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When memory pays: Discord in hidden Markov models
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When is keeping a memory of observations worthwhile? We use hidden Markov models to look at phase
transitions that emerge when comparing state estimates in systems with discrete states and noisy observations.
We infer the underlying state of the hidden Markov models from the observations in two ways: through naive
observations, which take into account only the current observation, and through Bayesian filtering, which takes
the history of observations into account. Defining a discord order parameter to distinguish between the different
state estimates, we explore hidden Markov models with various numbers of states and symbols and varying
transition-matrix symmetry. All behave similarly. We calculate analytically the critical point where keeping a
memory of observations starts to pay off. A mapping between hidden Markov models and Ising models gives
added insight into the associated phase transitions.
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I. INTRODUCTION

Problems requiring statistical inference [1,2] are all around
us, in fields as varied as neuroscience [3,4], signal processing
[5], and artificial intelligence (machine learning) [6,7]. A
common problem is state estimation, where the goal is to
learn the underlying state of a dynamical system from noisy
observations [6, Chap. 10]. In most cases, the ability to
infer states improves smoothly as the signal-to-noise ratio
of observations is varied. However, there can also be phase
transitions in the ability to infer the most likely value of a
state, as the signal-to-noise ratio of observations is varied [8].
Formally, phase transitions in inference can occur because
problems of inference and statistical physics share features
such as the existence of a free-energy-like function and the
requirement or desire that this function be minimized. Yet the
extent to which these elements lead to common outcomes such
as phase transitions is not yet clear.

In this paper, we investigate the generality of these links
in the context of a specific setting: the comparison of state
estimates based on current observations with those based
on both current and past observations. A simple setting for
exploring such problems is given by hidden Markov models
(HMMs). They are widely used, from speech recognition
[9,10], to economics [11,12], and biology [13,14]. HMMs
describe the evolution of a Markovian variable and the emis-
sion of correlated, noisy symbols. Taking the current emitted
symbol at face value gives us a naive state estimate. However,
in these correlated systems there is additional information in
the history of emitted symbols, which we can use to find a
more refined state estimate. Comparing the state estimates
then reveals in which cases the additional information from
keeping a memory of observations makes a difference.

*elathouw@sfu.ca
†johnb@sfu.ca

When the observed symbols as a function of time are
Markovian, such as HMMs with no noise, there is no advantage
to retaining past information. However, for more general
systems, the situation is not clear. Intuitively, if the noise is low
(and the entire state vector is observed), then there should be no
advantage. But if the noise is high, then averaging over many
observations may help, as long as the system does not change
state in the meantime. The surprise is that the transition from a
situation where there is no advantage to keeping a memory to
one where there is can have the character of a phase transition.
Such transitions have been observed in the specific case of
two-state, two-symbol HMMs [8,15].

In this article, we ask how general this behavior is in
HMMs: Do we observe these phase transitions [16] in more
complicated models? How sensitive is the behavior of the
phase transitions to the details of the model? And can
we understand their origin? In Sec. II, we introduce the
theoretical background of the systems we study. Then, in
Secs. III–V, we introduce and characterize phase transitions
in various generalizations of HMMs. In the appendices, we
detail the calculation of a phase transition in n-state, n-symbol
HMMs, and in two-state, two-symbol models with broken
symmetry. In an attempt to gain insight into the origins of
the observed phase transitions, we also show how to map a
two-state, two-symbol HMM onto an Ising model.

II. STATE ESTIMATION IN HMMs

HMMs can be fully described by two probability matrices
and an initial state. The evolution of the hidden state xt is
governed by a n-state Markov chain, described by an n×n tran-
sition matrix A with elements Aij = P (xt+1 = i|xt = j ). The
observation of an emitted symbol yt is described by an m×n

observation matrix B, with elements Bij = P (yt = i|xt = j ).
The matrix dimensions m and n refer to, respectively, the
number of symbols and the number of states. A graphical
representation of the dependence structure is shown in Fig. 1.
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FIG. 1. Graphical structure of a HMM. At time t , the hidden
state xt produces an observation yt . The matrix A defines the state
dynamics, while B relates observations to states.

The observations depend only on the current state of the
system. Note that the observations as a function of time,
described by P (yt+1|yt ), generally do not have Markovian
dynamics. We will refer to an n-state, m-symbol HMM as an
n×m HMM.

We assume that we have perfect knowledge of our model
parameters, and we will focus on comparing state-estimation
methods that do or do not keep a memory. In particular, we
will compare the naive observation yt of the HMM to the state
estimate x̂f

t found through Bayesian filtering. The Bayesian
filtering equations recursively calculate the probability for
the system to be in a state xt given the whole history of
observations yt [8], where yt = {y1,y2, . . . ,yt } is used as a
shorthand for all past and current information. The probability
is calculated in two steps: the prediction step P (xt+1|yt ) and
the update step P (xt+1|yt+1). The steps can be worked out
using marginalization, the definition of conditional probability,
the Markov property, and Bayes’ theorem. The transition
matrix and the previous filter estimate are needed to predict
the next state, and the observation matrix together with the
prediction are needed to update the probability. Together, they
give the Bayesian filtering equations [17],

P (xt+1|yt ) =
∑
xt

P (xt+1|xt )P (xt |yt ), (1a)

P (xt+1|yt+1) = 1

Zt+1
P (yt+1|xt+1)P (xt+1|yt ), (1b)

with the normalization factor

Zt+1 = P (yt+1|yt ) =
∑
xt+1

P (yt+1|xt+1)P (xt+1|yt ). (2)

The Bayesian formulation results in a probability density
function for the state xt .

When the observations yt are noisy, we cannot be com-
pletely sure that our observations and state estimates are
correct. Long sequences of the same observation increase our
belief that system is indeed in the observed state, according
to Bayesian filtering. However, even after an infinitely long
sequence of the same observation, there is always a chance that
the system actually transitioned into another state during the
last time step and that we are therefore observing an “incorrect”
symbol (the symbol does not match the state): The probability
to be in state xt = i given the history of observations yt is
bounded by a maximum confidence level p∗

i that depends on
the model’s parameters and is defined as the probability to be

FIG. 2. Time series of a 2×2 HMM generated from a transition

matrix A = (0.8 0.4
0.2 0.6), and an observation matrix B = (0.7 0.3

0.3 0.7). The

(unknown) Markov chain is shown in light gray, the naive observa-
tions as circles, and the filter probability as a black line. The arrow
indicates a time step where the naive state estimate differs from the
filter estimate.

in a given state after a long sequence of the same observation:

p∗
i = lim

t→∞ P (xt = i|yt = it ), (3)

where by yt = it we mean {y1 = i,y2 = i, . . . ,yt = i}. It
is important that the sequence of identical observations is
long enough that making an additional identical observation
does not change the probability. In Fig. 2 a fragment of
the evolution of a HMM, the underlying (unknown) state
and observed symbols, is shown together with the Bayesian
filtering probability calculated over the time series. For long
sequences of identical observations, we see that the filtering
probability levels off. Generally, each state will have a different
maximum confidence level. We will return to the maximum
confidence level in later calculations and discussions.

Many applications, such as feedback control, depend on
single-value estimates x̂t rather than on probability distribu-
tions. Although statistics such as the mean and median are
reasonable candidates for the “typical” value of a distribution
(minimizing mean-square and absolute errors [18, Sec. 14.2]),
it is more convenient here to use the mode, or maximum, which
is termed, in this context, the state estimate. For state estimates
based on all past and current information, we define the filter
estimate

x̂f
t ≡ arg max

xt

[P (xt |yt )]. (4)

For the HMM shown in Fig. 2, Eq. (4) implies that whenever
the filter probability is above 0.5, the filter estimates the system
to be in state 1; similarly, it is in state −1 when the probability
<0.5. Analogously, we define the naive state estimate to be
based entirely on the current observation, with no use made of
past observations:

x̂o
t ≡ arg max

xt

[P (xt |yt )]. (5)

In the special case where there is a one-to-one correspondence
between symbols y and elements of the internal state x,
the quantity x̂o

t reduces to yt , the symbol emitted at time
t . More generally, the number of internal state components
may be smaller than the number of observations, making the
interpretation of the estimates more subtle. As we will see, the
combination of defining a probability distribution for the state
variable and then selecting its maximum leads to the possibility
of phase transitions.

When one uses other ways to characterize the state than
the mode, e.g., the mean, one may not find the analytical
discontinuities that we study. However, the arg max captures an
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(a) (b) (c)

FIG. 3. Discrete probability distribution, with continuously vary-
ing control parameter going from (a) to (c).

interesting complexity of the probability density function that
would be lost in taking the mean. This is illustrated in Fig. 3,
where there is a transition in the arg max, at (b). By contrast,
taking the mean of the distribution ignores the bimodal nature
of the distributions and shows no transition. This argument
also applies to observables, such as work, that are functions of
filter estimates.

To know when keeping a history of observations pays off,
we need to determine under what conditions the two state
estimates will differ. We quantify how similar two sequences
of state estimates by defining a discord order parameter,

D = 1 − 1

N

N∑
t=1

d
(
x̂o

t ,x̂
f
t

)
, (6)

where the function d depends on the naive and filter state
estimates:

d
(
x̂o

t ,x̂
f
t

) =
{

1, x̂o
t = x̂f

t

−1, x̂o
t �= x̂f

t

. (7)

The discord parameter is zero when the state estimates agree
at all times. In such a case, there is no value in keeping a
memory of observations: the extra information contained in
the past observations has not changed the best estimate from
that calculated using only the present observation. Similarly,
when D = 2 the state estimates disagree at all times, the state
estimates are perfectly anticorrelated. At intermediate values
of D, keeping a memory can be beneficial. An HMM with a
nonzero discord is illustrated in Fig. 2: an arrow indicates a
point where the state estimate differs from the estimate based
on the current observation.

We are interested in the transition from zero to nonzero
discord, where the state estimates start to differ, and where
keeping a history of observations starts to pay off. The lowest
observation probability that leads to a nonzero discord is the
critical observation probability. We have just seen that after a
long sequence of identical observations the probability to be in
some state xt reaches a maximum value. Thus, the first place
where state estimates will differ is when a single discordant
observation after a long string of identical observations does
not change our belief of the state of the system (i.e., where the
filter estimate no longer follows the naive estimate exactly).
Mathematically, the threshold where the discord goes from
zero to being nonzero for an n×n HMM is given by

lim
t→∞ P (xt+1 = i|yt+1 = j,yt = it )

= lim
t→∞ P (xt+1 = j |yt+1 = j,yt = it ) (8)

for all states i,j ∈ {1,2, . . . ,n}, and j �= i. From Ref. [8], the
transition threshold for a symmetric 2×2 HMM with transition

probability a and error rate b is

bc = 1
2 (1 − √

1 − 4a)
(
a � 1

4

)
(9)

and bc = 1/2 for larger a values. In Sec. III we generalize
this result by dropping the symmetry requirement. As found
in Ref. [8], the transitions are sometimes discontinuous and
sometimes just have a discontinuity in their derivative. As far
as we know, the distinction has not been explored.

So far, we have considered only the extreme cases of no
memory and infinitely long memory. What about a finite
memory? In Fig. 2 we see that the filter reacts to new
observations with a characteristic time scale. Indeed, since
the filter dynamics for a system with n internal states is itself
a dynamical system with n − 1 states (minus one because of
probability normalization), we expect filters to have n − 1 time
scales. This statement holds no matter how big or small the
memory of the filter.

As a numerical exploration confirms, there is geometric (ex-
ponential) relaxation with time scales that are easy to evaluate
numerically, if difficult algebraically. Thus, an “infinite” filter
memory need only be somewhat longer than the slowest time
scale, and “no memory” need only be faster than the fastest
time. A brief study of filters with intermediate time scales
suggests that their behavior typically interpolates between the
two limits.

III. SYMMETRY BREAKING IN TWO-STATE,
TWO-SYMBOL HMMs

In 2×2 HMMs where the symmetry in the transition and
observation probabilities is broken, the probability matrices
each have two independent parameters. We parametrize the
transition-matrix probabilities as

A =
(

1 − ā + 1
2�a ā + 1

2�a

ā − 1
2�a 1 − ā − 1

2�a

)
, (10)

which depends on the mean transition probability ā =
1
2 (A21 + A12) and the difference in transition probabilities
�a = A21 − A12. When the difference between the transi-
tion probabilities is zero (�a = 0), the transition matrix is
symmetric. The observation matrix is parameterized simi-
larly, with ā → b̄ and �a → �b. The matrix B depends
on the mean observation probability b̄ = 1

2 (B21 + B12) and
the difference in observation probabilities �b = B21 − B12.
All matrix elements must be in the range [0,1] to ensure
proper normalization. We restrict the off-diagonal elements
(probability to transition to a different state or probability
to make a wrong observation) to be < 0.5, to preclude
anticorrelations. We use the set {1, − 1} to label both states
and the corresponding symbols for 2×2 HMMs.

The discord parameter is calculated by generating a realiza-
tion of an HMM using the transition and observation matrices,
following Eq. (6) and averaging over the entire chain. A plot
of the discord for a 2×2 HMM with asymmetric transition
probabilities is shown in Fig. 4. All points shown are averaged
over 30 000 time steps.
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FIG. 4. Discord parameter as a function of the average obser-
vation probability for a 2×2 HMM with symmetric observations
(�b = 0) and slightly asymmetric transitions, �a = 0.01. Arrows
indicate the primary and two higher-order transitions.

The expression defining the critical observation probability
in Eq. (8) simplifies greatly for 2×2 HMMs:

lim
t→∞ P (xt+1 = 1|yt+1 = −1,yt = 1t ) = 0.5. (11)

We write this in terms of the model’s parameters and solve for
the critical observation probability b̄ = b̄c. This corresponds to
the lowest points b̄ in Fig. 4 that are nonzero for a given ā. The
complete analytical calculations for the critical observation
probability can be found in Appendix A. Figure 5 shows
the analytical and simulated critical observation probabilities
as a function of the mean transition probability ā, for a
system with symmetric observation probabilities and several
different transition asymmetries. The curve labeled �a = 0.01
corresponds to the transitions in Fig. 4. The solutions agree
with simulations, which are shown as circles in the same
diagram. The discord becomes nonzero at lower mean transi-
tion probabilities for larger asymmetries. The phase transitions
differ in location from those of the symmetric 2×2 HMMs,
but they still exist. We find similar results in systems with
symmetric transition matrices and asymmetric observation
matrices, and in systems with both asymmetric transition and
observation matrices [19].

FIG. 5. Mean critical observation probability of HMMs with
asymmetric transition matrices and symmetric observation matrices
(�b = 0) a function of ā. Simulated results are shown as circles;
solid lines show the analytical solutions.

Another approach to understanding these results is offered
in Appendix B, where we show that we can map 2×2 HMMs
onto one-dimensional Ising models with disordered fields and
zero-temperature phase transitions.

In Fig. 4 we observe some additional jumps and kinks at
error rates (b̄ > b̄c) that can be interpreted as “higher-order
transitions” in the discord. We have labeled two of such
transitions by b̄1 and b̄2 in Fig. 4. The first of these is
due to the asymmetry of this HMM. The threshold b̄c

results from the observation sequence yt = {1, . . . ,1,−1},
whereas the slightly higher b̄1 results from the sequence
yt = {−1, . . . ,−1,1}, which gives a condition that is different
when �a �= 0. The second of these transitions, b̄2, marks
the threshold where two discordant observations are needed
to change the filter state estimate. That is, the observation
sequence is yt = {1, . . . ,1,−1,−1}. For still higher values
of b̄, there will be transitions where one needs more than
two sequential discordant observations to alter the filter value.
Further transitions can occur for finite arbitrary sequences too.
Higher-order transitions, however, are increasingly weak and
harder to detect numerically.

IV. MORE STATES AND SYMBOLS

We have seen that phase transitions in the discord order
parameter occur in both symmetric and asymmetric time-
homogeneous 2×2 HMMs. In this section, we will study
systems with more states and more symbols. To keep the num-
ber of parameters manageable, we will consider symmetric
HMMs, and we will consider only two classes of states: an
observation is either correct and the symbol is the “same”
as the underlying state, or an observation is incorrect and the
system emits an “other” symbol. We consider a straightforward
generalization of symmetric 2×2 HMMs to symmetric n×n

HMM, and a model that describes a particle diffusing on a
lattice with constant background noise. We investigate whether
the transitions that we have encountered so far exist in these
systems too.

A. Symmetric n×n HMMs

Let us now label the states and symbols 1,2, . . . ,n. We first
consider a system with transition matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

1 − a a
n−1 . . . a

n−1

a
n−1 1 − a

. . .
...

...
. . .

. . . a
n−1

a
n−1 . . . a

n−1 1 − a

⎞
⎟⎟⎟⎟⎟⎠ (12)

and an observation matrix B, which has the same form except
that a → b. This system depends on only two parameters
for a given number of states n: the transition probability, a,
and the observation error probability, b. This transition matrix
describes a system that has a probability 1 − a to stay in the
same state and equal probabilities to transition to any other
state, a

n−1 . The observation matrix describes a measurement
with uniform background noise; there is a certain probability
of observing the correct symbol 1 − b and equal probabilities
of observing any other symbol, b

n−1 .
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FIG. 6. Phase diagram of symmetric n×n HMMs for n = 2,3,

4,10, and n → ∞. The lines are analytical solutions; the circles are
the results of simulations.

Just as before, we calculate the discord parameter for these
systems and study the transition to nonzero discord by finding
the critical observation probability. The problem simplifies
from the case discussed above, where A is a general transition
matrix. In Appendix C, we write it out explicitly, and find two
solutions:

b(1)
c = 1

2(n − 1)
[(n − 1) + (n − 2)a

−
√

(n − 2)2a2 − 2n(n − 1)a + (n − 1)2], (13a)

b(2)
c = n − 1

n
. (13b)

For n = 2, Eq. (13a) reduces to Eq. (9).
The threshold values of b are plotted in Fig. 6 for various

numbers of states and symbols n. The branches of the solutions
that are increasing with increasing a are given by b(1)

c , and
the constant branches are given by b(2)

c . The analytical and
simulated values agree quite well, especially for smaller n.
The n = 10 curve deviates from the simulations slightly at
higher a. The area under the curves indicates the parameter
regime where D = 0, where the state estimates with and
without memory agree. Above the critical error probability,
the two state estimates differ. There are no discontinuities as
bc → n−1

n
; the curves are simply very steep.

B. Diffusing particle

We now consider an HMM that describes a particle
diffusing on a lattice with constant background noise and
periodic boundary conditions. The symmetric n×n transition
matrix is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − a a
2 0 . . . a

2

a
2 1 − a a

2

. . . 0

0 a
2 1 − a

. . .
...

...
. . .

. . .
. . . a

2
a
2 0 . . . a

2 1 − a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

The observation matrix is the same as the one in the previous
section. Physically, the particle stays in the same place with

FIG. 7. Scaled discord parameter as a function of the scaled
observation probability for a diffusing particle on a one-dimensional
lattice with four sites (n = 4).

probability 1 − a, or it diffuses one site to the left or right with
probability a/2.

The discord parameter as a function of the observation
probability is plotted in Fig. 7. For visualization purposes,
both the discord and the observation probability are scaled by a
factor of n/(2n − 2), where n is the number of lattice sites. The
scaling is such that (n/(2n − 2))D = 1 at (n/(2n − 2))b = 0.5
for any integer n > 1.

The transition to nonzero discord is smooth in this case;
however, at higher b and D, a nonanalytic jump is seen.

V. MORE SYMBOLS THAN STATES

Finally, we consider an HMM with more symbols than
states. In particular, consider an HMM with only two states,
1 and −1, and an even number of symbols n. We will also
consider the n → ∞ limit. The transitions and errors are
once again taken to be symmetric, with A = (1 − a a

a 1 − a), but
the observation errors are now determined by a Gaussian
distribution around the states. In particular, the elements of
the observation matrix are determined by integrals over the
Gaussian distribution of the desired state. For state 1, the
observation probability for symbol i is

bi1 = P (yt = i|xt = 1)

= 1√
2πσ

∫ �i

�i−1

dx exp

[−(x − 1)2

2σ 2

]

= 1

2

[
erf

(
�i − 1√

2σ

)
− erf

(
�i−1 − 1√

2σ

)]
. (15)

The boundaries �i of the integral are determined such that
the probability of observing each symbol is equal when
considering the sum of Gaussian distributions around each
state:

i

n
= 1√

8πσ

∫ �i

−∞
dx exp

[−(x − 1)2

2σ 2

]
+ exp

[−(x + 1)2

2σ 2

]

= 1

4

[
2 + erf

(
�i − 1√

2σ

)
+ erf

(
�i + 1√

2σ

)]
. (16)

The symmetry of the problem reduces the number of equations
we need to solve: We know that �0 = −∞, �n = ∞, �n/2 = 0,
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FIG. 8. Critical observation probability bc of symmetric 2×n

HMMs, for a fixed transition probability a = 0.30, as a function
of 1/n. The straight line emphasizes the asymptotic behavior for
large n.

and �(n/2)−j = −�(n/2)+j for integers j between 1 and n/2 − 1
(all for even n). Also, symmetry dictates that the probability
of observing a symbol i given the state is −1, bi(−1), equals
b(n−i+1)1.

For n → ∞ (infinitely many symbols), we use the proba-
bility density function directly rather than integrating over an
interval.

In systems with a finite number of symbols, we observe
nonanalytic behavior as the discord becomes nonzero. These
phase transitions move to lower observation probabilities for
a larger number of symbols. In systems with an infinite
number of symbols, the discontinuities are not present. To
confirm this observation, we study the critical error probability
as a function of the number of symbols; see Fig. 8. The
critical error probability is shown for a transition probability
a = 0.30 as a function of 1/n. The behavior is similar for
other transition probabilities and suggests that the critical
observation probability goes to zero asymptotically. The
(discontinuous) transitions disappear only in the limit of
infinitely many symbols.

In the n×n symmetric HMMs, we saw similar behavior:
The critical error probability decreases as a function of the
number of symbols (and states). However, if we look at the
limit of n → ∞ of the critical error probability of these HMMs
(Fig. 6), the critical error probability does not go to zero.

VI. CONCLUSION

In this paper, we have investigated when keeping a memory
of observations pays off in hidden Markov models. We used
HMMs to look at a relatively simple system with discrete
states and noisy observations. We inferred the underlying state
of the HMM from the observations in two ways: through naive
observations, and a state estimate found through Bayesian
filtering (and decision making). We then compared the state
estimates by calculating the discord, D, between the two. We
were particularly interested in investigating a phase transition
at the point where D becomes nonzero. Such transitions have

been observed in symmetric 2×2 HMMs; here, we have seen
that such behavior applies to more general models.

We looked at asymmetric 2×2 HMMs, some symmetric
n×n HMMs, and symmetric 2×n HMMs. The general features
of the discord stayed the same in all these systems: it starts
at D = 0 for b = 0; it becomes nonzero at some critical error
probability; and it increases for increasing error probability.
In all these systems, we found a nonanalytic behavior in the
discord as a function of observation error probability (phase
transition), except in the 2×n case in the limit of infinitely
many symbols, n → ∞.

Throughout this paper, we have defined the usefulness of
memory in a rather narrow way: we ask when inferences
using a memory are different or better than those that do not.
But memory can have many more uses. In thermodynamics,
Maxwell’s demon and Szilard’s engine showed that informa-
tion that is acquired can be converted to work [20]. Bauer et al.
analyzed a periodic, two-state Maxwell demon with noisy state
measurements and showed that there are transitions very much
analogous to the ones considered here between phases where
measurements are judged reliable, or not [15]. When reliable,
there is no advantage to keeping a memory.

In biology, one can consider cells in noisy environments
and ask whether keeping a memory of observations of this
environment is worthwhile. For example, Sivak and Thomson
showed, in a simple model, that for very low and very high
ratios of signal to noise in the environment, memoryless
algorithms lead to optimal regulatory strategies [21]. However,
for intermediate levels of noise, strategies that retain a memory
perform better. In contrast to the situations considered in
this paper, they found no evidence of any phase transition.
There were smooth crossovers between regimes. In another
setting, Rivoire and Leibler have explored how information
retention by populations of organisms can improve the ability
of the population to adapt to fluctuating environment [22].
Again, in this setting, no phase transitions were encountered.
Also, Hartich et al. showed that the performance of a sensor,
characterized by its “sensory capacity,” increases with the
addition of a memory but report no phase transition [23].

Thus, in this paper, we have explored a class of models
where phase transitions occur generically as a function of
signal-to-noise ratios. Yet, in many other applications, such
transitions are not observed. Clearly a better understanding
is needed to clarify which settings will show phase transitions
and which ones continuous crossovers between different
regimes.
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APPENDIX A: CRITICAL ERROR PROBABILITY
OF ASYMMETRIC 2×2 HMMs

In Eq. (11), we defined the critical error probability b̄c as
the lowest b̄ for given ā,�a, and �b that results in a nonzero
discord parameter. In this appendix, we calculate this threshold
analytically.
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We start by writing out the left-hand side of Eq. (11) explicitly:

lim
t→∞ P (xt+1 = 1|yt+1 = −1, yt = 1t ) = lim

t→∞
P (yt+1 = −1|xt+1 = 1)

∑
xt

P (xt+1 = 1|xt )P (xt |yt = 1t )∑
xt+1

P (yt+1 = −1|xt+1)
∑

xt
P (xt+1|xt )P (xt |yt = 1t )

. (A1)

We recognize several terms as part of the transition and observation matrices. The term P (xt |yt = 1t ) relates to the maximum
confidence level. We need to find the maximum confidence level in terms of the observation and transition probabilities:

p∗
1 = lim

t→∞ P (xt = 1|yt = 1t ) = lim
t→∞

P (yt = 1|xt = 1)
∑

xt−1
P (xt = 1|xt−1)P (xt−1|yt−1 = 1t−1)∑

xt
P (yt = 1|xt )

∑
xt−1

P (xt |xt−1)P (xt−1|yt−1 = 1t−1)
. (A2)

We use normalization to write limt→∞ P (xt−1 = −1|yt−1 = 1t−1) = 1 − p∗
1 , and we have an expression only in terms of the

maximum confidence level, transition probability, and the observation probability. We then solve for p∗
1 :

p∗
1 = 1

4(2ā − 1)(2b̄ − 1)
[2 + ā(8b̄ − 2(3 + �b)] + 2b̄(�a − 2) − �a + X), with (A3)

X =
√

4ā2(1 + �b)2 − 4ā(2b̄ − 1)[4b̄ − 2 − �a(1 + �b)] + (2b̄ − 1)[2b̄(4 + �a2) − �a(4 + �a + 4�b) − 4]. (A4)

Now we plug this expression, together with the transition and observation probabilities [Eq. (10)] into Eq. (A1):

(�b − 2b̄)((2b̄ − 1)(2 + �a) + 2ā(1 + �b) − X)

2(2b̄ − 1)[�a(1 − 2b̄) + 2(�b − 1) − 2ā(1 + �b) + X]
= 1

2
. (A5)

Last, we solve for b̄ = b̄c. We find three solutions, of which only two lie in our region of interest, 0 � ā,b̄ � 0.5. Since the
resulting expressions are complicated, we show the full solution only for the special case where �b = 0:

b̄(1)
c = 1

6

(
3 − �a + 3 − 12ā + �a2

Y
+ Y

)
, (A6)

b̄(2)
c = 1

384

[
−64(�a − 3) − 32(1 + i

√
3)(3 − 12ā + �a2)

Y
+ 32i(i +

√
3)Y

]
, (A7)

Y = {18(ā − 1)�a − �a3 + 3
√

3
√

[11 − 4ā(ā + 4)]�a2 + (4ā − 1)3 + �a4}1/3. (A8)

These solutions are plotted in Fig. 5. Note that the expression for b̄(2)
c is real for relevant branches. That is, for some values of

ā and �a the expression is complex; however, all the branches we plot have a zero imaginary part. When we set �a = 0, b(1)
c

reduces to 1
2 (1 − √

1 − 4ā) for ā � 1/4, and 1
2 for ā � 1/4. These are the familiar solutions for symmetric 2×2 HMMs as found

in Ref. [8] and Appendix C.

APPENDIX B: MAPPING TO ISING MODELS

One can map a symmetric 2×2 HMM onto a one-dimensional random-field Ising model [8,24,25]. Here we generalize
this mapping so that it applies to a general (asymmetric) 2×2 HMM. We start by defining a mapping from the transition and
observation probabilities to the spin-spin coupling and the spin-field coupling constants:

P (xt+1|xt ) = exp[J (xt )xt+1xt ]

2 cosh[J (xt )]
, J (xt ) =

{
J+ = 1

2 log
( 1−ā+�a/2

ā−�a/2

)
, if xt = 1

J− = 1
2 log

( 1−ā−�a/2
ā+�a/2

)
, if xt = −1

,

P (yt |xt ) = exp[h(xt )ytxt ]

2 cosh[h(xt )]
, h(xt ) =

⎧⎨
⎩

h+ = 1
2 log

( 1−b̄+�b/2
b̄−�b/2

)
, if xt = 1

h− = 1
2 log

( 1−b̄−�b/2
b̄+�b/2

)
, if xt = −1

.

(B1)

We define the Hamiltonian H ≡ − log[P (xN,yN )], which, using the product rule of probability and the Markov property of the
state dynamics, is

H = −
N∑

t=1

log [P (yt |xt )] −
N−1∑
s=1

log [P (xs+1|xs)]

= −
N∑

t=1

(h(xt )ytxt − log{2 cosh[h(xt )]}) −
N−1∑
s=1

(J (xs)xs+1xs − log{2 cosh[J (xs)]}). (B2)

Next, we rewrite the h(xt ) and J (xt ) in a convenient way:

h(xt ) = h̄ + �hxt , with h̄ = 1
2 (h+ + h−) and �h = 1

2 (h+ − h−) (B3)

062144-7



EMMA LATHOUWERS AND JOHN BECHHOEFER PHYSICAL REVIEW E 95, 062144 (2017)

and the same for J (xt ) with h → J . When �a is zero, we have �J = 0 and J̄ = J , where J is the coupling constant found in
the case of symmetric 2×2 HMMs [8]. The same happens with the h-terms when �b = 0. The terms consisting of a logarithm
with a hyperbolic cosine can also rewritten by taking the mean value of the possible terms and a deviation from that mean value.
The constant terms can be neglected since they lead only to a shift in the energy. Similarly, terms that depend only on a single
factor yt can also be neglected. Higher-order terms that depend on a product of these factors still contribute.

The full Hamiltonian is now given by

H = −
N∑

t=1

{
h̄ytxt − 1

2
xt log

[
cosh(h̄ + �h)

cosh(h̄ − �h)

]}
−

N−1∑
s=1

{
J̄ xs+1xs + �Jxs+1 − 1

2
xs log

[
cosh(J̄ + �J )

cosh(J̄ − �J ]

]}
. (B4)

For large N , we can neglect boundary terms. Then rearranging the Hamiltonian so that one term represents the nearest-neighbor
interactions and the others the local external fields, we find

H = −
∑

t

J̄ xt+1xt −
{
h̄yt − 1

2
log

[
cosh(h̄ + �h)

cosh(h̄ − �h)

]
− 1

2
log

[
cosh(J̄ + �J )

cosh(J̄ − �J )

]
+ �J

}
xt

= −
∑

t

J̄ xt+1xt − h̄ytxt + C(J̄ ,�J,h̄,�h)xt . (B5)

The external field consists of a fluctuating term that depends on yt and a constant term that depends transition and observation
parameters.

From Eq. (B5), it is clear that this Hamiltonian remains the Hamiltonian of the familiar Ising model. There is a constant
spin-spin coupling term, the strength of which is determined by the transition probabilities ā and �a. Then there is the fluctuating
term of the local external fields. The magnitude is constant and determined by the observation probabilities, but the direction
is assigned randomly through yt . Finally, there is a constant term in the external fields that depends on both the transition and
observation probabilities.

Above, we have seen that the filtering problem for a HMM can be mapped onto an Ising model. How useful is such a mapping?
It does add intuitive language. The observations yt play the role of a local spin at each site. From Eq. (B1), we see that a lower
error rate (small b̄) corresponds to strong coupling between the local field and the local spin, which corresponds to state xt . When
the noise is so strong that an observation says nothing about the underlying state (b̄ = 1/2), then the coupling h = 0.

Likewise, deviations of ā from 1/2 determine the spin-spin coupling constant J .
These results, however, were previously derived for symmetric 2×2 HMMs [24,25]. Here we add the insight that generalizing

to asymmetric dynamics (matrix A) or observation errors (matrix B) leads to the same qualitative scenario. The mapping remains
a simple Ising model; only the coefficients are modified. It would be interesting to know whether such mappings work for more
order parameters, where the corresponding spin problem is presumably a Potts model [26].

Although the Ising mapping gives some qualitative insights, it has limitations. In a closely related problem, estimating the full
path xt of states on the basis of observations yt , the desired filter estimate corresponds to the ground state of the corresponding
Ising model [25]. Here, by contrast, the filter estimate corresponds, in Ising language, to estimating the most likely value of the
last (edge) spin of a one-dimensional chain, without caring about the spin of any other site—a strange quantity! Thus, in mapping
the filter state estimation problem to an Ising chain, we transform a familiar question concerning a strange system to asking a
strange question of a familiar system. Whether such a swap leads to analytical progress beyond its value in forming a qualitative
picture is not at present clear.

APPENDIX C: CALCULATION OF CRITICAL OBSERVATION PROBABILITY FOR n×n HMMs

Here, we compute the critical observation probability for symmetric n×n HMMs analytically. We need only consider one
state/ symbol i and one j , because of the symmetry of the problem. For example, use i = 1 and j = 2 in Eq. (8), which leads to

lim
t→∞ P (xt+1 = 1|yt+1 = 2,yt = 1t ) = lim

t→∞ P (xt+1 = 2|yt+1 = 2,yt = 1t ). (C1)

Similar to the calculation in Appendix A, we start with the calculation of the maximum confidence level, p∗. Since all states of
a symmetric n×n HMM are equivalent, the maximum confidence levels are all the same. We calculate the maximum confidence
for an arbitrary state i:

p∗ = lim
t→∞ P (xt = i|yt = it ) = lim

t→∞
1

Zt

P (yt = i|xt = i)
∑
xt−1

P (xt = i|xt−1)P (xt−1|yt−1 = it−1). (C2)

The first two terms in the numerator are known from the transition and observation matrix of the HMM. The last term is p∗ if
xt−1 = i. For xt−1 �= i, we can calculate it by demanding a normalized probability:

lim
t→∞

∑
xt−1

P (xt−1|yt−1 = it−1) = 1, p∗ + (n − 1) lim
t→∞ P (xt−1 = j |yt−1 = it−1) = 1,

lim
t→∞ P (xt−1 = j |yt−1 = it−1) = 1 − p∗

n − 1
. (C3)
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Plugging all of the terms into Eq. (C2) and solving for p∗ in terms of the model parameters leaves us with two solutions.
Restricting interest to the solutions that take on positive values for 0 � a,b � 1 and integer n > 1, we find

p∗ = 1

2(an − n + 1)(bn − n + 1)
((a − 1)(b − 1)n2 + a + (b − 2)n + 1

+
√

{(n − 1)(bn − n + 1) − a[(b − 1)n2 + 1]}2 − 4a(b − 1)(n − 1)(an − n + 1)(bn − n + 1)). (C4)

With these preliminary expressions, we can calculate the critical error probability. From Eq. (C1), the left-hand side is

P (xt+1 = 1|yt+1 = 2,yt = 1t ) = P (yt+1 = 2|xt+1 = 1,����yt = 1t )P (xt+1 = 1|yt = 1t )

P (yt+1 = 2|yt = 1t )

= 1

Zt+1
P (yt+1 = 2|xt+1 = 1)P (xt+1 = 1|yt = 1t ). (C5)

The right-hand side is expanded in the same way. Writing out the individual terms of the equation leads to

lim
t→∞ P (xt+1 = 1|yt = 1t ) = lim

t→∞

∑
xt

P (xt+1 = 1|xt )P (xt |yt = 1t )

= (1 − a)p∗ + (n − 1)
a

n − 1

1 − p∗

n − 1
= (1 − a)p∗ + a

1 − p∗

n − 1
(C6a)

and Zt+1 = P (yt+1 = 2|yt = 1t ) =
∑
xt+1

P (yt+1 = 2|xt+1)P (xt+1|yt = 1t ). (C6b)

Plugging all these terms into Eq. (C1) and substituting p∗ from Eq. (C4), we solve for the critical error probability bc as a
function of a and n and find Eq. (13).
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