Magnetic Dipoles (33.5)

(a) Cross section through the current loop (b) The current loop seen from the right

@ To determine the magnetic field direction in a loop either
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.~ The field emerges

X The field returns<”
around the outside

of the loop.

@ To determine the magnetic field direction in a loop either

@ Point your right thumb in the direction of the current and curl your
fingers around the loop. Your fingers point in the direction the field
leaves the loop.
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Magnetic Dipoles (33.5)

(a) Cross section through the current loop (b) The current loop seen from the right

.~ The field emerges

X The field returns®

around the outside

of the loop.

@ To determine the magnetic field direction in a loop either
@ Point your right thumb in the direction of the current and curl your
fingers around the loop. Your fingers point in the direction the field
leaves the loop.
@ Curl the fingers of your right hand around the loop in the direction of
the current. Your thumb is then pointing in the direction in which the
field leaves the loop.
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Magnetic Dipoles

@ A current loop has two distinct sides, rather like a magnetic dipole.
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Magnetic Dipoles

@ A current loop has two distinct sides, rather like a magnetic dipole.
@ In fact, a current loop is a magnetic dipole! It is an electromagnet

(a) Current loop (b) Permanent magnet

Whether it’s a current loop or a permanent magnet, Whether it’s a current loop or a permanent magnet, *
the magnetic field emerges from the north pole.  the magnetic field emerges from the north pole.
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Magnetic Dipoles

@ A current loop has two distinct sides, rather like a magnetic dipole.
@ In fact, a current loop is a magnetic dipole! It is an electromagnet

(a) Current loop (b) Permanent magnet
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Whether it’s a current loop or a permanent magnet, Whether it’s a current loop or a permanent magnet,
the magnetic field emerges from the north pole.  the magnetic field emerges from the north pole.

@ The magnetic field emerges from the north face of each.
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Magnetic Dipoles
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Magnetic Dipole Moment

@ The on-axis magnetic field of a current loop is:

o IR?

Bioop = 2 (22+R2)3/2
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Magnetic Dipole Moment

@ The on-axis magnetic field of a current loop is:

o IR?

Bioop = 2 (22 + R2)312
@ Seen from far away (z > R) we have:

HoIR? _ fio 2(nR®)] _ o 2A1
2 28 4n 8  4n 28

Bloop ~

where A = nR? is the area of the loop.
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@ The on-axis magnetic field of a current loop is:

o IR?

Bioop = 2 (22 + R2)312
@ Seen from far away (z > R) we have:

HoIR? _ fio 2(nR®)] _ o 2A1
2 28 4n 8  4n 28

Bloop ~

where A = nR? is the area of the loop.

@ This actually works even if the loop is not circular (of course A
changes).
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Magnetic Dipole Moment

@ The on-axis magnetic field of a current loop is:

o IR?

Bioop = 2 (22 + R2)312
@ Seen from far away (z > R) we have:

HoIR? _ fio 2(nR®)] _ o 2A1
2 28 4n 8  4n 28

Bloop ~

where A = nR? is the area of the loop.

@ This actually works even if the loop is not circular (of course A
changes).

@ We define the magnetic dipole moment of a current loop enclosing
area A to be

i = Al, (direction from right hand rule)
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Magnetic Dipole Moment

The magnetic dipole moment is perpendicular
to the loop, in the direction of the right-hand
rule. The magnitude of fi is AL

. Az On axis field is:
..,...» I
1/ éd- = Ho 2ﬁ
ipole = E;

Loop area A
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Ampere’s Law and Solenoids (33.6)

@ We could use the Biot-Savart Law to calculate any magnetic field
we want just as you can use Coulomb’s Law to calculate any
electric field through superimposing a large number of charges.
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@ We could use the Biot-Savart Law to calculate any magnetic field
we want just as you can use Coulomb’s Law to calculate any
electric field through superimposing a large number of charges.

@ But that would be hard.

@ In the case of electric field we were able to solve problems with
complicated shapes by noticing the symmetries of the problem
and applying Gauss’ Law.
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Ampere’s Law and Solenoids (33.6)

@ We could use the Biot-Savart Law to calculate any magnetic field
we want just as you can use Coulomb’s Law to calculate any
electric field through superimposing a large number of charges.

@ But that would be hard.

@ In the case of electric field we were able to solve problems with
complicated shapes by noticing the symmetries of the problem
and applying Gauss’ Law.

@ We can do something similar for magnetic fields using Ampeére’s
Law
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Line Integrals

@ To apply Ampere’s Law we will need

@ to do some line integrals

i N\

A line from i to f

The line can be divided into many small
segments. The sum of all the As’s is the
length [ of the line.
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Line Integrals

@ @ To apply Ampére’s Law we will need
? to do some line integrals

@ Imagine that, instead of integrating
\ along the x-axis, you want to integrate
along some arbitrary line. Maybe the

Aline from i to f . 2 .
line isn’t even straight!

The line can be divided into many small
segments. The sum of all the As’s is the
length [ of the line.
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Line Integrals

@ To apply Ampére’s Law we will need
to do some line integrals

@ Imagine that, instead of integrating
\ along the x-axis, you want to integrate
along some arbitrary line. Maybe the
line isn’t even straight!
@ Take the line on the left and divide it
into little segments, then sum over the
segments

(a)

A line from i to f

The line can be divided into many small
segments. The sum of all the As’s is the

f
v]ength‘k[‘()fthc line. | = Z ASk N f dS
K i

Neil Alberding (SFU Physics) Spring 2010 7/19



Line Integrals

(a) /
/ f

— R @ Imagine we have a magnetic field
. B passing through the line.
> _— —
—
\
\

The line passes through a magnetic field.

(b) Magnetic field at segment k

Displacement of segment k
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Line Integrals

(a) /

/ f
- — B @ Imagine we have a magnetic field
B passing through the line.
jo—> - —_—
_— @ We could take each segment of the
> — line and calculate the dot product of B

with a vector along the segment, then
sum them up:

f
ZBK-ASk%f édg
K i

The line passes through a magnetic field.

(b) Magnetic field at segment k

Displacement of segment k
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Line Integrals

@ As in Gauss’ Law, we confine
ourselves to 2 simple cases:

B
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Line Integrals

@ As in Gauss’ Law, we confine
ourselves to 2 simple cases:

@ B is everywhere perpendicular to

the line
f—)
fB-d§:0
i

@ B is everywhere tangent to the line

f
: f B-ds =8I

B
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_ _ _ _ @ If we draw a circle of radius d around
The integration The integration starts and . .
path is a circle stops at the same point. a wire carrying current I, we know the
R -" magnetic field will be tangent to the
circle at every point.

B

3

Bis everywhére tangent to the integration
path and has constant magnitude.
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o o @ If we draw a circle of radius d around
The integration The integration starts and . .
path is a circle stops at the same point. a wire carrying current I, we know the
RS -" magnetic field will be tangent to the
circle at every point.
@ We also know that the magnetic field

will have the same magnitude
everywhere around the circle.

B

£

B is everywhere tangent to the integration
nstant magnitude.
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e imeeration Ihe ineeration st and o If we draw a circle of radius d around

path is a circle stops at the same point. a wire carrying current I, we know the

RS magnetic field will be tangent to the
circle at every point.

@ We also know that the magnetic field
will have the same magnitude
everywhere around the circle.

@ So, how about we integrate around
that circle?

B

*

e _ B.ds
B is everywhere tangent to the integration

nstant magnitude.

(note it is a closed curve)
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The integration The integration starts and
path is a circle stops at the same point.
of radius d. ", .. i

@ This is one of those easy cases

565 - d§ = Bl = B(2nd)

3

Bis everywhere tangent to the integration
path and has constant magnitude.
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The integration The integration starts and
path is a circle stops at the same point.
of radius d. ", .. i

@ This is one of those easy cases

3

Bis everywhere tangent to the integration
path and has constant magnitude.
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. . = . .
@ Substituting B into the expression
The integration The integration starts and g|VeS Ampél‘e’s LaW

path is a circle stops at the same point.
i . .
B-ds = yol

of radius d.

3

Bis everywhere tangent to the integration
path and has constant magnitude.
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@ Substituting B into the expression
The integration The integration starts and g|VeS Ampél‘e’s LaW

path is a circle stops at the same point.
i . .
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of radius d.

@ Notice it does not depend on the
radius of the circle! (just like Gauss’
law and flux)

B
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B is everywhere tangent to the integration
nstant magnitude.
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. . = . .
@ Substituting B into the expression
The integration The integration starts and g|VeS Ampél‘e’s LaW

path is a circle stops at the same point.
i . .
B-ds = yol

of radius d.

@ Notice it does not depend on the
radius of the circle! (just like Gauss’
law and flux)

@ We could also show that

o it does not depend on the shape of
the curve

B

3

B is everywhere tangent to the integration
path and has constant magnitude.
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. . = . .
@ Substituting B into the expression
The integration The integration starts and g|VeS Ampél‘e’s LaW

path is a circle stops at the same point.
i . .
B-ds = yol

of radius d.

@ Notice it does not depend on the
radius of the circle! (just like Gauss’
law and flux)

@ We could also show that
e it does not depend on the shape of

B

3

the curve
B is everywhere tangent to the integration o it does not depend on where the
o £20 a0d 25 cONStaNE magnitude. current is within the curve
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. . = . .
@ Substituting B into the expression
The integration The integration starts and g|VeS Ampél‘e’s LaW

path is a circle stops at the same point.
i . .
B-ds = yol

of radius d.

@ Notice it does not depend on the
radius of the circle! (just like Gauss’
law and flux)

@ We could also show that
e it does not depend on the shape of

B

3

the curve
B is everywhere tangent to the integration o it does not depend on where the
ath and has sta agni 3 H i
e £20 204 5 cONStant magnitude current is within the curve

o it depends only on the amount of
current flowing inside the curve
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I, doesn’t pass through

the enclosed area. The i}ltegrationl 4 We dO need to understand |f the
pathisaiclased current is positive or negative.

" curve.

These currents pas's throu.gh the
~ bounded area.
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I, doesn’t pass through

the enclosed area. Theinegration @ WWe do need to understand if the
e current is positive or negative.

@ Place the fingers of your right hand
along the direction of the integral.
The direction in which your thumb is
pointing is positive, the opposite is
negative.
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I, doesn’t pass through
the enclosed area.

Theinegration @ We do need to understand if the
pathisaiclased current is positive or negative.

@ Place the fingers of your right hand
along the direction of the integral.
The direction in which your thumb is
pointing is positive, the opposite is
negative.

@ So, in the figure on the left, the total
current through the curve is

These currents pas's throu.gh the
~ bounded area.

I=lo— I3+ 14
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Example 33.8

Example 33.8

By symmetry, the magnetic field
must be tangent to the circle.

A wire of radius R carries

) . Current-carrying
current /. Find the magnetic

wire of radius R

field inside the wire at Closed
A 1 t
distance r < R from the ot
axis.
I
I is the cur:rent inside radius r.

throu,
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Example 33.8

By symmetry, the magnetic field
must be tangent to the circle.

Current-carrying
wire of radius R

Closed
integration
path

Tirouen 18 the current inside radius r.

@ This wire has cylindrical symmetry and the magnetic field is
tangent to circles concentric with the wire.
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Example 33.8

By symmetry, the magnetic field
must be tangent to the circle.

Current-carrying
wire of radius R

Closed
integration —
path

Tirouen 18 the current inside radius r.

@ This wire has cylindrical symmetry and the magnetic field is
tangent to circles concentric with the wire.
@ Assuming the current density is uniform across the wire, the
current through the circle is
lthrough = JAcircle = Ttr 2J
where J is current density and is given by
| |
Rl S=7)
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Example 33.8

@ The current through a circle of radius r is then

r2
l through = ﬁ l
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Example 33.8

@ The current through a circle of radius r is then

r2
l through = ﬁ l

@ Integrating around the circle gives

- - Or2
B8 = polougn = L2
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Example 33.8

@ The current through a circle of radius r is then

r2
l through = ﬁ l

@ Integrating around the circle gives

- - Or2
B8 = polougn = L2

e Bis tangent to the circle so

Sgé-d§:BI:2an

Neil Alberding (SFU Physics) Spring 2010 16/19



Example 33.8

1
3B

‘max ]

@ Substituting into Ampére’s Law gives

The magnetic field increases linearly
B With distance inside the wire . . .

2nrB = —I

... and inversely with distance R
outside the wire.
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Example 33.8

@ Substituting into Ampére’s Law gives

The magnetic field increases linearly

B Wwith distance inside the wire. . . >
onB = K
e I -
%y B :.md in\'cr#cl)* with distance R2
()Ll:l':.\lde the wire. B [JOI ,
L \ 2nR?
@ The magnetic field strength increases

0 . — —r linearly with distance until the outer
. edge of the wire, then follows the
Biot-Savart Law.
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The Magnetic Field of a Solenoid

@ When studying electric fields we talked a lot about parallel plate
capacitors because they created a nice uniform field.
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The Magnetic Field of a Solenoid

@ When studying electric fields we talked a lot about parallel plate
capacitors because they created a nice uniform field.

@ The equivalent for magnetic fields is a solenoid.

@ A solenoid is a helical coil of wire with the same current | passing
through each of the loops. Each loop is often referred to as a turn.
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The Magnetic Field of a Solenoid

@ When studying electric fields we talked a lot about parallel plate
capacitors because they created a nice uniform field.

@ The equivalent for magnetic fields is a solenoid.

@ A solenoid is a helical coil of wire with the same current | passing
through each of the loops. Each loop is often referred to as a turn.

@ Of course, we have already studied a single loop of wire and know
that superposition works for B, so...
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The Magnetic Field of a Solenoid

(a) A single lOOp (b) A stack of three loops
The fields of the three loops
nearly cancel here. g

The fields reinforce
___each other here.

@ Curenop ‘ @ The superposition of fields inside the
\ b loop is reinforcing and gives a field
roughly parallel to the axis.

current loop or a permanent magnet,
eld emerges from the north pole.
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The Magnetic Field of a Solenoid

(a) A single lOOp (b) A stack of three loops
The fields of the three loops
nearly cancel here. g

The fields reinforce
___each other here.

(@ Curentloop @ The superposition of fields inside the
loop is reinforcing and gives a field
roughly parallel to the axis.

@ The superposition outside the loop is
cancelling.

Whether it’s a current loop or a permanent magnet,
the magnetic field emerges from the north pole.
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The Magnetic Field of a Solenoid

(a) A single loop

(b) A stack of three loops

The fields of the three loops
nearly cancel here. g

(a) Current loop

Whether it’s a current loop or a permanent magnet,
the magnetic field emerges from the north pole.

Neil Alberding (SFU Physics)

The fields reinforce
... cach other here.

@ The superposition of fields inside the
loop is reinforcing and gives a field
roughly parallel to the axis.

@ The superposition outside the loop is
cancelling.

@ An ideal solenoid has a strong
uniform field inside and no field

outside!
Spring 2010 19/19



