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Figure 5.15

(D)

Drainage networks on Mars where groundwater-sapping processes are believed to have been the major formative process. (A) Nirgal
Vallis, a longitudinal valley system with short, amphitheater-headed tributaries; channel is about 2-3 km wide. (B) Portion of Valles
Marineris chasm showing stubby tributary complex (image is about 80 km across). Note how many tributaries have advanced
headward along grabens and fractures. (C) Complex of smaller channel networks formed in the ancient hilly and cratered terrain.
(D) June 2000 photo of the wall of Noachis Terra on Mars by Mars Global Surveyor. High resolution images from MGS seem to

confirm recently active groundwater sapping processes on Mars.

(Source: NASA)

One of Horton's greatest contributions was to demon-
strate that stream networks have a distinct fabric, called the
drainage composition, in which the relationship between
streams of different magnitude can be expressed in mathe-
matical terms. Each stream within a basin is assigned to a
particular order indicating its relative importance in the

network, the lowest order streams being the most minor
tributaries and the highest order, the main trunk river.
Figure 5.17 shows several methods of ordering
steams. Horton’s cumbersome method was refined by
Strahler (1952a) so that stream segments rather than en-
tire streams become the ordered units. In Strahler’s sys-
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tem, a segment with no tributaries is designated as a
first-order stream. Where two first-order segments join
they form a second-order segment; two second-order
segments join to form a third-order segment, and so
forth. Any segment may be joined by a channel of lower
order without causing an increase in its order. Only
where two segments of equal magnitude join is an in-
crease in order required. The Strahler method created an
apparent omission in accounting of low-order tributaries
that was later accommodated in another network order-
ing scheme proposed by Shreve (1966a, 1967). The
Shreve Magnitude, as it is called, considers streams as

Figure 5.16

Earth examples where groundwater seepage and sapping
processes have played a major formative role in valley
development. (A) Northeast Kohala coast of Hawaii. The
large, amphitheater-headed valleys have major springs at their
head, fed from high-level aquifers (see Kochel and Piper
1986). The small, less-incised valleys in between are fed only
by runoff. (B) Tributaries up-dip from the Colorado River have
been significantly enlarged by groundwater-sapping processes
in the permeable Navajo Sandstone. Note the lack of
tributaries down-dip (to the bottom left). Runoff-dominated
drainage systems typically show less influence on structural
control. (C) Headward end of tributaries in the Navajo
Sandstone of the Colorado Plateau in northern Arizona. Note
the extension of valley heads along major joints where
groundwater flow is enhanced. Compare to the right-angle
junctions of valley heads on Mars in figure 5.15B.

links within the network, with the magnitude of each
link representing the sum of the link numbers of all the
tributaries that feed it; that is, networks in which the
downstream segments are of the same magnitude have
equal numbers of links within the basins. Shreve’s desig-
nations thereby express the number of first-order streams
upstream from a given point. Geomorphologists investi-
gating relationships between rainfall and runoff find the
Shreve Magnitude system useful. Because the first-order
streams serve as the primary collectors of rainfall within
a basin, they are better flood flow predictors than the
Strahler ordering system (Patton and Baker 1976).
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Shreve (1967)

Figure 5.17

Methods of ordering streams within a drainage basin.

Shreve’s system appears in many of the sophisticated
runoff modeling packages which are beyond the scope of
this discussion (for example, see Smart and Wallis 1971;
Abrahams 1980; Abrahams and Miller 1982).

Every basin possesses a quantifiable set of geometric
properties that define the linear, areal, and relief charac-
teristics of the watershed (table 5.2), known as the basin
morphometry. These variables correlate with stream
order, and various combinations of the parameters obey
statistical relationships that hold for a large number of
basins. Two general types of numbers have been used to
describe basin morphometry or network characteristics
(Strahler 1957, 1964, 1968). Linear scale measurements
allow size comparisons of topographic units. The parame-
ters may include the length of streams of any order, the re-
lief, the length of basin perimeter, and other measure-
ments. The second type of measurement consists of
dimensionless numbers, often derived as ratios of length
parameters, that permit comparisons of basins or net-
works. Length ratios, bifurcation ratios, and relief ratios
are common examples. Table 5.2 shows the most com-
monly used linear, areal, and relief equations, but numer-
ous others have been derived from these.

Linear Morphometric Relationships The establish-
ment of stream ordering led Horton to realize that cer-
tain linear parameters of the basin are proportionately
related to the stream order and that these could be ex-
pressed as basic relationships of the drainage composi-
tion. Much of linear morphometry is a function of the bi-
furcation ratio (Rp), which is defined as the ratio of the
number of streams of a given order to the number in the
next higher order (using Strahler ordering). The bifurca-
tion ratio allows rapid estimates of the number of
streams of any given order and the total number of
streams within the basin. Although the ratio value will
not be constant between each set of adjacent orders, its
variation from order to order will be small, and a mean
value can be used. Also, as Horton pointed out, the num-
ber of streams in the second highest order is a good ap-
proximation of R,. When geology is reasonably homo-
geneous throughout a basin, R, values usually range
from 3.0 to 5.0.

The length ratio (Ry), similar in context to the bifur-
cation ratio, is the ratio of the average length of streams
of a given order to those of the next higher order. The
length ratio can be used to determine the average length
of streams in an unmeasured given order (Lo) and their
total length. The combined length of all streams in a
given basin is simply the sum of the lengths in each
order. For most basin networks, stream lengths of differ-
ent orders plot as a straight line on semilogarithmic
paper (fig. 5.18), as do stream numbers. The relation-
ships between stream order and the number and length
of segments in that order have been repeatedly verified
and are now firmly established (Schumm 1956; Chorley
1957; Morisawa 1962; and many others).

Areal Morphometric Relationships The equity
among linear elements within a drainage system sug-
gests that areal components should also possess a con-
sistent morphometry, because dimensional area is sim-
ply the product of linear factors. The fundamental unit
of areal elements is the area contained within the basin
of any given order (Ap). It encompasses all the area that
provides runoff to streams of the given order, including
all the areas of tributary basins of a lower order as well
as interfluve regions. Schumm (1956) demonstrated
(fig. 5.19) that basin areas, like stream numbers and
lengths, are related to stream order in a geometric series.

Although area by itself is an important independent
variable (Murphey et al. 1977), it has also been em-
ployed to manifest a variety of other parameters (see
table 5.2), each of which has a particular significance in
basin geomorphology, especially in regard to the collec-
tion of rainfall and concentration of runoff. Numerous
studies have been successful in formulating relationships
between basin area and discharge. One of the more
important areal factors is drainage density (D),.which is
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Number of Gauges Required

The number of rain gauges required to measure precipitation should generally
increase with the size of the watershed and with the variability of precipitation.
Sampling requirements can be determined with standard statistical methods (see
Chapter 20). Use of random sampling as a means of excluding bias in the selection
of gauge sites and for estimating the number of gauges needed is suggested. However,
in areas of dense brush or forest, this type of rainfall sampling might not be practical
owing to the difficulty of obtaining adequate sampling sites. Accessibility also limits
the ideal siting of gauges in remote watersheds. As a result, insufficient sampling is
more often the norm than the exception.

Using a regular network that is read after each storm event can estimate rainfall
variability on a watershed for monthly, seasonal, or annual periods. By reading storage
gauges monthly or seasonally, the effects of different storm types on variability may be
lost, but systematic differences in precipitation between parts of the watershed for these
longer periods can be estimated.

Methods of Calculating Mean Watershed Precipitation

The mean depth of precipitation over a watershed is required in many hydrologic inves-
tigations. Several methods are used in deriving this value. The three most common are
the arithmetic mean, the Thiessen polygon, and the isohyetal methods (Fig. 2.6).

Arithmetic Mean Method A straight arithmetic average is the simplest of all
methods for estimating the mean rainfall on a watershed (Fig. 2.6). This method yields
good estimates in level terrain if the gauges are numerous and uniformly distributed.
Even in mountainous country, averaging the catch of a dense rain gauge network will
yield good estimates if the orographic influence on precipitation is considered in the
selection of gauge sites. However, if gauges are relatively few, irregularly spaced, or pre-
cipitation over the area varies considerably, more sophisticated methods are warranted.

Thiessen Polygon Method When gauges are nonuniformly distributed over a
watershed, the Thiessen polygon method can improve estimates of precipitation amounts
over the entire area. Polygons are formed from the perpendicular bisectors of lines join-
ing nearby gauges (Fig. 2.6). The watershed area within each polygon is determined and
is used to apportion the rainfall amount of the gauge in the center of the polygon. It is
assumed that the depth of water recorded by the rain gauge located within the polygon
represents the depth of rain over the entire area of the polygon. The results are usually
more accurate than the arithmetic average when the number of gauges on a watershed
are limited and when gauges are located outside the watershed boundary.

The Thiessen method allows for nonuniform distribution of gauges but assumes
linear variation of precipitation between gauges and makes no attempt to allow for oro-
graphic influences. Once the area-weighing coefficients are determined for each station,
they become fixed, and the method is as simple to apply as the arithmetic method.

Isohyetal Method With the isohyetal method, gauge location and amounts are
plotted on a suitable map, and contours of equal precipitation (isohyets) are drawn
(Fig. 2.6). Rainfall measured within and outside the watershed can be used to estimate
the pattern of rainfall, and isohyets are drawn according to gauge catches. The average
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Thiessen Polygon:

Depth Area in Volume

Station (cm) Polygon* (cm)
A 4 x 028 112

B 8 x 009 0.72

C 10 x 049 4.90

D 6 x 014 = 0.84
sum = 7.58

*As a fraction of total area.

Isohyetal:

Mean Depth Area between Volume

(cm) Isohyets* (cm)
4.5 X 0.12 0.54
5.5 x 0.25 1.38
6.5 x 0.14 = 0.91
7.5 x 0.13 = 0.98
85 X 0.18 = 153
9.5 X 0.14 = 133

10.5 X 0.04 = 0.42

sum = 7.09

l
I
| *As a fraction of total area.
|
|
1

FIGURE 2.6. Methods of estimating the average rainfall for a watershed: arithmetic
mean; Thiessen polygon; isohyetal.




