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Slope profiles and models

of slope evolution

Hillslope profiles may be controlled by weathering,
by transport, or by accumulation processes.
Weathering-controlled slopes occur where the actual
rate at which regolith can be produced is less than
the potential rate at which it can be removed.
Consequently the slope profile reflects the relative
resistance of the rock of which it is composed.
Transport-limited slopes are those on which the
rate of regolith production is greater than the
capacity of transport processes to remove it, so
that regolith accumulates, and the slope profile
is then controlled by the properties of the regolith
and the nature of the processes acting on it. Where
there is an equilibrium between rate of weathering
and rate of removal a transportational slope will
occur, with neither net gain nor net loss of material.
A transportational slope is thus an intermediate
case separating denudation slopes from accumu-
lation slopes.

The definitions given above should be applied
strictly only to points on a slope and there may be
considerable variation in the control along a profile.
The control will vary with climate and with lithology.
The absence of a regolith implies a control by
weathering. The existence of a thick regolith implies
control by transport, especially where the regolith
is weathered rock in situ. A thin regolith may be
present on a slope subject to control by weathering,
especially if the rate of weathering at the soil-rock
interface is very low, and this is probably the case
on many stepped scarps which have forms expressing
the influence of their hidden structure.

Rock slope profiles

Profiles and rock mass strength
The profiles of rock slopes may be controlled by:

(1) the strength of the rock on which they are
formed;

(2) processes or structural controls which operate
to undercut or oversteepen the slope with respect to
the rock strength available for maintaining long-
term stability;

(3) processes and structural controls which
operate to reduce the profile angle below that which
could theoretically be supported by rock resistance.

Slopes which reflect rock resistance have units
controlled by the operation of the parameters which
were recognised in the rock mass strength classifi-
cation (Chapter 4). By applying the appropriate
rating (see Table 4.7) for each parameter the total
strength rating for each unit may be calculated
(Fig. 9.1a, b, c). If the underlying assumption is
correct there should be a close correspondence
between the total rating and the hillslope unit angle.
Ratings have been calculated for the rock units on
a number of slope profiles in both Antarctica and
New Zealand (Selby, 1980), and more recently in
many parts of southern Africa. Figure 9.2 shows
that mass strength and rock unit angle of slope are
highly correlated (r = 0.88) (Plate 9.1). There is,
of course, some scatter in the data caused by the
coarseness of a five-class method of classification,
by observational error, by variations in intensity
of processes across the slope, and by failure of
the classification to include all of the effective
parameters.

All available data indicate that slope angles that
reflect rock resistance are widespread in dry climatic
zones and mountains where soil formation is limited.
They are recognisable in the field by the lack of
undercutting, a lack of talus or regolith material,and
by the absence of an overwhelming structural
control on the landscape. The envelope which could
be drawn to contain all the data points of Fig. 9.2
would also contain all other available data from
slopes whose angles are in equilibrium with the mass
strength of their rocks. This envelope has, therefore,
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been called the strength equilibrium envelope and
the slopes are known as strength equilibrium slopes.

Recognition of the existence of equilibrium
slopes has important theoretical and practical
implications.

One of the major problems of geomorphological
theory has been the development of criteria, and
accumulation of evidence, by which it is possible
to determine the pattern of long-term slope evolution
—especially to decide whether slopes decline in
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angle or retreat parallel to themselves as they
evolve. The recognition that many rock slopes
forming scarps and faces of inselbergs are in equilib-
rium implies that such slopes will maintain a
constant angle as long as rock strength is main-
tained; these slopes will retreat parallel to themselves.
If strength increases or decreases into the outcrop
then the hillslope angle will increase or decrease in
conformity as the slope retreats. This theory has,
so far, been tested only on exposures in southern
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Africa where all measured rock slopes, except some
in massive granite bornhardts, were found to be
strength equilibrium slopes. The lithologies of these
equilibrium slopes included sandstones, tillites,
shales, dolomite, marble, dolerite, gneiss, schist,
basalt, pegmatite, and some granites; there was
much variety in bedding and joint patterns.

The practical implications of recognising strength
equilibrium slopes arise because, by using the
regression equation relating mass strength and
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9.1 Rock slopes for which the relationship between rock mass strength and slope angle has been determined, Trans-
antarctic Mountains.

outcrop slope angle, it is possible to estimate,
from a knowledge of mass strength, the angle of
slope with an error of + 5°. This relationship may
be of value in preliminary applied surveys in which
it is required to estimate the angle of a cut face for
long-term stability. In most cases, of course, more
detailed geotechnical studies would be needed to
check the reliability of this estimate.

Structural controls operating to form slopes
which are either steeper or less steep than their
equilibrium angle are recognisable in some intrusive
granite domes (Fig. 9.1b, ¢). The flanks of domes
such as Mirabib are very steep and either exceed
equilibrium angles, or are in equilibrium, because
the lack of joints gives a very high strength rating.
The broad tops of many domes, however, and the
low-angled flanks of some domes are at much lower
angles than could be supported by the rock mass
strength. As joints open and sheet structures are
subdivided by joints of an orthogonal set the very
steep slopes gradually come into equilibrium with
the reduced mass strength. On the bornhardt

Amichab (Fig. 9.1c) slope unit K has sheeting
structures breaking down as an orthogonal joint
set develops; units A to J inclusive are below the
equilibrium angle and have some talus accumulating
on the exposures; units L to P are in equilibrium.

In areas of anticlinal fold structures a range of
slope angles may exist with slopes steeper than
equilibrium being formed where flanks of folds
are temporarily oversteepened by folding or stream
undercutting, and slopes below equilibrium angles
occur on gently dipping rock units. Erosional rock
scarps which are not being undercut will usually be
found to be at equilibrium.

Application of the mass strength classification
shows that major changes in a slope profile may
result from variability in just one of the parameters.
In Fig. 9.3 it can be seen thatin a dolerite of uniform
intact strength changes in the dip of joint blocks
from about 35° into the slope to vertical columnar
jointing can change slope angles from 60 to 90°, and
a change from columnar to closely spaced jointing
can cause slope angles to decline from-90 to 59-
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42°. Similar changes are seen in the dolerites shown
in Plate 9.2. The changes in jointing dip are minor
but strongly influence slope angle, as does the
incidence of closely spaced jointing at the large step
in the profile.

Benches or steps in rock slope profiles may be
either direct responses to resistance or they may be
a reflection of the time available for planation of
the bench. In the walls of the Grand Canyon of the
Colorado, for example, benches are cut across
certain strata but these may represent hiatuses in
erosion or uplift, not a marked change in rock
resistance. Another condition, in which factors
other than rock unit resistance alone may operate,
is that where strata of very variable strength are
interbedded. A weak stratum may then fail or be
cut back so that an overlying stratum will fail and
appear to have a profile less steep than its inherent
mass strength would indicate.

Cliff recession with talus accumulation

Where mass strength is the control, retreating slopes
will retain profiles which reflect variations in
strength, but on cliff faces which are retreating
through uniform weathering a uniformly thick layer

15

of rock will be removed from the cliff, which will
then retreat parallel to itself. The fallen debris
accumulates at the base of the slope as a talus. It
has been shown by Fisher (1866) and Lehmann
(1933, 1934) that the rock slope buried by the
talus will theoretically develop a convex shape
(Fig. 9.4). The actual curvature of the convexity
will depend upon the ratio of the volume of rock
removed from the cliff to the volume which accumu-
lates at the cliff base. Where all falling debris
accumulates, the volume of debris will exceed the
volume of solid rock that is removed because of
the higher void space in the talus. Solution and
removal by streams may, however, reduce the
volume of the resulting talus to less than the volume
of the intact rock which is removed.

Few exposures through talus into bedrock exist,
but most reported profiles do not appear to support
the theory that a convex rock core slope will
develop beneath talus below a retreating cliff, and
the value of this model is still uncertain.

A special case of the Fisher-Lehmann theory
has been stated by Bakker and Le Heux (1952). In
this model all the talus is steadily moved by rolling
and sliding and the basal rock slope evolves at the
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9.2 Dolerite cliffs showing the effect upon slope profiles
of subtle changes in joint orientation and spacing, Britannia
Range, Antarctica.

angle of rest of the talus material. Thus rock slopes
with thin veneers of debris should be formed. It has
been noted that such slopes are found quite widely
in alpine and polar areas, and in the extreme environ-
ment of Antarctica they appear to be relatively
common (Selby, 1974a; Chardon, 1976) (Plate 9.3).
The analysis of Bakker and Le Heux appears to be
generally valid even though it assumes (falsely) that
talus slopes are usually at the angle of rest of their
materials (see Chapter 7).

a b

Rockwall , /—Retreat

We can visualise the development of this type of
slope — which is known as a Richter slope — by
imagining particles falling from a cliff on to the top
of a talus. If the newly fallen material just covers a
little of the base of the cliff the next fall will be
over the new talus and hence the base of the cliff
will now be higher, so the cliff will recede by a
series of minute steps at the angle of the talus.
These steps may then be removed by weathering or
the abrasion of sliding talus — or they may remain.
In either case an essentially straight rock slope (i.e.
a rectilinear slope) will be formed below the cliff.
Eventually the free face should be eliminated and
a smooth rock slope of uniform angle will be
produced (Plate 9.4). Suggested successive stages
in this development are shown in Fig. 9.5. Once
the stage has been reached of either a uniform bare
rock slope, or a uniform talus-covered slope, further
evolution will depend upon the nature of the
processes operating. Where uniform weathering
occurs over a rock slope and the debris is blown
away then it is likely that the rock slope will con-
tinue to get smaller but retain the same angle (Fig.
9.6); where wash processes occur the slope is likely
to decline in angle as progressive weathering reduces
the size of particles and basal regoliths thicken
(Fig. 9.7).

Models of soil-covered slopes

The advantage of a model is that it generalises
widely recognised features or processes, arranges
them in a meaningful pattern, and simplifies the
components so that they may be readily understood.

Models of landforms may be of several kinds.
Analogue models represent the components of a
landscape and, perhaps, associate each component
with the dominant process acting on it; evolutionary
models identify a sequence of changes in a landscape
which are usually recognised from field evidence;
mathematical models are expressions of landforms

C d

Theoretical
convexity

Fig. 9.4 A theoretical cliff, basal convex rock slope, and talus sequences in which it is assumed that there is no removal

of talus from the base.
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9.3 Richter denudation slopes, with a thin veneer of talus, extending headwards into sandstone cliffs, Transantarctic
Mountains.

and processes as equations which can be repeatedly
solved, with each subsequent solution being modified
by the solution of its predecessor so that step-by-
step changes are calculated.

Analogue models

Hillslope forms have traditionally been considered
from the point of view of their long profiles from
ridge tops to valley floors. This approach tends to
ignore the complexity and variation of forms and
processes across the slope, that is, along the contours.
The divergence of water and debris from convexities
and their convergence upon depressions and drainage
lines is, of course, just as important as any process
acting directly down a slope. The fact that, on
many hillslopes, the heads of the drainage network
are old landslide scars emphasises both the variation
of forms and processes across a slope and the con-
tinuity of hillslopes with valley floors.

Discrete slope units, characterised by distinct

inclinations and processes, may be portrayed upon
block diagrams or specially prepared maps (Fig.
9.8). Before these are prepared, however, it is
necessary to recognise the major types of unit
which recur in the landscape. This may be done
either by distinguishing flat, convex, concave, cliff,
or inclined units or, more usefully, by recognising
the relationship between pedological and geomorphic
processes and the characteristic slope units on which
they occur. Using this approach Dalrymple et al.
(1968) and Conacher and Dalrymple (1977) have
developed a nine-unit land surface model (Fig. 9.9).
This model regards the hillslope system as a three-
dimensionai complex extending from the drainage
divide to the centre of the channel bed, and from
the ground surface to the uppermost boundary of
weathered rock. Each of the nine slope units is
defined in terms of form and the dominant pro-
cesses currently acting on it. In reality it is unusual
to find all nine units occurring on one slope profile;
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9.4 Straight and even slopes cut across granite are interpreted as the final stages of Richter slope formation, Koettlitz
Valley, Antarctica.

they do unot necessarily occur in the order shown in
Fig. 9.9 and individual units may recur in a single
profile.

Concave-convex hillslopes are relatively common
in many temperate environments so the order of
units may be 1, 2, 3, 6, 8, 9; on steep faces with
repeated rock outcrops the order might be, for
example, 1, 2, 3,4, 5,4,5,4,5,6,8,9. A cliff
above a river might have only units 1, 2, 3, and 4.
The model thus provides a means of describing, and
a means of mapping, slopes to show how they vary
along the contours; it also relates processes to slope
forms.

One advantage of the nine-unit model is that it
can form the basis of a mathematical model of slope
change in which the mode and rate of operation of
processes characteristic of each slope segment are
expressed in the form of equations, and repeated
operations of the process are simulated.

Slope evolution models

Much of the geomorphological thinking in the
English-speaking world, in the early part of the
twentieth century, was devoted to study of the
implications of the concept of the cycle of erosion,
asexpounded by W. M. Davis (1909) and his disciples.
Later attempts to provide a framework for thought
were those of W. Penck (1924) who sought to ..
interpret the rate of crustal movement from slope
morphology, and of L.C. King (1967) who was
concerned with the influence of structure upon the
major relief forms of the earth, with the widespread
phenomenon (as he believed) of the parallel retreat
of free faces on slopes and of semi-arid climatic
influences.

Davis, Penck, and King sought to derive general
and universal conclusions from widespread field
observations. Unfortunately all these early evol-
utionary models of landscape change are essentially
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Fig. 9.5 A model of slope development in a deglaciated
valley as Richter slopes extend. The Richter slopes are
covered with a thin veneer of talus (after Selby, 1971b).
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descriptive and untestable. They were formulated
before the complexity, universality, and duration
of climatic changes of the Late Cenozoic was
appreciated, and before many data on the rates,
incidence, and mechanisms of geomorphic processes
were available.

Evolutionary models, usually represented as a
sequence of slope profile changes or a sequence of
block diagrams, still do have a place in geomorpho-
logy where they are founded upon detailed field
work. Most such models employ the ergodic hy-
pothesis which suggests that, under certain circum-
stances, sampling in space can be equivalent to
sampling through time, and that space-time trans-
formations are permissible (Chorley and Kennedy,
1971). Thus the slope profiles developed upon two
adjacent till sheets of different ages, but similar
composition, may be taken as representing two
stages of development of one set of slopes, or slope
profiles measured in the lower, middle, and upper
reaches of a valley may be regarded as being part of
a sequence with the headwater slope profiles being
young and the lower reach profiles being older. In
this latter case extraneous influences such as vari-
ations in geology, drainage diversion, antecedence,
or base level change must be absent before the
model could be regarded as acceptable.

Examples of applications of the ergodic hypoth-
esis are the models of slope development in ice-free
areas of Antarctica (Fig. 9.5) and in the Grand
Canyon (Cunningham and Griba, 1973). In Antarct-
ica progressive, and approximately dated, decay of
glaciers in valleys through the Transantarctic Moun-
tains has allowed Richter slopes to develop up valley
walls across various lithologies. The Richter slopes
in small areas are of varying lengths and have free
faces above them of varying heights. The substitution
of time for space permits these profiles to be
arranged in a sequential order of development. In
the Grand Canyon slope development and valley
widening may be traced downvalley from first-order
to progressively higher-order valley segments, and
the assumption may be made that this represents
an evolutionary sequence.

Mathematical models

The uncertainty always associated with evolutionary
models, and usually with applications of the ergodic
hypothesis, has led to a change in the focus of
attention in modern research work. It is now
primarily concerned with studies of the resistance
of material and with processes of change and their
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Weathering and removal in equilibrium

results. Attempts are also being made to incorporate
data on processes, and knowledge of mechanisms,
into mathematical models which can be used to
predict the way in which landforms will change
under specified conditions of structure, climate,
relief, and time for the operation of the processes.
Once reliable models are produced they may have a
number of applications including prediction of the
effects of land-use changes upon slope forms and
rates of evolution; the formulation of research
programmes to provide data for, and tests of,
models; the study of long-term effects of a single
process, or group of processes — a condition normally
impossible under natural conditions; and the
explanation of geomorphological laws’ such as the
evolution of Richter slopes.

There are two main approaches to the develop-
ment of mathematical models: analytical solutions
based upon an assumed manner of action of pro-
cesses, and simulation models based on calculating
successively the effects of processes, whose rate and
mode of action is assumed but from a manner
indicated by field studies.

Analytical models

The necessary basis for any process-response model
is the continuity equation, which is a statement that,
if more material is brought into a slope section than
is taken out then the difference must be represented

Fig. 9.6 The extension of a talus-
mantled Richter slope (R) until the
cliff face is destroyed. Thereafter the
talus is removed by weathering and
wind action, and the slope weathers
uniformly, maintaining its angle but
reducing in size.

by accumulation. Conversely, if less material is
brought into a slope section than is removed the
difference must come from net erosion of the
section. The rate of debris transport is thus a major
term in the continuity equation, and the variation
of the rate of transport with relief largely controls
the slope form and rate of change. For a satisfactory
statement of the continuity equation we also need
to specify the initial form of the profile, the con-
ditions at the crest (usually regarded as fixed) and
at the base of the slope (where constant removal
of material is the simplest condition).
The equation has the form:

where y is the elevation of a point;
t is the time elapsed;
S is the sediment transport rate;
x is the horizontal distance of a point from
the crest.
Where there is no limitation on the supply of
material then:
S\
s = f(x)-( 1),
&x

where n is an exponent describing the influence

Fig. 9.7 A model of slope evolution by the development of a talus and Richter slope. Weathering produces a veneer of fine-

grained debris and wash processes reduce the angle cf the slope.
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Fig. 9.9 The hypothetical nine-unit land surface model (after Dalrymple et al., 1968).

of increasing gradient; its value will vary depending
upon the controlling process.

As a first-order approximation for slopes of less
than 30°:

Sy\?
Sasinfoctanfo (w) -
6x

This model of transport rate as a function of slope
angle (B) is confirmed from experimental data on soil
erosion (see Chapter 5) and is used in analytical
models such as those of Kirkby (1971) and Gossman
(1976). By using values assigned to an initial con-
dition (v, x, B) it is then possible repeatedly to solve
the equation adjusting 8 to conform with the value
of § determined in the previous solution. Changes

in slope profile can therefore be determined using
a series of points along that profile.

Simulation models

Simulation models have been constructed by a
number of workers including Young (1963a),
Ahnert (1976b), and Armstrong (1976). Because
it is relatively simple the model of Armstrong will
be described here.

The model hasa land surface in three dimensions,
represented as a matrix of unit cells, each of which
has two important properties — a height and a soil
depth. The matrix of heights represents the form
of the basin at any one time, and the direction of
mass transfer of material is determined by the



[image: image13.jpg]gradient at any point, so that the form becomes an
important variable which modifies the action of
slope processes. The soil depth at any point rep-
resents the total amount of material which is
potentially mobile. An initial form of the landscape
is specified as a map of heights and depths.

The processes operating in the model are selected,
their mode of operation specified as an equation,
and their magnitude is assigned a value which
represents a natural rate of operation. It is thus
possible to specify that each iteration of the model
represents a set period of time. Armstrong ran his
model for 20000 iterations with each iteration
representing one year, so that he assumed a period
of denudation of 20000 years. By using a high-
speed computer the evolution of the slopes over
that period can be calculated in a matter of minutes
or a few hours.

The continuity equation for the slope system
can be represented as a budget, so that over a unit
of time (one iteration) can be calculated:

8H = I-0
6D = I-0+W

where H is the height of the ground surface above

a datum;

is the inflow of material into the cell;

is the outflow of material from the cell;
is the soil depth;

is the amount of weathering.
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Thus in each iteration is computed the weathering
component and the outflow from each cell (rep-
resenting the magnitude of the transport process),
which is then added to the inflow of the cell next
downslope.
In the model only three processes are considered:
(1) Weathering is represented by:

Wy = Wpe‘K wD
where W, is the actual weathering rate;

Wp is the potential weathering rate at a bare
rock surface;

K,, isa constant;
D is the soil depth;
e is the base of natural logarithms.

Il

Values assigned are W, = 1X10"*m/year, K,,
20,D=1m.

(2) Slope transport is represented in the form of
soil creep at a rate calculated from:
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Cs = Kgsing

where Cg is the rate of soil movement;
K isa constant;
B is the slope angle.

Values assigned are Ky = 10cm? /cm/year and slope

angle was set by the initial landform and then

modified according to the result of each iteration.
(3) Fluvial transport rate is given by:

G, = K,SQE

where G, is the volumetric transport rate:

K, isaconstant;

S is the river slope;

Q is the discharge;

E s the river efficiency.

Values of S and Q are supplied by the model at each
point, K, is given a value of 4.13, and £' = 0.4.

The results of the simulation are presented in
Fig. 9.10. Starting from the initial form, block
diagrams represent the result of the action of the
three processes after the stated number of iterations.
The main features of the landscape are the overall
convexity of the landforms, their smoothness, and
their stability. Individual slopes appear to be main-
tained in an equilibrium form, after first attaining
convexity, with little change in shape, but a change
in dimensions.

The simulation model of Ahnert (1976b) is more
complex than that of Armstrong and includes
weathering, structural effects, base level change,
waste transport by splash, overland flow and wash,
plastic flow, viscous flow, and debris slides. As the
capacity of computers grows we may expect to see
further components and complexities beingincluded
in models.

Specific results of some published simulations
which are well related to natural conditions suggest
the following conclusions:

(1) processes involving downslope soil transpor-
tation tend to cause slope decline, and the slope is
transport-limited;

(2) processes involving direct removal of material
from the slope tend to cause parallel retreat, and the
slope is weathering-limited;

(3) downslope transportation at a rate which
varies only with sinf produces a smooth slope
convexity;

(4) stream incision at a rate in excess of the rate
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Fig. 9.10 Armstrong’s (1976) computer-generated block drawings of a sequence of landforms, The numerals represent the
number of iterations.
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slopes which may then fail by landsliding.

The simplest process-response models are those
which assume that only one process is operating
upon a slope. Creep processes produce an expanding
upper convexity on a slope, wash produces an
increasing lower concavity, uniform solution pro-
duces a parallel downwearing, and shallow land-
sliding on a transportational midslope produces
parallel retreat of that slope unit and a lower
concavity where deposition occurs.

Results of modelling selected processes with
assumed modes of action are shown in Fig. 9.11.
Six theoretical cases are depicted: (1) the gradual
reduction of slopes to increasingly gentle inclinations
as a result of creep on upper convexities with slope
wash on middle and lower slopes; (2) the parallel
recession of slopes which undergo uniform rates of
weathering and transport across the main slope
units, with basal wash slopes; (3) the gradual elimin-
ation of steep slope units and the joining of upper
convexities and lower concavities; (4) the under-
cutting of a cliff by waves or streams; (5) accumu-
lations at the base of a slope as a result of a rise in
baselevel; and (6) downcutting at the base of a
slope as a result of a fall in baselevel.

Conclusions

The power of mathematical models is restricted by
two main limitations: the ability of the modeller to

Slope Profiles and Models of Slope Evolution 213

select correctly and represent the significant variables
in the evolution of a landscape, and the accuracy
with which an equation describes a particular
process. We have seen already how simple models
are confined toa very restricted number of variables.
Descriptive equations may also be limited: for
example, the equation used to describe the rate of
soil creep is commonly of the form:

C = Ksing.

There are good theoretical grounds for this assump-
tion as the resultant of the force of gravity acting
at the ground surface varies in this way, but until
far more long-term measurements are made of creep
there can be no confidence that this equation is an
adequate descriptor. If Young’s (1978) measure-
ments, indicating that creep is largely the result of
solution and hence is largely an inwards directed
process, are correct and universal, then the direct
slope angle function may be incorrect.

Improved accuracy in modelling is thus very
dependent upon long-term and detailed field
measurement of processes, and correct representation
of process mechanisms in descriptive equations.
There has been considerable progress in mathemat-
ical modelling of processes since 1960, and detailed
field and laboratory studies (e.g. Moeyersons and
De Ploey, 1976) are providing more reliable data on
the action of individual slope processes. Another

Fig. 9.11 Sequential slope profiles
developed from mathematical models
of slope change assuming given
processes.
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common limitation of models is that they are
concerned with average rates of processes and do
not consider catastrophic processes, even though
these may account for a large part of total denu-
dation in some environments.

The overriding problem with all models of
landscape evolution is the ability to test them
against natural conditions. Landforms, even in small
drainage basins, evolve over thousands, or even
millions of years, in which the intensity and type
of dominant processes may change in a direction
which cannot be known. It is very rare, therefore,
for conditions to exist in which any model can be
tested against any landscape. An attempt has been
made by Parsons (1976) to test one mathematical

model against the hillslope profiles measured by
Savigear (1952) along an abandoned cliff on the
coast of South Wales, where the spatial sequence of
profiles from east to west was taken as an approxi-
mation to a developmental sequence through time.
In this case reasonable agreement was found between
the sequence of slope profiles predicted by the
model and the actual slopes.

Models are probably most useful for predicting
future changes where the dominant processes can be
specified with some certainty. They are of less value
for hindcasting because of the operation of the
principle of equifinality, and because of our inability
to define an initial landform to which the model
must work back.




