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A B S T R A C T   

Models of physical phenomena can be developed using two distinct approaches: using expert knowledge of the 
underlying physical principles or using experimental data to train a neural network. Here, our aim was to better 
understand the advantages and disadvantages of these two approaches. We chose to model cycling power 
because the physical principles are already well understood. Nine participants followed changes in cycling 
cadence transmitted through a metronome via earphones and we measured their cadence and power. We then 
developed and trained a physics-based model and a simple neural network model, where both models had 
cadence, derivative of cadence, and gear ratio as input, and power as output. We found no significant differences 
in the prediction performance between the models. Both models had good prediction accuracy despite using less 
input variables than traditional models and using more challenging prediction conditions by enforcing rapid 
speed changes during cycling. The advantages of the neural network model were that, for similar performance, it 
did not require an understanding of the underlying principles of cycling nor did it require measurements of fixed 
parameters such as system weight or wheel size. These same features also give the physics-based model the 
advantage of interpretability, which can be important when scientists want to better understand the process 
being modelled.   

1. Introduction 

Modelling efforts in biomechanics have traditionally focused on 
physics-based models (Alexander, 2003, 1995; Klika, 2011; Xiang et al., 
2010). In cycling, such physics-based models have been used to predict 
mechanical power (Fitton and Symons, 2018; González-Haro et al., 
2007; Maier et al., 2017; Martin et al., 1998). Developing these models 
required first identifying the input variables that affect power—such as 
speed or drag forces—and then identifying model parameters and how 
the parameters are combined with the input variables to predict the 
output variable. These parameters can be identified through measure-
ments, or from data (Dahmen et al., 2012). Using this physics-based 
approach to develop models has at least two major challenges. First, 
this process can require a detailed understanding of the principles un-
derlying a process, which may be unknown or complex. Second, real- 
world measurements of parameters introduce inaccuracies, which 
stem from both equipment and human errors. Inaccurately measured 
parameters will reduce the performance of the overall model. For 
example, to predict cycling speed from cadence a scientist would have to 

both understand the underlying principles of how the angular velocity of 
the pedal translates to the linear velocity of the wheel, and accurately 
measure bike parameters such as the wheel radius. 

An alternative approach to physics-based modelling is data-driven 
modelling. This includes neural networks, named as such because they 
loosely imitate how biological nervous systems learn to predict the 
world from experience. Mathematically, they consist of a set of functions 
that can be trained with data to recognize patterns in complex data sets. 
Because neural networks can learn from data, there are many applica-
tions for which they can be used. Modelling the input–output relation-
ship of processes with neural networks requires an understanding of the 
important variables that contribute to the output (Çolak, 2021). And 
there needs to be a proper amount and quality of data to train the model 
(Klein and Rossin, 1999). But, given enough high-quality data, neural 
networks can approximate a wide variety of input–output relationships 
without explicitly having to measure many relevant fixed parameters, or 
understand the principles underlying a process, ameliorating the two 
challenges identified above (Hornik et al., 1989). For example, to pre-
dict cycling speed from cadence, a neural network could learn the 
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relationship between the cadence and the cycling speed without un-
derstanding the principles that relate speed and drag to power, and 
without requiring measurements of the bike parameters such as the 
wheel radius. 

While both physics-based and neural network approaches are 
potentially useful in biomechanics, there is a lack of research that 
directly compares their strengths. To the best of our knowledge, the only 
such example in biomechanics compares neuromusculoskeletal models 
with neural networks in the estimation of joint torques, finding better 
performance from neural network models in this use case (Zhang et al., 
2023). To better understand the advantages and disadvantages of 
developing models using a first principles or data-driven approach, here 
we compare a physics-based model for predicting mechanical power in 
cycling with a predictive model developed using neural networks. We 
chose cycling for two reasons. First, the underlying principles upon 
which to build a physics-based model are well-understood (Debraux 
et al., 2011; Fitton & Symons, 2018; Maier et al., 2017; Martin et al., 
1998). Second, there is both scientific and commercial interest in 
accurately predicting mechanical power during cycling. Scientifically, it 
can help to better simulate racing strategies (Dahmen et al., 2012; Fitton 
& Symons, 2018; Gordon, 2005; Wolf et al., 2016). Commercially, this 
knowledge can lead to products that help athletes to indirectly measure 
their power without the necessity of expensive power metres. To 
accomplish our goal, we first built a microcontroller-operated system 
that provides the cyclists with metronome-indicated changes in cadence 
and measures the power output. We used this system to measure cyclists’ 
power output during two trials of cycling on a flat running track with 
two different gear ratios while following step changes in commanded 
cadence. Using this data, we developed and parameterized a physics- 
based model and a neural network model that best fit the simulated 
power to the measured power. We then compared how accurately these 
two models predicted the measured mechanical power and evaluated 
the advantages and disadvantages of each approach. 

2. Methods 

2.1. Data collection 

We tested nine participants in this experiment (3 females and 6 
males; body mass: 72.2 ± 9.4 kg; height: 177.2 ± 10.5 cm; age: 28 ± 5 
years; mean ± std). Information about ethics approval can be found on the 
title page and the letter of transmittal. All participants provided written 
and verbal informed consent before participating in our study. 

During the experiment, participants cycled on a 400 m running track. 
All participants used the same bike (Specialized Tricross Comp Size 52, 
Specialized Bicycle Components, Inc.) and adjusted the seat height to 
their own preference. During cycling, they carried a backpack with a 
microcontroller (Teensy 3.1, Pjrccom Llc.). The microcontroller 
measured torque in the pedal crank arm Tp continuously from an SRM 
power metre (Dura-Ace, SRM GmbH). Twice per crank arm revolution 
(every half pedal stroke), the microcontroller measured the crank arm 
angular velocity ωp using a reed switch, and calculated the mechanical 
power PP by multiplying the time-averaged torque with the angular 
velocity: 

PP = τP • ωP (1)  

As a warm-up and to familiarise participants with the bike, we first 
instructed them to cycle at a comfortable speed for 5–10 min. During 
this familiarisation period, participants chose their preferred rear gear 
(16.5 ± 0.5 teeth), while we kept the front gear fixed (39 teeth). We 
measured their preferred cadence (67 ± 12 rpm) as the average cadence 
during a 30 s period towards the end of the familiarisation period. Next, 
participants completed an 18 min trial with the rear gear being one gear 
over their preferred rear gear. This was followed by a second 18 min trial 
with the rear gear one gear under their preferred rear gear. We 

instructed participants to keep their body position (i.e.: high vs. low 
handlebar position) the same throughout the experiment to keep their 
frontal area, which affects the drag, relatively constant. A metronome, 
controlled by the microcontroller and communicated to the participant 
through earphones, commanded step changes of ± 5 %, ±10 %, and ±
20 % of the participant’s preferred cadence, centred about the preferred 
cadence (Fig. 1). We instructed participants to match the metronome 
beat as accurately as possible with their cadence. Step changes occurred 
every 60 s and participants could rest for ~ 10 mins between the two 
trials. 

2.2. Development of the physics-based model 

We describe the mechanical power output of the cyclist (P) as the 
sum of the inertial power and the drag power. The inertial power is the 
kinetic energy change of the system and the drag power is the drag force 
multiplied by the speed (υ). 

P = mvv̇+ cv3 (2)  

where m is the combined mass of the cyclist and the bike and c is the drag 
coefficient. Expressing speed as a function of the measured gear ratio 
(GR) and the measured cadence (f), with rrω being the radius of the rear 
wheel, yields: 

v =
2πrrw • GR • f

60
(3)  

Substituting this expression for υ into equation (2) and simplifying 
yields: 

P =
mπ2r2

rw
90

GR2f ḟ +
2cπ3r3

rw
15

GR3f3 (4)  

where f is the rate of change of the cadence. This equation expresses the 
output mechanical power of a cyclist as a function of the measured time- 
varying cadence and the experimentally-manipulated gear ratio. The 
only unknown and optimizable parameter is the drag number c — all 
other parameters in the equation can be measured (Table 1). To optimise 
for a drag number that best fit the predicted power to the measured 
power, we used a Levenberg-Marquardt optimization algorithm, 
implemented in Matlab’s nlinfit function (R2020a, The MathWorks, 
Inc.) (Seber & Wild, 1989). This is a simplified physics-based model of 
the cycling power output. We neglected some parameters, as their sig-
nificance on the model’s accuracy is small. This includes the wheels’ 
rolling resistance and their effective mass. These simplifications did not 
influence the comparison with the neural network model, as the neural 
network model also did not have any knowledge about these additional 
parameters. 

2.3. Development of a neural network model 

When developing a neural network, there are many choices to make 
about the architecture of the network. These choices include the struc-
ture of the data that is input into the network, types of network layers, 
the number of layers, the number of nodes per layer, and the type of 
activation function applied to each layer’s output. While there are no 
clear rules to specify network architecture to maximise model perfor-
mance on a given problem (Fiszelew and Ochoa, 2007; Hunter et al., 
2012), there are certain architectures that have historically performed 
better on some problems than others. We used historical performance as 
well as pilot analyses to guide the following choices: 

Data structure: To predict power for each half pedal stroke, we used 
input data from that half pedal stroke as well as the seven previous half 
pedal strokes. For all models, the input data at each half pedal stroke 
included the cadence and the derivative of cadence. For some models, 
the input data also included gear ratio (Fig. 2). We chose time windows 
of eight half pedal strokes because longer windows required greater 
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computational power and pilot analyses revealed good performance 
with our chosen window length. 

Types of layers. We chose to use recurrent layers which are comprised 
of nodes whose output can affect the next input to nodes of the same 
layer. They often perform better with temporal tasks—tasks where the 
data changes over time—because they can store information from past 
data. More specifically, we used long-short-term-memory layers, which 
can further improve the performance over other types of recurrent 
layers, by prioritising which information from past data to store (LeCun 
et al., 2015). 

Fig. 1. The experimental setup. a) illustrates the timeline of the experiment with the Warm-up, during which we evaluated the participant’s preferred cadence (grey 
box), Break 1, Trial 1 with Gear Ratio 1, Break 2, and Trial 2, with Gear Ratio 2. b) illustrates the participant with the equipment. c) magnifies the data in the grey box 
of the warm-up. d) magnifies the data in the grey box of trial 2. Metronome cadence is measured in beats per minute (bpm), cycling cadence is measured in rev-
olutions per minute (rpm), and power is measured in Watts. 

Table 1 
Values of all measurable parameters of the physics-based model.  

Parameters 

rrω 0.30 m 
l 0.17 m 
m 72.2 ± 9.4 kg (participant weight) + 13.0 kg (bike and equipment weight) 
GR 2.4 ± 0.2  

Fig. 2. Illustration of a conceptual model of the neural network from input structure to output structure. Notice that for illustration purposes the data structure of the 
input and output are illustrated with the time evolving from right to left. To predict one output datapoint (power P) on the right (output structure), eight input time 
steps per input (cadence f, cadence derivative f, and gear ratio GR) are required. The red dots in the input structure illustrate the eighth and last input datapoint, and 
the red dot in the output structure illustrates the eighth output datapoint, which is the datapoint the neural network is predicting. 
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Number of layers. There are different advantages and disadvantages 
for both shallow neural networks (one hidden layer only) and deep 
neural networks (two or more hidden layers) (Bianchini & Scarselli, 
2014; Kim & Gofman, 2018; Mhaskar et al., 2017). For simplicity, and 
because pilot analyses showed good performance, we chose to use only 
one hidden layer. 

Number of nodes per layer. In pilot experiments, we found similar 
performance for a small number of layer nodes (8) when compared with 
greater numbers of nodes (16, 24,…, and 1024). For simplicity, we chose 
to use 8 nodes. 

Activation function. Typically, each layer in a neural network is fol-
lowed by an activation function, which transforms the output of each 
node in the layer and provides the network with non-linear modelling 
capabilities. Due to their widespread success in deep neural networks, 
we used a rectified linear unit (ReLU) as activation functions for the 
long-short-term-memory layer (Ramachandran et al., 2017; Sharma 
et al., 2017): 

f(x) = max(0, x) (5) 

A ReLU activation function deactivates nodes with an output of 
smaller than 0, giving them the advantage of turning individual nodes 
on and off. We did not include additional activation functions for the 

output layer, because pilot analyses revealed better performance 
without output layer activation functions when compared with a ReLU 
activation function. 

Training parameters. To ensure successful training, the algorithm re-
quires some additional parameters. Based on pilot tests, we chose an 
Adam optimization algorithm with a learning rate of 10− 4, a batch size 
of 32, and we did 5,000 epochs during training. 

2.4. Data analysis 

To better determine the advantages and disadvantages of the 
physics-based and neural network models, we performed two analyses: a 
within-trial analysis and a within-participant analysis. First, we tested 
the prediction performance within each trial. Here the models’ aim was 
to learn from parts of the data within a trial and predict the rest of the 
data within the same trial. The neural network’s input was the cadence 
and the derivative of the cadence and did not require knowledge of the 
gear ratio, as it was a fixed parameter. Second, we tested the prediction 
performance within each participant. Here, the models’ aim was to learn 
from parts of both trials and predict the rest of the data within the same 
participant. Here, the neural network required knowledge of the gear 
ratio as an additional input, as it was a variable that was different 

Fig. 3. Illustrates the two trials with different gear ratios, and the subsets within each trial for the within-trial and within-participant analysis.  
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between the two trials. 
We used normalised root mean square error, normalised mean 

error, k-fold cross validation, and paired t-tests to compare model 
performance. To test the prediction performance, we calculated the 
normalised root mean square error, where we normalised the root mean 
square error by the mean of the measured data. Additionally, we also 
calculated the normalised mean error, where we normalised the mean 
error by the mean of the measured data. The normalised root mean 
square error emphasizes larger errors with increased sensitivity to out-
liers. In contrast, the normalised mean error cancels positive and 
negative errors which indicates the presence of a steady state error. We 
split up each participant’s trial into three subsets, also called folds 
(Fig. 3). To test the performance of the physics-based model and the 
neural network model in the within-trial experiment we trained the 
models with two of the subsets within a trial and tested the accuracy of 
predicting the power with the third, using both the normalised root 
mean square error and normalised mean error. For example, we would 
use fold 1a and fold 1b to train the model and fold 1c to test the pre-
diction accuracy. Here, we did 3-fold cross validation: We used each of 
the three subsets as a test set once to get the prediction accuracy three 

times. To test the performance in the within-participant experiment, we 
trained the models with five of a participant’s subsets and tested the 
accuracy of predicting the power on the sixth. For example, we would 
use fold 1a, fold 1b, fold 1c, fold 2a, and fold 2b to train the model and 
fold 2c to test the prediction accuracy. Here we did 6-fold cross vali-
dation: We used each of the six subsets as a test set once to calculate the 
prediction accuracy six times. For both the within-trial and the within- 
participant experiments we used the training phase of the analysis to 
determine the drag parameter of the physics-based model, and the 
weights and biases of the neural network model. To compare overall 
performance, we averaged the normalised root mean square errors of 
each participant and compared the mean normalised root mean square 
error between the physics-based model and the neural network model 
with a paired t-test using a significance level of p < 0.05. 

3. Results 

The physics-based model and the neural network model had similar 
predictive performance. The normalised mean error and normalised root 
mean square error for the within-trial analysis — in which the different 

Fig. 4. Representative prediction data for the within-trial analysis. These representative trials had similar RMSEs and normalised mean errors with the over-
all average. 
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gear ratio trials were kept separate when we trained and tested the 
model — of the physics-based model were 1.6 %±1.1 % and 19.6 ± 5.1 
%, respectively (mean between participants ± standard deviation be-
tween participants; Fig. 4). With this predictive performance, we expect 
a new participant with a measured average power output of 300 W to 
have a predicted average power that is ~ 5 Watts (1.6 %) above the 
actual average power. And for 95 % of the half pedal strokes at 300 W, 
we expect the predicted power for this new participant to be within ~ 
116 Watts (19.6 %*1.96). On average, the optimised drag number was 
1.2 ± 0.2. The normalised mean error and normalised root mean square 
error for the within-trial experiment of the neural network model were 
1.2 %±4.2 % and 18.2 ± 6.0 %, respectively (Fig. 4). The predictive 
performance between the two models was not significantly different (p 
= 0.34). 

The normalised mean error and normalised root mean square error 
for the within-participant analysis — in which we combined the 
different gear ratio trials when we trained and tested the model — of the 
physics-based model were 3.2 % ± 1.8 % and 20.9 ± 5.1 %, respectively 
(Fig. 5). On average, the optimised drag coefficient was again 1.2 ± 0.2. 
The normalised mean error and normalised root mean square error for 
the within-participant experiment of the neural network model were 4.1 
%±10.9 % and 25.4 ± 5.6 %, respectively (Fig. 5). Again, the predictive 
performance between the two models was not significantly different (p 
= 0.12). 

4. Discussion and Implications 

Here we developed and compared a physics-based model and a 
neural network model in predicting cycling power from changes in 
cadence and gear ratio. In our physics-based model, we optimised for the 
only unknown parameter—the drag number. For the neural network 
model, we used a simple recurrent neural network with one long-short- 
term-memory layer consisting of eight nodes. We found that the neural 

network model had a similar performance to that of the physics-based 
model. 

Despite limited input variables and rapid speed changes during 
cycling, both models achieved good prediction accuracies. Unlike most 
models that incorporate measured variables like wind speed, direction, 
and drag coefficient, our models rely only on cadence and gear ratio 
(Martin et al., 1998; Fitton and Symons, 2018; Gonzales-Haro, 2007). 
For comparison, Martin et al. used eight input variables in developing 
the most comprehensive mathematical model of road cycling. Gonzales- 
Haro et al. (2007) evaluated the prediction accuracy of nine prominent 
cycling models in constant speed velodrome conditions. On average, the 
nine models resulted in a normalized mean squared error of 22.0 % 
±13.6 % (best: 8.4 %, worst: 44.6 %). Our models performed as well as 
the average, achieving a mean squared error of ~ 21 % despite using 
fewer input variables and cycling under conditions that were more 
challenging to predict. 

This work has at least two major limitations. First, we only used one 
task to compare the physics-based model and the neural network model. 
More experiments in the future should show how neural networks 
compare to physics-based models in other biomechanics applications. 
Second, we excluded many variables that could have positively influ-
enced the cycling power prediction accuracy (Martin et al., 1998). For 
example, we did not measure headwinds or tailwinds which increase 
and decrease the drag force, respectively. Our participants cycled on an 
oval running track creating situations where in the presence of a pre-
vailing wind, participants alternatively experienced headwinds and 
tailwinds with neither of these forces represented by changes in the 
inputs of the model. We chose to not include these variables due to the 
complexity of their measurement. Incorporating wind speed and direc-
tion—or any other variables for that matter—into the physics-based 
model would require experts in the area to understand how to incor-
porate these variables in the model. In comparison, incorporating vari-
ables to the neural network model requires retraining it with the new 

Fig. 5. Representative prediction data for the within-participant analysis. These representative trials had similar RMSEs and normalised mean errors with the 
overall average. 
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input data. 
The physics-based model had more physically meaningful parame-

ters, introducing some advantages over the neural network model. For 
the physics-based model we used measured parameters, such as the rear 
wheel radius and the participant’s weight. While this approach requires 
more expert knowledge to develop the model, having fixed parameters 
makes it easier for future changes in the experimental environment. For 
example, if we decided to change the bike, the physics-based model 
would only need the new rear wheel radius and weight of the new bike, 
but the neural network would need additional training with the new 
information. Having fixed physical parameters in the physics-based 
model also makes it more interpretable, which can help better under-
stand the performance of a model, and subsequently increase the 
fundamental understanding of the problem itself. A neural network 
creates its own representation of a problem, which makes it harder to 
interpret. 

Generalizing to new cyclists would require changes and retraining 
for both models. In this study, we optimized both models for individual 
cyclists, considering no gear ratio change (within-trial) and gear ratio 
changes (within-participant). A next step would be to train both models 
to generalize to other individuals (participant-independent). To do so in 
the physics-based model, we could optimize for an average drag 
parameter. Since size and position of the cyclist also affect the drag 
parameter, adding these parameters into the model could also positively 
affect the accuracy of the model. To generalize the neural network 
model, we could add new input variables that would have an impact on 
the individuals’ power output, such as the weight (already included in 
the physics-based model), height, and the position, and retrain a new 
model. 

In our study, both models converged to similar, but not perfect, 
prediction accuracies. We expected this imperfect performance as there 
are many variables in cycling that affect the power output that we did 
not include in our models, and we challenged our models with rapid 
speed changes rather than the more conventional constant speeds. To 
improve prediction accuracy, we recommend measuring and incorpo-
rating continuous wind speed and direction into a model. We suspect 
that incorporating these new measurement variables into a physics- 
based model would prove more challenging than incorporating them 
into a data-driven model. This is because in the first case, one would 
have to understand how the wind speed and direction affects the whole 
system, while in the second case, one would simply require retraining 
the model with the new input variables added. More generally, we 
suspect that as the complexity of the process to be modelled increases, or 
as the number of required measured inputs increases, a data-driven 
modelling approach will prove simpler than the physics-based alterna-
tive for the problem of accurately predicting cycling power in real-world 
conditions. 
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