
Magnetic Dipoles (33.5)

To determine the magnetic field direction in a loop either

1 Point your right thumb in the direction of the current and curl your
fingers around the loop. Your fingers point in the direction the field
leaves the loop.

2 Curl the fingers of your right hand around the loop in the direction of
the current. Your thumb is then pointing in the direction in which the
field leaves the loop.
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Magnetic Dipoles

A current loop has two distinct sides, rather like a magnetic dipole.

In fact, a current loop is a magnetic dipole! It is an electromagnet

The magnetic field emerges from the north face of each.

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 2 / 19



Magnetic Dipoles

A current loop has two distinct sides, rather like a magnetic dipole.
In fact, a current loop is a magnetic dipole! It is an electromagnet

The magnetic field emerges from the north face of each.

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 2 / 19



Magnetic Dipoles

A current loop has two distinct sides, rather like a magnetic dipole.
In fact, a current loop is a magnetic dipole! It is an electromagnet

The magnetic field emerges from the north face of each.

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 2 / 19



Magnetic Dipoles
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Magnetic Dipole Moment

The on-axis magnetic field of a current loop is:

Bloop =
µ0

2
IR2

(z2 + R2)3/2

Seen from far away (z � R) we have:

Bloop ≈
µ0

2
IR2

z3 =
µ0

4π
2(πR2)I

z3 =
µ0

4π
2AI
z3

where A = πR2 is the area of the loop.
This actually works even if the loop is not circular (of course A
changes).
We define the magnetic dipole moment of a current loop enclosing
area A to be

~µ = AI, (direction from right hand rule)
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Magnetic Dipole Moment

On axis field is:

~Bdipole =
µ0

4π
2~µ
z3
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Ampère’s Law and Solenoids (33.6)

We could use the Biot-Savart Law to calculate any magnetic field
we want just as you can use Coulomb’s Law to calculate any
electric field through superimposing a large number of charges.

But that would be hard.
In the case of electric field we were able to solve problems with
complicated shapes by noticing the symmetries of the problem
and applying Gauss’ Law.
We can do something similar for magnetic fields using Ampère’s
Law

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 6 / 19



Ampère’s Law and Solenoids (33.6)

We could use the Biot-Savart Law to calculate any magnetic field
we want just as you can use Coulomb’s Law to calculate any
electric field through superimposing a large number of charges.
But that would be hard.

In the case of electric field we were able to solve problems with
complicated shapes by noticing the symmetries of the problem
and applying Gauss’ Law.
We can do something similar for magnetic fields using Ampère’s
Law

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 6 / 19



Ampère’s Law and Solenoids (33.6)

We could use the Biot-Savart Law to calculate any magnetic field
we want just as you can use Coulomb’s Law to calculate any
electric field through superimposing a large number of charges.
But that would be hard.
In the case of electric field we were able to solve problems with
complicated shapes by noticing the symmetries of the problem
and applying Gauss’ Law.

We can do something similar for magnetic fields using Ampère’s
Law

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 6 / 19



Ampère’s Law and Solenoids (33.6)

We could use the Biot-Savart Law to calculate any magnetic field
we want just as you can use Coulomb’s Law to calculate any
electric field through superimposing a large number of charges.
But that would be hard.
In the case of electric field we were able to solve problems with
complicated shapes by noticing the symmetries of the problem
and applying Gauss’ Law.
We can do something similar for magnetic fields using Ampère’s
Law

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 6 / 19



Line Integrals

To apply Ampère’s Law we will need
to do some line integrals

Imagine that, instead of integrating
along the x-axis, you want to integrate
along some arbitrary line. Maybe the
line isn’t even straight!
Take the line on the left and divide it
into little segments, then sum over the
segments

l =
∑

k

∆sk →

∫ f

i
ds

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 7 / 19



Line Integrals

To apply Ampère’s Law we will need
to do some line integrals
Imagine that, instead of integrating
along the x-axis, you want to integrate
along some arbitrary line. Maybe the
line isn’t even straight!

Take the line on the left and divide it
into little segments, then sum over the
segments

l =
∑

k

∆sk →

∫ f

i
ds

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 7 / 19



Line Integrals

To apply Ampère’s Law we will need
to do some line integrals
Imagine that, instead of integrating
along the x-axis, you want to integrate
along some arbitrary line. Maybe the
line isn’t even straight!
Take the line on the left and divide it
into little segments, then sum over the
segments

l =
∑

k

∆sk →

∫ f

i
ds

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 7 / 19



Line Integrals

Imagine we have a magnetic field
passing through the line.

We could take each segment of the
line and calculate the dot product of ~B
with a vector along the segment, then
sum them up:∑

k

Bk ·∆sk →

∫ f

i

~B · d~s
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Line Integrals

As in Gauss’ Law, we confine
ourselves to 2 simple cases:

1 ~B is everywhere perpendicular to
the line ∫ f

i

~B · d~s = 0

2 ~B is everywhere tangent to the line∫ f

i

~B · d~s = Bl
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Ampère’s Law

If we draw a circle of radius d around
a wire carrying current I, we know the
magnetic field will be tangent to the
circle at every point.

We also know that the magnetic field
will have the same magnitude
everywhere around the circle.
So, how about we integrate around
that circle? ∮

~B · d~s

(note it is a closed curve)
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Ampère’s Law

This is one of those easy cases∮
~B · d~s = Bl = B(2πd)

We know B, it is

B =
µ0I
2πd
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Ampère’s Law

Substituting ~B into the expression
gives Ampère’s Law∮

~B · d~s = µ0I

Notice it does not depend on the
radius of the circle! (just like Gauss’
law and flux)
We could also show that

it does not depend on the shape of
the curve
it does not depend on where the
current is within the curve
it depends only on the amount of
current flowing inside the curve
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Ampère’s Law

We do need to understand if the
current is positive or negative.

Place the fingers of your right hand
along the direction of the integral.
The direction in which your thumb is
pointing is positive, the opposite is
negative.
So, in the figure on the left, the total
current through the curve is

I = I2 − I3 + I4
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Example 33.8

Example 33.8

A wire of radius R carries
current I. Find the magnetic
field inside the wire at
distance r < R from the
axis.
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Example 33.8

This wire has cylindrical symmetry and the magnetic field is
tangent to circles concentric with the wire.

Assuming the current density is uniform across the wire, the
current through the circle is

Ithrough = JAcircle = πr2J

where J is current density and is given by

J =
I
A

=
I

πR2
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Example 33.8

The current through a circle of radius r is then

Ithrough =
r2

R2 I

Integrating around the circle gives∮
~B · d~s = µ0Ithrough =

µ0r2

R2 I

~B is tangent to the circle so∮
~B · d~s = Bl = 2πrB
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Example 33.8

Substituting into Ampère’s Law gives

2πrB =
µ0r2

R2 I

B =
µ0I

2πR2 r

The magnetic field strength increases
linearly with distance until the outer
edge of the wire, then follows the
Biot-Savart Law.
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The Magnetic Field of a Solenoid

When studying electric fields we talked a lot about parallel plate
capacitors because they created a nice uniform field.

The equivalent for magnetic fields is a solenoid.
A solenoid is a helical coil of wire with the same current I passing
through each of the loops. Each loop is often referred to as a turn.
Of course, we have already studied a single loop of wire and know
that superposition works for ~B, so...
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The Magnetic Field of a Solenoid

The superposition of fields inside the
loop is reinforcing and gives a field
roughly parallel to the axis.

The superposition outside the loop is
cancelling.
An ideal solenoid has a strong
uniform field inside and no field
outside!
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