinate system.

(d) Determine the centre of mass of the two ball system in the 
designated coordinate system by finding its balance point and 
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record it below.  We'll explain more about this balance method 
later.  
Hint: Don't forget that we placed the massive ball at x1=10 cm.

(e) How does the measured value of CM compare to that which 
you calculated?  Are there any sources of systematic error in 
your measurements or calculations?  What influence does the 
mass of the skewer have?  Explain.
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SESSION TWO:  CENTRE OF MASS AND MOMENTUM CONSERVATION 
IN TWO DIMENSIONS

15 min 
Review of Homework Assignment
Come prepared to ask questions about the homework as-
signment.

25 min
Defining the Centre of Mass for Extended Objects
So far, we have been studying the motion of "point" masses 
or objects that are quite symmetric like spheres and blocks. 
 Sometimes we have ignored the shape of objects because 
our observations were not very precise or detailed. How-
ever, the real world is made up of some very oddly shaped 
objects.  For example, there are systems of small particles 
such as atoms and water molecules as well as extended ob-
jects such as gorillas, pipe wrenches, DNA molecules, and 
binary stars.  How can we study the motion of such strange 
objects?  For example, what happens when a linear force is 
applied to different parts of an extended object?  Will it ro-
tate or not?  What happens when an object or system 
changes shape during an interaction with various forces?

To continue our study of the centre-of-mass concept, let's 
observe the motion of a rigid object with a complicated 
shape that doesn't become deformed while it is moving.  
For this observation you will need:

• A rubber mallet
• A piece of tape (wrapped around the handle of the mallet at its 

centre of mass)
• A couple of people to play catch
• A video analysis system

Suppose the rubber mallet is lobbed from one person to an-
other in such a way that you are able to see the complex 
motions of the hammer as it travels.  What does the path 
of the hammer look like?  What does the path of the tape 
on the handle look like?

✍ Activity 9-5: Examining the Motion of a Tossed 
Mallet
(a) Use the iSight camera and G-Cam to take a video of the mal-
let as it is tossed in the front of the classroom. We will take one 
video for the whole class and share because there isn’t enough 
room for everyone to toss mallets. Sketch below the approximate 
path you observed as the mallet was tossed. 
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centre of mass

(b) Using the Add Point function, step through the movie one 
frame at a time and click on the tape wrapped around the handle 
of the mallet. Reproduce the graph of y vs x below.

 
                            

(c) Describe the difference, if any, between your observation of 
the motion of the whole mallet and the apparent motion of  just 
the tape.

 (d) The tape was placed at the centre of mass of the mallet.  If 
there is a difference between the two apparent motions, what is 
happening to the actual motion of the centre of mass of the mal-
let or to other parts of the mallet  when it is lobbed?

Workshop Physics II: Unit 9 – Two-Dimensional Collisions Page 9-15
Author: Priscilla Laws  

© 1992-93 Dept. of Physics and Astronomy, Dickinson College   Supported by FIPSE (U.S. Dept. of Ed.) 
and NSF. Modified for SFU by N. Alberding & S. Johnson, 2005.



(e) Try to balance the mallet on your finger with it standing 
straight up (vertically).  Then balance it with it lying on its side 
(horizontally).  How are the balance points related to the location 
of the tape on the mallet?  What does this suggest about one of 
the characteristics of the CM?  Include sketches, if that's helpful.

For the purpose of studying motion, the centre of mass of 
an extended object or system of particles is defined as the 
point which appears to move as if all the mass of the object 
or system of particles were concentrated at that point.

15 min
Centre of Mass Demonstrations

In order to perform the demonstrations outlined below, you 
will need:

• 1 broom
• 1 $20 bill

(1) Moving Your Hands Together on a Broom

The outcome of slowly sliding your hands closer and closer 
together on a broom is surprising, but you can explain it by 
using an understanding of centre of mass concepts and the 
characteristics of static and kinetic friction.

(2) Picking up $20
     
Everyone loves to pick up extra money.  Your instructors 
are betting that you can't stand with your heels touching 
both a wall, the floor and each other, and then bend over 
(without bending your knees!) and pick up a $20 dollar bill 
that's lying in front of you without moving your heels away 
from the floor and the wall.  (No fair using a wall with a 
baseboard either!)  You must be able to resume your up-
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right position again without having moved your heels.  
We're sure enough that this task is very difficult to stake 
money on it!  All of you taking calculus-based introductory 
physics this semester who can perform this task before the 
end of the class period under the sharp eye of a bona fide 
instructor can share the $20 with any others taking the 
course who can also do the "pickup" job!

✍ Activity 9-6: Can You Pick Up the Money?
(a) What is the necessary balance condition for you to be able to 
pick up the money?  What does this have to do with your CM?

(b) Who in the class do you predict will be good at this task?  For 
example, would you bet on someone with narrow hips and big 
shoulders or someone with wide hips and small shoulders? Sup-
pose someone has long legs and a short upper body or vice versa?

(c) Watch the attempts of your classmates.  What were the 
physical characteristics of the students who were especially good 
at this?  Especially bad at this?

(d) Did you expect to be good at this task?  Why or why not?  
Were you any good?  What personal physical traits entered into 
your good performance or lack thereof?

20 min
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2-D Collisions – Intelligent Guesses & Observations  
Conservation of momentum can be used to solve a variety 
of collision and explosion problems.  So far we have only 
considered momentum conservation in one dimension, but 
real collisions lead to motions in two and three dimensions. 
 For example, air molecules are continually colliding in 
space and bouncing off in different directions. 

You probably know more about two dimensional collisions 
than you think.  Draw on your prior experience with one-
dimensional collisions to anticipate the outcome of several 
two dimensional collisions.  Suppose you were a witness to 
several accidents in which you closed your eyes at the mo-
ment of collision each time two vehicles heading toward 
each other crashed.  Even though you couldn't stand to 
look, can you predict the outcome of the following acci-
dents?

You see car A enter an intersection at the same time as car 
B coming from its left enters the intersection.  Car B is the 
same make and model as car A and is travelling at the 
same speed.  The two cars collide inelastically and stick 
together.  What happens?  Hint: You can use a symmetry 
argument, your intuition or a quick analysis of 1-D results. 
 For example, you can pick a coordinate system and think 
about two separate accidents: the x accident in which car B 
is moving at speed vbx and car A is standing still, and the y 
accident in which car A is moving at speed vay = vbx and 
car B is standing still. 

Crash!  
                 A                      B

                     Figure 9-8: Two Identical Cars that Collide

The diagram below shows an aerial view of several possible 
two-dimensional accidents that might occur.  The first  is a 
collision at right angles of two identical cars.
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Figure 9-9: Several Types of Two Dimensional Collisions

For the observations associated with these predictions 
you'll need:

• 2 large air pucks
• weights
• masking tape
• Clay for inelastic collisions

✍ Activity 9-7:  Qualitative 2-D Collisions
(a) Using the diagram in Figure 9-9, draw a dotted line in the 
direction you think your two cars will move after a collision be-
tween cars with equal masses and velocities.  Explain your rea-
soning in the space below.

(b) Draw a dotted line for the direction the cars might move if  
car A were travelling at a speed much greater than that of car B. 
 Explain your reasoning in the space below.
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(c) If instead of a car, the vehicle A were a large truck travelling 
at the same speed as car B, in what direction will the vehicles 
move?  Draw the dotted lines.  Explain your reasoning in the 
space below.

(d) Now suppose that the two vehicles are army tanks travelling 
at the same speed.  We all know colliding tanks don't stick to-
gether; in what direction would the two tanks move after the col-
lision, if they undergo an elastic collision?  Explain your reason-
ing in the space below.

(e) Finally, set up these types of collisions using the air pucks in 
the front of the classroom.  Observe each type of collision several 
times.  Draw solid lines in the diagram above for the results.  
How good were your predictions?  Explain your reasoning in the 
space below.

(f) What rules have you devised to predict more or less what is 
going to happen as the result of a two dimensional collision?

35 min  
Is Momentum Conserved in Two Dimensions?
During the last few sessions we have placed a lot of faith in 
the power of Newton's second and third laws to predict 
that momentum is always conserved in collisions.  We have 
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shown mathematically and experimentally for a number of 
one-dimensional collisions that if momentum is conserved 
the centre of mass of a system will move at a constant ve-
locity regardless of how many internal interactions take 
place.  Let's see whether the mathematical prediction that 
the centre of mass of an isolated three body system will 
move at a constant velocity is correct within the limits of 
experimental uncertainty.  Consider three pucks moving 
on an air table which are free to move in two dimensions.  
You can make a video of the collisions of the three pucks 
and do a frame-by-frame analysis of the movie.    

     System boundary 

Figure 9-10: Three particles interacting on an air table. 

For this experiment you will need the following equip-
ment:

• 3 air pucks with at least one having a different mass
• A metre stick 
• A balance 
• A video analysis system

 
Take several movies of three bodies colliding in a complex 
way on an air table in instances where the air pucks do not 
touch the walls of the air table.  Pick one of the movies to 
analyse, and find the coordinates of each air puck before, 
during, and after collisions that occur in the centre of the 
air table.  You can then find the x- and y-components of 
centre of mass of the system and graph them as a function 
of time.  
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✍ Activity 9-8: Tracking the Centre-of-Mass Motion
(a) Determine the masses of the pucks in your system and record 
them in the space below.

(b) Analyse the locations of each of your pucks on a frame-by-
frame basis.  Create a spreadsheet with the coordinates of the 
pucks in each frame.  Use the spreadsheet to calculate the x and 
y values of the centre of mass of the systems for each of the 
frames that you analysed.  Be sure the data listed below is in-
cluded in your spreadsheet.

For each puck (A, B, and C):

Mass of the puck

Frame number and elapsed time (seconds) and then at each 
time:

x (m) 

y (m) 
  
The x and y values in metres of the centre of mass of the sys-
tem

(c) Now create an overlay plot of four functions: the measured y 
vs. x values for each of the three pucks and the calculated y vs. x 
values for  the centre of mass of the system. Upload a copy of 
your plot to WebCT assignments. (You can sketch copies of the 
four plots in the space below. Be sure to label them appropri-
ately.)

Puck A:

Puck B:
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Puck C:

Centre of Mass:

(d) Interpret the graphs by drawing arrows indicating the direc-
tions of motion of each of the pucks and of the centre of mass of 
the system.  Within the limits of experimental uncertainty is the 
centre of mass of the system moving at a constant velocity?  
What is the evidence for your conclusions?
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