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Fast and High-Performance Learned Image
Compression With Improved Checkerboard Context

Model, Deformable Residual Module, and
Knowledge Distillation

Haisheng Fu, Feng Liang, Jie Liang, Yongqiang Wang, Zhenman Fang, Guohe Zhang, Jingning Han

Abstract—Deep learning-based image compression has made
great progresses recently. However, some leading schemes use
serial context-adaptive entropy model to improve the rate-
distortion (R-D) performance, which is very slow. In addition,
the complexities of the encoding and decoding networks are
quite high and not suitable for many practical applications. In
this paper, we propose four techniques to balance the trade-
off between the complexity and performance. We first introduce
the deformable residual module to remove more redundancies in
the input image, thereby enhancing compression performance.
Second, we design an improved checkerboard context model
with two separate distribution parameter estimation networks
and different probability models, which enables parallel de-
coding without sacrificing the performance compared to the
sequential context-adaptive model. Third, we develop a three-
pass knowledge distillation scheme to retrain the decoder and
entropy coding, and reduce the complexity of the core decoder
network, which transfers both the final and intermediate results
of the teacher network to the student network to improve its
performance. Fourth, we introduce L1 regularization to make
the numerical values of the latent representation more sparse,
and we only encode non-zero channels in the encoding and
decoding process to reduce the bit rate. This also reduces the
encoding and decoding time. Experiments show that compared
to the state-of-the-art learned image coding scheme, our method
can be about 20 times faster in encoding and 70-90 times faster
in decoding, and our R-D performance is also 2.3% higher. Our
method achieves better rate-distortion performance than classical
image codecs including H.266/VVC-intra (4:4:4) and some recent
learned methods, as measured by both PSNR and MS-SSIM
metrics on the Kodak and Tecnick-40 datasets.

I. INTRODUCTION

Recently, deep learning has been successfully applied to
the field of image compression, yielding very impressive
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Fig. 1. The decoding time and BD-Rate savings over H.266/VVC for different
methods are presented for the Kodak dataset on CPU. A better result is
indicated in the upper-left corner. Note that GLLMM [5] has excessive
decoding time.

results. The main components of classical image compression
standards, such as JPEG [1], JPEG 2000 [2], BPG (intra-
coding of H.265/HEVC) [3], and H.266/VVC [4], include
the following key components: linear transform, quantization,
and entropy coding. In end-to-end learning-based frameworks,
these components have been re-designed carefully.

In the transform part, various deep learning-based networks
have been developed to extract compact latent representations
of the input image, such as residual blocks [6]–[8], attention
modules [9], [10], invertible structures [11], or transformer
blocks [12], [13]. Although these structures significantly im-
prove the rate-distortion (R-D) performance, their complexity
of the networks is usually quite high.

In the quantization part, since learning-based approach
requires all components of the codec to be differentiable,
but the traditional quantization is not differentiable, different
technologies have been proposed to alleviate this problem.
For example, in [5], [8], [14]–[16], the quantization is imple-
mented by adding uniform noise to the latent representation
during training, and the rounding operation is used during
inference.
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For the entropy coding component, the use of the serial
context-adaptive entropy model substantially enhances the R-D
performance. This is achieved by jointly utilizing hyperpriors
and autoregressive models to reduce the spatial redundancy of
latent representations. In [17], the transformer-based context
model named Contextformer is proposed to further improve
the R-D performance. However, these methods cannot be
accelerated during the decoding process by parallel computing
devices like GPU, making them less suitable for practical
applications.

Some recent works using serial context-adaptive entropy
model can even outperform the best traditional image stan-
dards (i.e. VVC intra coding) in terms of PSNR [5], [11], [18].
In particular, the scheme in [5] represents the current state of
the art, where the latent representations are assumed to follow
the Gaussian-Laplacian-Logistic mixture model (GLLMM).
However, its complexity is quite high.

In this paper, we first propose the deformable residual
module to improve the image compression performance. Next,
we propose three techniques to reduce the model size and
decoding complexity of learned image compression methods
while maintaining competitive R-D performance. The main
contributions of this paper are summarized as follows:

• We are the first to apply the deformable residual module
(DRM) to image compression, which combines the de-
formable convolution [19] and residual block [20]. The
DRM expands the receptive field, making it easier to
capture global information. Furthermore, the DRM can
reduce the spatial correlation of latent representations,
thereby enhancing compression performance.

• Second, we propose an improved checkerboard context
model, which divides the latents into two subsets via
a checkerboard pattern, and each of them can be pro-
cessed in parallel, thereby significantly speeding up the
decoding. It uses two different networks to estimate the
distribution parameters of the two subsets. It also only
employs the more powerful GLLMM model in the first
subset, because it does not use context model. The second
subset only uses the simpler Gaussian mixture model
(GMM), without affecting its R-D performance.

• Third, we develop a three-pass knowledge distillation
scheme to retrain the encoder, decoder and entropy
coding, and reduce the complexity of the core decoder
network without sacrificing too much performance. The
first pass is to train the teacher network. In the second
pass, the student decoder and entropy coding have the
same architecture as the teacher network. We jointly
train the teacher and student networks to transfer prior
information from the teacher to the student, in both the
final output and intermediate outputs. In the third pass,
we reduce the complexity of the student core decoder
network by removing some modules and reducing the
number of filters, and retrain the teacher and student
networks again.

• Fourth, we introduce L1 regularization to make the nu-
merical values of the latent representation sparser, and
increase the number of zero elements in the latent rep-
resentation. Then, in the encoding and decoding process,

we only encode non-zero channels to save the bit rate,
which also reduces the encoding and decoding time.

Experimental results demonstrate that compared to the state-
of-the-art (SOTA) learned image coding scheme in [5], our
method is approximately 20 times faster in encoding and 70-
90 times faster in decoding, and still achieves 2.3% BD-Rate
saving. It also offers an attractive trade-off between two other
SOTA methods in Wang2023 [21] and Liu2023 [22]. Our
method also outperforms the latest classical image codec in
H.266/VVC-Intra (4:4:4) and other leading learned schemes
such as [16] in both PSNR and MS-SSIM metrics, as shown
in Fig. 1.

II. RELATED WORK

Context Models. Most learning-based image compression
methods are based on the autoencoder architecture to extract
the compact and efficient latent representation of the input
image [23]. An autoregressive model is usually used to predict
latents from their causal context. In [14], [15], a hyperprior
network is introduced to learn some side information to correct
the context-based predictions. The data from the context
model and the hyper network are then combined to learn the
probability distributions of the quantized latents, and guide
the entropy coding. In [14], [15], simple Gaussian models
are used. In [5], [16], Gaussian Mixture Model (GMM) and
Gaussian-Laplacian-Logistic Mixture Models (GLLMM) are
proposed to achieve the SOTA performance.

However, serial context models are not friendly to parallel
processing during decoding. To address this issue, in [24],
a channel-wise autoregressive entropy model is proposed
to minimize the element-level serial processing in context
model. In [25], a spatial-channel contextual adaptive model
is proposed to boost the R-D performance without sacrificing
running speed. In [26], a checkerboard context model (CCM)
is proposed, which divides all data into two groups in a
checkerboard pattern to facilitate parallel processing. However,
the R-D performance is dropped by 0.2-0.3 dB on the Kodak
dataset.

Deformable Convolution. Dai et al. [19] were the first to
utilize deformable convolution in conjunction with learned
offset maps to enhance the modeling capability of neural
networks. Their method outperformed traditional convolution
networks in some challenging vision tasks such as object de-
tection and semantic segmentation. Subsequently, deformable
convolution was applied to other computer vision tasks, in-
cluding action recognition [27] and video super-resolution
[28], [29]. In [30], the deformable convolution with dynamic
kernels was utilized in video compression to more effec-
tively capture complex non-rigid motion patterns between
consecutive frames. This not only boosts motion compensation
performance but also reduces the workload for the subsequent
residual compression module.

Knowledge Distillation. Knowledge distillation was first
proposed in [31], where a lightweight student network is
trained to learn the softmax outputs of a trained and complex
teacher model. It has been applied in various fields [32]–[36].
The student model distills knowledge by utilizing gradient
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Fig. 2. The architecture of the proposed learned image compression scheme, which includes the core encoder/decoder networks ga and gs, and hyperprior
networks ha and hs. The entire network is used as the teacher network in Fig. 7 to train lower-complexity student network. Deformable Residual Modules
(DRM) are used in the core networks. 3×3 indicates the size of the convolution. N is the number of filters. /2 and ∗2 represent down/up-sampling operators.
Dotted-line shortcut connections indicate changed tensor sizes. AE and AD stand for arithmetic encoder and decoder. The entropy coding is divided into
two checkerboard groups. PEN1 and PEN2 are Parameter Estimation Networks for the two groups. hcm is the checkerboard context model network for the
second group. More details are in Fig. 3 and Fig. 6.

descent backpropagation of the distillation loss. In [37], the
Focal and Global Distillation (FGD) method is proposed to
guide the student detector and improves the performance of
object detection. In [38], [39], different knowledge distillation
methods are designed for image classification and achieve
good performance. In [40], the knowledge distillation is first
introduced to learned image compression. However, it only
focuses on visual performance at low bit rates using the Gen-
erative Adversarial Network (GAN). Its network architecture
does not include the hyper network, and the performance is
thus not very good. Moreover, the distillation process only
takes into account the prior knowledge associated with the
final output of the teacher network, while the intermediate
results of the teacher network are not utilized in distillation.

III. THE PROPOSED IMAGE COMPRESSION FRAMEWORK

In this section, we present the overall architecture of the
proposed method. We then introduce the details of the pro-
posed components, which include the improved checkerboard
context model, the three-pass knowledge distillation of the
decoder and entropy coding, and the corresponding training
procedure.

A. The Overall Architecture of the System

The proposed framework is illustrated in Fig. 2. The origin
image x has dimensions W ×H × 3, with W and H repre-
senting its width and height, respectively. The codec mainly
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Fig. 3. (a) The architecture of the PEN1 network in Fig. 2. (b) The architecture
of the PEN2 network in Fig. 2.
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Fig. 4. Illustration of 3× 3 deformable convolution.
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Fig. 5. (a) The serial autoregressive context model. Red cell: the symbol
to encode/decode. Orange and blue cells: causal neighbors. Orange cells are
examples with a 5 × 5 convolution window. (b) The checkerboard context
model with a 5 × 5 window. The first pass decodes all blue and orange
anchor cells. The second pass decodes all non-anchor cells.

includes the core encoder/decoder networks (ga and gs), the
hyper networks ( ha and hs), and the two-step checkerboard-
based entropy coding.

The core encoder network ga learns a compact latent
representations y of the input image. ga is based on that in
[16], which includes two simplified attention modules, three
residual blocks (shown in gray in Fig. 2), and four stages of
pooling operators. We also introduce the deformable residual
module (DRM) to the core networks.

To enable parallel entropy decoding of the quantized latents
ŷ, it is divided into two checkerboard subsets ŷ1 and ŷ2.
The probability distribution parameters for the two subsets are
estimated by two parameter estimation networks (PENs) via
a two-step approach. The details are described in Fig. 3 and
Sec. III-C.

Next, arithmetic coding compresses ŷ into the output bit-
stream. The decoded ŷ is then fed into the main decoder gs,
which is symmetric to the core encoder network ga, with
convolutions replaced by deconvolutions. Most convolution
layers employ the leaky ReLU, with the exception of the final
layer in the hyperprior encoder and decoder, which does not
use any activation function.

It has been shown in [8] that the complexity of the encoder
and decoder networks affects the performance differently. The
performance is less sensitive to reduction in the decoder
complexity. Similarly, in [41], the authors propose a learning-
based method to reduce decoding complexity in neural image
compression. It utilizes shallow or linear decoding transforms,
complemented by more powerful encoding techniques, aiming
to maintain comparable R-D performance while reducing the
complexity of the decoding process.

Motivated by the results in [8], [41], in this paper, we
develop a three-pass knowledge distillation scheme, which
allows us to train a student decoder and entropy coding with
lower complexity without sacrificing too much performance.
The details are described in Sec. III-D.

B. Deformable Residual Module (DRM)

The deformable convolution was first proposed in [19]
and has since been extensively utilized in various domains,
including learning-based video compression. The detailed ar-
chitecture of the deformable convolution is depicted in Fig.
4. Deformable convolution offers benefits by allowing flexible

modeling of receptive fields. This helps in extracting better
features and representing objects effectively in convolutional
neural networks. Consequently, it improves performance in
tasks that require precise spatial understanding and object de-
tection. This innovation has the potential to enhance convolu-
tional architectures in capturing complex spatial relationships,
making it a promising approach for different computer vision
applications.

As depicted in Fig. 4, the dimensions of the offset field align
with those of the input feature map, where 2N corresponds to
the channel numbers.

In this paper, we propose a deformable residual module
(DRM) and apply it to image compression, as depicted in
Fig. 2. In our DRM, we combine the deformable module with
the classical convolution, and add a shortcut connection. The
DRM is used when there are upsampling or downsampling,
denoted by dotted-line shortcut in Fig. 2. The DRM can be
utilized to reduce spatial redundancy in input image, thereby
enhancing image compression performance. In the ablation
experiment section, we will demonstrate the effectiveness
of this module. As in [19], the deformable module hardly
increases the model complexity compared to the classical
convolutions.

C. Improved Checkerboard Context Model and Coding

Previous learned image compression methods use serial
context-adaptive entropy model. Its decoding cannot be par-
allelized, as illustrated in Fig. 5(a). To solve this issue,
a checkerboard context model is proposed in [26], where
the latent representation y is divided into two subsets after
quantization, denoted as anchors ŷ1 and non-anchors ŷ2, as
shown in Fig. 5(b). The first pass is to encode and decode the
anchors. The second pass is to encode and decode the non-
anchors based on anchors. Compared to serial context model
used in [16], the decoding of [26] is about 2.5 − 2.7 times
faster.

However, the R-D performance of [26] is dropped by about
0.2-0.3 dB on the Kodak dataset compared to the serial context
model used in [16]. There are two reasons for the drop. First,
the anchor part is coded using only hyperprior, but without
using any context model. Second, a single network is used
to estimate the probability distribution parameters of the two
subsets.

In this paper, we propose two techniques to improve the
R-D performance of the checkerboard-based approach. First,
we use two different networks to estimate the probability
distribution parameters of the two subsets separately. Next,
since the anchor is coded without context model, it should
use more powerful probability distribution model to improve
the performance. In this paper, we use the more advanced
GLLMM model in [5] for the anchor part. The non-anchor
part still uses the GMM model, as in [26].

The improved checkerboard context model and decoding are
shown in Fig. 2 and Fig. 6. During encoding and training, we
first obtain the anchors ŷ1 and non-anchors ŷ2. In the first pass,
we only encode and train the anchors (blue cells in Fig.5(b)
and Fig. 6), which only depend on hyperprior and do not adopt
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Fig. 6. The details of the proposed two-step checkerboard-based entropy coding scheme.

any context model. The non-anchors ŷ2 (grey cells in Fig.5(b)
and Fig. 6) are coded using both checkerboard context and the
hyperprior.

During decoding, we decode the anchors ŷ1 and non-
anchors ŷ2 in turn, as shown in Fig. 6. ŷ1 and ŷ2 are initialized
to zero tensors, which have the same size as ŷ. We first
utilize the hyper decoder hs to obtain the output T1. T1

and a zero tensor T2 are first combined and sent to network
PEN1 to estimate the probability distribution parameters of the
anchors, denoted as θ1. Different from [26], we use the more
powerful GLLMM model in [5] to estimate the parameters of
the anchors, to improve the performance even when context
model is not used. However, the absence of context model
enables us to decode all anchors in parallel.

The decoded anchors are then used to update ŷ1, which
will pass though a single convolution layer with checkerboard
mask (as shown in Fig. 5(b)) to obtain context feature T3. T3

is then combined with T1 and sent to another network PEN2
to estimate the probability distribution parameters of the non-
anchors, denoted as θ2. The non-anchors can also be obtained
in parallel. Since PEN1 and PEN2 are trained separately, they
can achieve better performance than [26], which only uses
one network for both anchors and non-anchors. Since context
model is already used for non-anchors, the probability model
can be simpler. Therefore only GMM model is used for the
non-anchors, as in [26].

The details of the two parameter estimation networks PEN1
and PEN2 are shown in Fig. 3, where as in [5], [16], 15N and
4.5N are the number of parameters of GLLMM and GMM
models respectively.

Finally, we can combine ŷ1 and ŷ2 to obtain the decoded
ŷ.

D. Three-Pass Knowledge Distillation

In this section, we propose a three-pass knowledge distilla-
tion scheme, which allows us to retrain all components in the
encoder, decoder and the entropy coding, and then simplify
the complexity of the core decoder network gs in Fig. 2.

In the first pass, we train the entire networks in Fig. 2 using
the following traditional loss function:

LT = λ1D(x, x̂) +H(ŷ) +H(ẑ) + λ2L1(ŷ),

H(ŷ) = E[− log2(Pŷ|ẑ(ŷ|ẑ))],
H(ẑ) = E[− log2(Pẑ(ẑ))],

(1)

where D(x, x̂) represents the reconstruction error between the
original image x and the reconstructed image x̂. We employ
the Mean Squared Error (MSE) and MS-SSIM metrics for
evaluation in this paper. Additionally, H(ŷ) and H(ẑ) denote
the entropies associated with the core latent representation
and the hyper representation, respectively. L1 is L1 norm
regularization.

Our goal is to reduce the complexity of the core decoder
network gs, motivated by the results in [8], [41]. However,
our experimental results showed that it is not easy to get
good performance by reducing the complexity of gs directly.
Therefore in the second pass of our approach, we define a
student network, which includes everything in Fig. 2 except for
the encoder networks ga and ha, as shown in Fig. 7, where the
superscripts T and S denote teacher and student, respectively.
The initial network architectures of the student network are
identical to Fig. 2.

As in other knowledge distillation approaches, we initialize
the student network randomly. To pass the knowledge from
the teacher network to the student network, in [40], only the
prior knowledge related to the final reconstruction image is
transferred to the student network. In this paper, we go further
by also transferring the prior knowledge in the probability dis-
tribution parameters θ1 and θ2 of the entropy coding networks
to the student network. This helps to train all the decoder and
entropy coding components in the student network, including
hS
s , PEN1S , PEN2S , hS

cm, and gSs .
The teacher and student networks are then jointly retrained

using the following loss function, which includes a new
knowledge distillation cost.

LS = LT + λ3LKD,

LKD = d(x̂T , x̂S) + d(θT1 , θ
S
1 )) + d(θT2 , θ

S
2 ),

(2)
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Fig. 7. The knowledge distillation framework between the teacher and student networks. The superscripts S and T stand for Student and Teacher, respectively.
All components in the student networks are retrained. The architecture of the core decoder network gSs also has lower complexity than gTs in the teacher
network.

where LT is the loss function in Eq. 1. LKD is the knowledge
distillation cost, which includes the distortions between the
teacher and student networks in terms of the reconstructed
image, probability distribution parameters θ1 and θ2. This
ensures the prior knowledge is transferred from the teacher
network to the student network.

In [31], [40], softmax is used. In this paper, we find that
MSE gives better results, as will be shown in the ablation
experiments in Sec. IV.

The results of the second pass allow us to reduce the
complexity of the core decoder network gSs in the third pass.
Starting from the core decoder network in Fig. 2, we reduce
its complexity by different approaches, for example, reducing
the number of filters N , or removing some modules that
have higher complexity but do not contribute too much to
the performance, such as the attention modules and residual
modules.

To optimize the low-complexity student core decoder net-
work gSs , we jointly train the encoder, the simplified student
decoder network, and entropy coding again using the joint loss
function in Eq. 2.

Note that in both the second and third passes, the encoder
is also jointly retrained to ensure the best match with the
corresponding decoder.

Experimental results will be presented in Sec. IV to show
the performances of various low-complexity core decoder
networks.

E. Training Method

Training images are sourced from both the CLIC dataset
[44] and the LIU4K dataset [45]. These images are uniformly
rescaled to a resolution of 2000 × 2000. Through the ap-
plication of data augmentation techniques, including rotation
and scaling, we obtain a set of 81,650 training images at a
resolution of 384× 384.

We optimize our proposed models using two distor-
tion measures: the mean squared error (MSE) and the
multi-scale structural similarity (MS-SSIM). For MSE-
based optimization, we select λ1 values from the set
{0.0016, 0.0032, 0.0075, 0.015, 0.03, 0.045, 0.06}. Each se-
lected λ1 leads to the training of an independent model
optimized for a specific bit rate. The number of filters N for
the latent representation is configured as 128 for the first three
λ1 values and 256 for the remaining four. For MS-SSIM, λ
is assigned the values 12, 40, 80, and 120 sequentially. For
λ values of 40 and 80, N is 128, and it increases to 256 for
λ values of 80 and 120. Each model undergoes 1.5 × 106

training iterations using the Adam optimization algorithm and
a batch size of 8. The initial learning rate is set to 1 × 10−4

for the first 750,000 iterations and subsequently halved after
every 100,000 iterations.

The hyperparameters λ2 and λ3 are initially set to 0.0001
and 1, respectively. The λ2 is nullified after the initial 10,000
iterations, and λ3 is nullified after the first 20,000 iterations.
That is, the knowledge distillation is used at the beginning to
pass the prior knowledge to the student network. After that,
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Fig. 8. The R-D curves of different methods in both PSNR and MS-SSIM on the Kodak dataset [42].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bits/pixel (bpp)

32

34

36

38

40

42

44

P
S

N
R

 (
dB

)

Our Cfg. 1 [MSE]
GLLMM2023 [MSE]
VVC-Intra (4:4:4)
Hu2021 [MSE]
Lee2019 [MSE]
BPG (4:4:4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bits/pixel (bpp)

12

14

16

18

20

22

24

26

M
S

-S
S

IM
 (

dB
)

Our Cfg. 1 [MS-SSIM]
GLLMM2023 [MS-SSIM]
Ours [MSE]
Lee2019 [MS-SSIM]
VVC-Intra (4:4:4)
BPG (4:4:4)

Fig. 9. The R-D curves of different methods in both PSNR and MS-SSIM on the Tecnick-40 dataset [43].

there is no need to have the LKD term in Eq. 2 to reduce the
training complexity.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed method with
SOTA learning-based image compression methods as well as
traditional methods, using Peak Signal-to-Noise Ratio (PSNR)
and MS-SSIM as performance metrics. The evaluation is
mainly conducted on two datasets: the Kodak PhotoCD dataset
[42], which contains 24 test images with a resolution of
768 × 512, and the Tecnick-40 dataset [43], comprising 40
test images with a 1200 × 1200 resolution. We compare
our method with learning-based methods such as GLLMM
[5], He2021 [26], Hu2020 [46], Cheng2020 [47], Lee2019

[48], Qian2022 [49], Zhu2022 [12], Zou2022 [50], Wang2023
[21], and Liu2023 [22]. We also compare traditional methods
including the latest VVC-Intra (4:4:4) [4], BPG-Intra (4:4:4),
JPEG2000, and JPEG.

We present our results with four optimized decoder config-
urations. Cfg. 1 has the teacher decoder architecture as in Fig.
2. Based on Cfg. 1, three low-complexity student networks
are trained: Cfg. 2 only removes the attention and residual
modules, Cfg. 3 only reduces all N by 25%, and Cfg. 4 only
reduces all N by 50%.

Note that for fair comparison, we implement the method
in Cheng2020 [47] and increase its number of filters N from
192 to 256 at high rates, which leads to better performance
than the original results in [47]. The results of He2021 [26]
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(a) Original (b) JPEG (0.156/21.28/0.651) (c) JPEG2000(0.116/29.22/0.904)

(d) BPG(0.106/30.02/0.916 (e) VVC(0.103/30.90/0.929) (f) Ours(0.101/31.05/0.932)

Fig. 10. Visual examples of different image compression methods. Our method is optimized for PSNR. The numbers reported are bit rate (BPP), PSNR (dB),
and MS-SSIM.
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are based on the source code at [51].

A. R-D Performances

Fig. 8 illustrates the average R-D curves for different
methods evaluated on the Kodak dataset. For PSNR-optimized
methods, GLLMM (MSE) [5] obtains the best performance
among the competing methods, which also outperforms VVC
(4:4:4). Our Cfg. 1 obtains almost the same coding perfor-
mance as GLLMM at low bit rates and has better performance
at high bit rates. Cfg. 1 achieves the same performance with
VVC (4:4:4) at low bit rates. When the bit rate is higher
than 0.4 bpp, Cfg. 1 has a gain of 0.25-0.3 dB over VVC
(4:4:4). For MS-SSIM, our method is also slightly higher than
GLLMM. A visual example is given in Fig. 10.

Fig. 9 presents the results on the Tecnick-40 dataset. Our
Cfg. 1 achieves the same performance as GLLMM at bit rates
below 0.2 bpp and is sightly better than GLLMM [5] at rates
higher than 0.2 bpp. Additionally, Cfg. 1 outperforms other
learned image compression methods and all traditional image
codecs.

B. Complexity and Performance Trade-offs

Table I presents a comparative analysis of average encod-
ing/decoding times, BD-Rate savings over VVC [53], and
model sizes at low and high bit rates across different methods.
Since GLLMM [5], VVC, Hu2020 [46], and Cheng2020 [16]
suffer from a non-determinism issue on GPU and only run on
CPU [54], we evaluate different methods on the same CPU
(2.9GHz Intel Xeon Gold 6226R CPU). We use Python’s Time
library functions to measure encoding and decoding times.

Compared to the state-of-the-art GLLMM [5], our Cfg. 1
has improved encoding speed by approximately 20 times and
decoding speed by 70-90 times. Our model even achieves
better R-D performance and has a smaller size than GLLMM.

We can conclude from Fig. 8, Fig. 9, and Table I that
the proposed scheme outperforms GLLMM in both R-D
performance and complexity.

Compared to Cheng2020 [16], our Cfg. 1 encoding time
is similar, but decoder is about 4-5 times faster. Our R-D
performance is 6.85% and 11.20% better. Our speed is similar
to [26], but our R-D performance is about 15% better.

Our Cfg. 2 and Cfg. 3 can further reduce the decoder
complexity by 20− 30%, with 2.6− 4.0% loss in R-D perfor-
mance compared to Cfg. 1, but still have better performance
than other learning-based methods and VVC (4:4:4). Cfg. 4 is
faster but has 18.3% drop in R-D performance. Therefore our
method can offer various trade-offs between complexity and
R-D performance.

To further evaluate the performance of our method, we
compare our Cfg. 1 with some recent methods on the Kodak
dataset and the same GPU (NVIDIA Tesla V100 with 16 GB
memory). These methods include Zhu2022 [12], Qian2022
[49], Zou2022 [50], Wang2023 [21], and Liu2023 [22]. These
methods do not use the causal entropy model, thus allowing
for parallel acceleration on the GPU. We use Python’s Time
library functions to measure encoding and decoding times.

We also evaluate the model parameters and computational
complexity using the PyTorch Flops Profiler tool 1.

As shown in Table II, our method is better than Zhu2022,
Qian2022, and Zou2022 in both complexity and R-D per-
formance. Wang2023 has the lowest complexity, but BD-rate
saving is 3.3% worse than ours. Liu2023 has 2.24% more
BD-rate saving, but model size is 3.2 times of ours. Our
method achieves a trade-off between Wang2023 and Liu2023
in complexity and performance.

C. Ablation Experiments
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Fig. 11. The contributions of the improved checkerboard context model and
the knowledge distillation for Kodak dataset.

In this part, we present various ablation experiments.
1) Contributions of the Proposed Modules: We first show

the contributions of the improved checkerboard context model,
the knowledge distillation, L1 regularization, and DRM in
Fig. 11 for the Kodak dataset. We replace the GMM model
in [16] with the checkerboard entropy model [26], and other
components remain unaltered. The revised scheme is adopted
as the baseline. On top of the baseline, we sequentially add
different modules.

We first replace the checkerboard entropy model [26] in
the baseline by the proposed checkerboard entropy model
[26], denoted as Baseline+CM, which improves the cod-
ing performance by about 0.2-0.3 dB at the same bit rate.
Next, we add the knowledge distillation to Baseline+CM,
denoted as Baseline+CM+KD. Compared to Baseline+CM,
Baseline+CM+KD improves the coding performance by about
0.1-0.15 dB at the same bit rate. Then, we add the L1 regular-
ization to the loss function, denoted as Baseline+CM+KD+L1.
It can be observed that introducing L1 regularization does
not reduce the encoding performance. It just makes the
latent representations more sparse. Last, we add the DRM
to Baseline+CM+KD+L1, which is our proposed method.
Compared to Baseline+CM+KD+L1, the proposed full method
will improve the performance by another 0.1-0.15 dB.

1https://www.deepspeed.ai/tutorials/flops-profiler
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TABLE I
COMPARISONS OF ENCODING AND DECODING TIME, BD-RATE SAVING OVER VVC, AND MODEL SIZES ON CPU.

Dataset Method Encoding time Decoding time BD-Rate Model size(Low) Model size(High)

Kodak

VVC 402.27s 0.607s 0.0 7.2 MB 7.2MB
Lee2019 [48] 10.721s 37.88s 17.0% 123.8 MB 292.6MB
Hu2021 [52] 35.7187s 77.3326s 11.1 % 84.6 MB 290.9MB

Cheng2020 [16] 26.37s 28.46s 2.6 % 50.8 MB 175.18MB
He2021 [26] 24.36s 5.21s 8.9 % 46.6 MB 156.6 MB
GLLMM [5] 467.90s 467.90s -3.13% 77.08 MB 241.03MB
Our Cfg. 1 25.08 s 4.45s -4.25% 63.06 MB 197.8MB
Our Cfg. 2 24.02 s 3.03s -1.89% 54.26 MB 166.9MB
Our Cfg. 3 22.56 s 2.78s -0.19% 54.66 MB 164.1MB
Our Cfg. 4 18.24 s 2.45s 14.23% 47.6 MB 134.1MB

Tecnick

VVC 700.59s 1.49s 0.0 7.2 MB 7.2MB
Lee2019 [48] 54.8s 138.81s 31.59 % 123.8 MB 292.6MB
Hu2021 [52] 84.035s 271.50s 23.06 % 84.6 MB 290.9MB

Cheng2020 [16] 59.48s 71.71s 5.93 % 50.8MB 175.18MB
He2021 [26] 56.26s 12.45s 12.21 % 46.6 MB 156.6 MB
GLLMM [5] 1233.05s 1245.05s -5.14% 77.08 MB 241.03MB
Our Cfg. 1 57.63s 11.65s -5.27% 63.06 MB 197.8 MB
Our Cfg. 2 50.47s 7.65s -2.38% 54.26 MB 166.9 MB
Our Cfg. 3 46.56s 5.23s -1.20% 54.66 MB 164.1 MB
Our Cfg. 4 38.67s 4.78 s 15.78% 47.6 MB 134.1 MB

TABLE II
COMPARISON OF ENCODING AND DECODING TIMES, BD-RATE, AND

PARAMETERS FOR KODAK DATASET ON GPU.

Methods Enc. Time Dec. Time BD-rate # Param.
Zhu2022 [12] 0.269s 0.183s -3.88% 32.34 MB
Qian2022 [49] 4.78s 4.78s 3.15% 128.86 MB
Zou2022 [50] 0.163s 0.184s -2.22% 99.86 MB

Wang2023 [21] 0.065s 0.045s -0.95% 9.86 MB
Liu2023 [22] 0.182s 0.212s -6.49% 45.18 MB

Ours 0.154s 0.188s -4.25% 14.60 MB
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Fig. 12. R-D performances of different configurations of the proposed method
for Kodak dataset.

2) Comparison of Four Configurations: Fig. 12 shows the
detailed R-D curves of the four configurations of our method
for the Kodak dataset. Together with Table I, it can be observed
that the R-D performances of Cfg. 2 and Cfg. 3 are only
slightly lower than Cfg. 1, and the model size is reduced by
about 15%. The PSNR of Cfg. 4 is more than 1 dB lower than
Cfg. 1 at high rates, which shows that at high rates, the network
needs more filters to ensure good performance. These results
suggest that we can combine different knowledge distillation

methods. For example, at low bit rates, we can reduce the
number filters. At high bit rates, we can remove the attention
models and residual blocks.

3) Comparison of Different Loss functions: We introduce
the L1 regularization to make the latent representation more
sparse. Our method leads to a higher frequency of zeros
and increases the probability of skipping all-zero channels.
Table III compares the number of all-zero channels, total
channels, decoding times (both with and without skipping all-
zero channels), and the decoding time reduction rate achieved
by skipping all-zero channels. Notably, our approach results
in a 48-59% reduction in decoding time.

An illustrative example from the Kodak dataset is shown
in Fig. 13. It can be observed that the introduction of the L1
regularization into the loss function results in a sparser latent
representation.

Table IV compares the performance when the Softmax and
MSE are used in the knowledge distillation loss function LKD,
which shows that MSE has better performance.

4) Comparison of Different Modules: We conducted some
experiments to compare our DRM with other techniques,
including transformers [55], swin transformers [56], non-local
attention modules [16], and the traditional convolution, all at
the same bit rate on the Kodak dataset. We ensured that all
configuration parameters were identical during training. The
results are shown in Fig. 14 and Table V for Kodak dataset.

As shown in Fig. 14, our proposed DRM achieves better
performance than the other modules. The Swin Transformer
[56] and the non-local attention module [16] are about 0.1 dB
lower than our method. Transformer is about 0.3 dB lower
than ours.

Table V shows that compared to the traditional convolution,
the DRM only increases the number of parameters by 1.4%.
Our number of parameters is also lower than transformer and
attention methods.

5) Further Comparisons on Other Datasets: We also con-
duct additional experiments to compare our method with the
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TABLE III
DECODING TIME OF OUR METHOD WITH AND WITHOUT SKIPPING ALL-ZERO CHANNELS FOR KODAK DATASET.

Name Bit rates All-Zero Channels Total Channels Dec. Time (Ours) Dec. Time (Full) Dec. Reduction
Kodak Low 76 128 4.35 s 6.45s 48.27%
Kodak High 124 256 64.43 s 100.22 s 55.54%
Tecnick Low 78 128 11.65 s 17.44 s 49.37 %
Tecnick High 123 256 203.49 s 324.58 s 59.50%

(a) (b) (c)

Fig. 13. (a) An original image in the Kodak dataset. (b) The average latent representations with L1 regularization in our method. (c) The average latent
representations without L1 regularization in our method.

TABLE IV
COMPARISON OF USING DIFFERENT KNOWLEDGE DISTILLATION LOSSES

IN OUR METHOD FOR KODAK DATASET.

Module Bit rate PSNR (dB) MS-SSIM (dB)
Softmax 0.1643 29.67 12.60

MSE 0.1628 29.76 12.62
Softmax 0.8046 37.05 19.58

MSE 0.8028 37.23 19.68

0.2 0.3 0.4 0.5 0.6 0.7 0.8

bits/pixel (bpp)

30

31

32

33

34

35

36

37

P
S

N
R

 (
dB

)

Ours+DRM [MSE]
Ours+SwinTransformer [MSE]
Ours+Attention [MSE]
Ours+Transformer [MSE]

Fig. 14. R-D performances of different advanced modules on Kodak dataset.

two recent methods in Wang2023 [21] and Liu2023 [22] using
the Kodak, CLIC [57], and COCO [58] datasets. The CLIC
2021 test set [59] includes 60 images with resolutions ranging
from 751 × 500 to 2048 × 2048. We randomly selected 30
test images from the COCO 2018 test set, with resolutions

TABLE V
COMPARISON OF DIFFERENT MODULES ON ENCODING TIME, DECODING

TIME, AND PARAMETERS FOR KODAK DATASET.

Scheme Enc. Time Dec. Time # Paras
Ours+Attention 0.165s 0.145s 16.43 MB

Ours+Transformer 0.163s 0.184s 16.80 MB
Ours+Swin Transformer 0.182s 0.212s 16.18 MB

Ours+Convolution 0.132s 0.169s 14.41 MB
Ours+DRM 0.154s 0.188s 14.60 MB

ranging from 320 × 240 to 624 × 640. We consider VVC
as our baseline when computing the BD-rate metric. These
tests were conducted on a NVIDIA Tesla V100 with 12 GB
of memory.

The test result are shown in Table VI. Compared to
Wang2023, our method has better R-D performance ( up
to 21% for COCO), but our model size is increased by
about 15%, and the #KMACs is about 5 times (mainly due
to the GLLMM module). Compared to Liu2023, our R-D
performance is 2% lower, but our model size is only about
1/3, with similar #KMACs. Therefore our method offers a
trade-off between these two methods.

V. CONCLUSIONS

In this paper, we propose four techniques to improve the
R-D performance of learned image compression and reduces
its complexity, based on deformable residual module (DRM),
improved checkerboard context model, knowledge distillation,
and L1 regularization respectively. We introduce the DRM to
further reduce the spatial redundancy of latent representations
and improve the coding performance. In the checkerboard
context model, we use a two-step checkerboard entropy coding
to estimate the probability distribution parameters of the two
subsets. We only employ the GLLMM model for the first
subset, which does not use context model. The second subset
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TABLE VI
COMPARISONS OF ENCODING AND DECODING TIME, BD-RATE SAVING OVER VVC, AND MODEL SIZES.

Dataset Method Encoding time Decoding time BD-Rate #Paras #KMACs

Kodak
Wang2023 [21] 0.065s 0.045s -0.95% 12.78 MB 41.67GMACs
Liu2023 [22] 0.182s 0.212s -6.49% 45.18 MB 215.32 GMACs

Ours 0.154s 0.188s -4.25 % 14.60 MB 210.53GMACs

CLIC2021
Wang2023 [21] 0.089s 0.084s 10.86% 12.78 MB 235.6GMACs
Liu2023 [22] 0.787s 0.884s -7.634% 45.18 MB 1.15TMACs

Ours 0.756s 0.867s -5.628 % 14.60 MB 1.12TMACs

COCO2018
Wang2023 [21] 0.048s 0.031s 21.61% 12.78 MB 34.73 GMACs
Liu2023 [22] 0.185s 0.204s -3.27% 45.18 MB 179.43 GMACs

Ours 0.135s 0.168s -1.03 % 14.60 MB 210.53GMACs

only uses the simpler GMM, but uses the first subset for
context model. We develop a three-pass knowledge distillation
scheme to retrain the encoder, decoder, and entropy coding,
and also reduce the complexity of the core decoder network.
We introduce L1 regularization to make the latent represen-
tation more sparse, and only encode and decode non-zero
channels, which greatly reduces the encoding and decoding
time without sacrificing coding performance.

Extensive experimental results demonstrate that our pro-
posed method achieves better R-D performance than a SOTA
method in GLLMM [5], and is 70-90 times faster. It also
offers an attractive trade-off between two other SOTA methods
in Wang2023 [21] and Liu2023 [22]. Our method also has
better performance than traditional image codecs including the
H.266/VVC in terms of both PSNR and MS-SSIM metrics.

The checkerboard context model and knowledge distillation
proposed in this paper can be further optimized in the future.
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