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Abstract—Lower-upper decomposition (LUD) is one of the
most popular matrix factorization techniques in linear algebra
and has been widely used in many scientific and engineering
applications. While prior studies have investigated various strate-
gies to accelerate block LUD on FPGAs for arbitrary input
sizes, they often suffer from one or more of the following
limitations: 1) excessive resource utilization due to separate
PE (processing element) designs for different matrix blocks
with diverse computation patterns; 2) excessive on-chip memory
usage due to buffer-based designs; and 3) insufficient parallelism
as only one-level parallelism (either row-level or iteration-level
parallelism) was exploited due to complex dependencies.

To address those limitations, we propose FLUD, a streaming-
based systolic array design on the FPGA to accelerate block LUD,
which shares the systolic array to accelerate different matrix
blocks and exploits both column-level parallelism and iteration-
level parallelism. First, FLUD implements a configurable systolic
array that is shared by different LUD blocks and scalable to
arbitrary input sizes. To further optimize its hardware resource
efficiency, FLUD groups a column of PEs together to replace
their FIFO connections with lightweight registers and reduce
multiple copies of local control logic inside each PE (for the
purpose of resource sharing among different LUD blocks) into a
global one. Moreover, FLUD devises a computation schedule to
effectively share the highly-optimized systolic array design among
the execution of different LUD blocks. Lastly, to enable fast
design space exploration on a given FPGA platform, we develop
an automation tool to automatically generate the optimized
FLUD design in Vitis high-level synthesis (HLS), where users
can configure the design size and data precision based on their
needs. Experimental results demonstrate that FLUD achieves a
peak throughput of 427.95 GFLOPS for single-precision floating-
point LUD, which is about 3x faster than state-of-the-art FPGA
design. Compared to the LAPACK library running on a 12-core
Xeon Silver 4214 CPU, FLUD achieves 4.71x higher throughput
and 10.25x better throughput/watt.

I. INTRODUCTION

LUD algorithm is one of the fundamental matrix factoriza-
tion techniques in linear algebra, which is widely used in many
scientific and engineering computations [1], [2], [3], [4], [5],
[6] . It factors a matrix A as the product of a lower triangular
matrix L and an upper triangular matrix U (A = LU ):
elements on the diagonal line are ones in L and zeros in U .
Basically, LUD is a matrix form of Gaussian elimination to
solve various dense linear systems of equations, which has
complex data dependencies [7]. As shown in Figure 1a, the
calculation of an element L(i1, j1) is dependent on a row of
elements to its left and a column of elements to its top (above
the diagonal line in U ). Similarly, the calculation of an element
U(i2, j2) is dependent on a row of elements to its left (left of
the diagonal line in L) and a column of elements to its top.

In the context of large matrices, block LUD [8] was
proposed to enhance the data locality: It iteratively performs
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Fig. 1: Data dependency illustration of LUD

panel factorization and trailing submatrix updates, where panel
factorization results are used to update the trailing submatrix.
As shown in Figure 1c and 2, block LUD introduces complex
data dependencies both inter-block and intra-block. A detailed
analysis of these dependencies is provided in Section II-B.

Recent studies [9], [10], [11], [12], [13], [14] have made
great progress in accelerating block LUD on FPGAs. However,
they still have one or more of the following limitations:
1. Excessive Computing Resource Utilization: In block

LUD, as detailed in Section II-B, different types of blocks
(i.e., corner, lower perimeter, upper perimeter, and trailing
blocks) have diverse computation patterns, which require
specific optimizations. A straightforward solution is to
utilize different sets of processing elements (PEs) to process
various types of blocks, as demonstrated in [10], [14]. How-
ever, this approach leads to high resources consumption and
thus limits the scalability of the design.

2. Excessive On-chip Memory Consumption: Many of the
existing LUD accelerator designs, such as [10], [14], [11],
manage the inter-block dependency by buffering prior de-
pendent blocks on-chip. Additionally, to mitigate memory
access latency, ping-pong buffering is frequently used. Such
excessive usage of on-chip memory often constrains the
scalability of these designs.

3. Insufficient Parallelism: Most previous studies only ex-
plore one-level parallelism due to the complex intra-block
dependencies. Buffer-based designs [10], [14], [11] often
explore row-level or column-level parallelism within the



corner, lower perimeter, and upper perimeter blocks. On
the other hand, the streaming-based design in [9] explores
iteration-level parallelism, where multiple PEs process dif-
ferent iterations of a single block concurrently in a dataflow
fashion. The scalability of these designs is limited, as the
block size must exceed the number of PEs, and conse-
quently, more on-chip memory is required.
To tackle the above challenges, we propose FLUD, a

streaming-based systolic array accelerator for block LUD on
FPGAs, which shares the same set of PEs among different
LUD blocks and exploits both column-level and iteration-level
parallelism. FLUD presents the following novel features:
1. Scalable Systolic Array Design with Resource Shar-

ing and Two-level Parallelism: FLUD designs a highly-
optimized streaming-based systolic array architecture that
can scale to arbitrary input matrix sizes. It exploits par-
allelism across both the column level and iteration level,
and enables resource sharing across various computation
patterns of LUD blocks. This approach significantly reduces
the resource consumption and improves its scalability.

2. PE Grouping Optimization for Systolic Array: FLUD
groups PEs within the same column together to further
improve resource efficiency. With such PE grouping, FIFO
connections between one column of PEs are replaced with
lightweight registers, and local control logic in each PE (for
resource sharing) is replaced with a global one.

3. Optimized Computation Schedule: FLUD devises an
optimized computation schedule to manage the complex
data dependencies to realize two-level parallelism for var-
ious LUD blocks and their resource sharing. All blocks
are transferred in a unique streaming manner column-by-
column. PEs within the same column process column-level
parallelism, while various columns of PEs explore iteration-
level parallelism. This approach guarantees memory access
efficiency and provides notable throughput improvement.

4. Design Automation Support: Given any FPGA platform,
FLUD can automatically explore the design space and
generate the optimized accelerator in Vitis HLS, which is
guided by our throughput modeling in Section III-D. It
also allows users to configure the number of PEs and data
precision (e.g., half, single, and double-precision).
We evaluated the on-board performance of FLUD on the

AMD-Xilinx Alveo U280 FPGA, running at 255 MHz for
single-precision floating-point design. FLUD can reach a
throughput of 427.95 GFLOPS and an energy efficiency of
10.97 GFLOPS/W, which is about 3x faster over state-of-the-
art FPGA design [14]. Compared to LAPACK library [15]
running on a 12-core Xeon Silver 4214 CPU, FLUD can reach
4.71x speedup and 10.25x improvement in energy efficiency.

II. BACKGROUND AND RELATED WORK

A. LU Decomposition (LUD) Algorithm

The computation of LUD can be described as A = LU .
As shown in Figure 1a, in the original LUD algorithm, the
calculation of an element L(i1, j1) is dependent on a row of

elements to its left and a column of elements to its top (above
the diagonal line in U ). Similarly, the calculation of an element
U(i2, j2) is dependent on a row of elements to its left (left
of the diagonal line in L) and a column of elements to its
top. The computation needs to start from the top-left to the
bottom-right, and the complex data dependencies hinder the
effective parallelization of LUD.

Alg. 1 Iterative non-pivoting LU decomposition
1: for (k = 0; k < N ; k++) do ▷ Iterative computation on N×N matrix
2: for (i = k + 1; i < N ; i++) do ▷ Dependent on A[k][k]
3: A[i][k] ← A[i][k] / A[k][k]

4: for (i = k + 1; i < N ; i++) do ▷ Dependent on A[i][k]
5: for (j = k + 1; j < N ; j ++) do ▷ and A[k][j]
6: A[i][j]← A[i][j] − A[i][k] ∗ A[k][j]

To expose more parallelism, Dongarra et al. [7] first in-
troduced an iterative non-pivoting LUD algorithm as shown
in Figure 1b and Algorithm 1. In the k-th iteration, it first
calculates the elements on column k, which only depends
on A[k][k] (lines 2-3 in Algorithm 1). Then, it computes
the trailing matrix, which only depends on row k (updated
in (k − 1)-th iteration) and column k (lines 4-6); that is,
the computation of A[i][j] is only dependent on A[i][k] and
A[k][j]. This simplifies the data dependency in each iteration:
the computation for all elements in the same column (and the
same row in the trailing matrix) can be processed in parallel.

Both non-iterative and iterative LUD algorithms encounter
data locality challenges when processing large matrix sizes.

B. Block LUD: Diverse Computations and Dependencies

For large matrices, block LUD was proposed to improve the
data locality [8], [17], [18]. As shown in Figure 1c, at each
iteration of block LUD, the current (trailing) matrix is first
split into four types of blocks, which are the corner block (C),
upper perimeter blocks (U ), lower perimeter blocks (L), and
trailing blocks (T ). In each iteration, C block is first processed,
and then its results are used to compute U and L blocks. After
that, it utilizes blocks U and L to update T blocks. Block LUD
algorithm iteratively repeats those operations on the trailing-
matrix until it reaches the bottom-right corner.
1. The computation of C block is the same as the iterative

LUD shown in Figure 1b and Algorithm 1.
2. In L and U blocks, the computation is executed in a

column-by-column and row-by-row manner, respectively.
3. T blocks are updated via matrix multiplication operations.

While block LUD improves the data locality, it introduces
additional data dependencies. Figure 1c demonstrates the inter-
block dependency, both blocks Uk′j′ and Li′k′ are dependent
on block Ck′k′ . Block Ti′j′ is dependent on Li′k′ and Uk′j′ .
Figure 2 illustrates more details of inter-block and intra-block
dependencies for L, U, and T type blocks; the intra-block
dependencies for C type block are shown in Figure 1b.
The lower perimeter block L is processed in a column-
by-column manner, which exposes column-level parallelism.
For jth column L[:][j], it depends on the results of previous
columns L[:][0 : j − 1] and the same column of the corner
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TABLE I: Comparison of FLUD with recent LUD accelerators on FPGA, assuming a block size of B ×B.

Design Year Arbitrary
Input Size PE Sharing On-chip Memory System Parallelism Level

Buffer-based Streaming-based Buffer Size Row/column level Iteration level
[10] 2012 ✓ ✓ >16B2 ✓
[14] 2023 ✓ ✓ N/A ✓
[11] 2023 ✓ ✓ ✓ 5B2 ✓
[9] 2012 ✓ ✓ ✓ 2#PE×B ✓

[16] 2021 ✓ N/A ✓ ✓
FLUD 2024 ✓ ✓ ✓ #PEG×B ✓ ✓

block C[0 : j][j] above the diagonal line. The computation of
each column can be demonstrated as:

L[:][j] =
L[:][j]− L[:][0 : j − 1]× C[0 : j − 1][j]

C[j][j]
(1)

The upper perimeter block U is processed row by row, which
exposes row-level parallelism. Each row U [i][:] depends on all
previous rows U [0 : i− 1][:] and one row in the corner block
C[i][0 : i− 1] to the left of the diagonal line:

U [i][:] = U [i][:]− C[i][0 : i− 1]× U [0 : i− 1][:] (2)
The trailing block T updates its data using corresponding
lower perimeter block L and upper perimeter block U , which
is basically matrix multiplication and exposes both column-
level and row-level parallelism:

T [:][:] = T [:][:]− L[:][:]× U [:][:] (3)
As analyzed above, these blocks in block LUD have diverse

computation patterns and complex data dependencies, which
creates challenges to design efficient hardware accelerators.

C. Prior LUD Accelerators on FPGA

Multiple prior studies have explored different acceleration
strategies of block LUD on FPGAs, yet each approach comes
with its own limitations as summarized in Table I. Generally,
the following considerations influence the performance of an
LUD accelerator design on the FPGA.
Separate PE v.s. Shared PE Design: To handle the di-
verse computation patterns, designs like [10], [14] implement
separate PEs for various types of blocks. This solution is
straightforward but consumes duplicate resources. [14] utilizes
specialized PEs for different types of blocks. The corner block
is first processed by LUD PEs and forwarded to upper PEs and
lower PEs to compute both perimeter blocks. Then the results
will be used by trailing PEs to update the trailing blocks. PEs
of the same type simultaneously process one row or column of
the block in each iteration; for the trailing blocks, both row-
level and column-level parallelism is exploited. This design

also supports scaling across multiple FPGAs through external
communication channels. Another design [10] includes a ma-
trix inverse unit to compute the inverse of the corner block.
By utilizing both the inverse and original corner blocks, the
computation of perimeter blocks and trailing blocks can be
simplified to a uniform operation, matrix multiplication.

The other approach is implementing shared PEs to process
different blocks. For example, in [11], [9], each PE equips a
multiply-accumulate (MAC) unit to compute for all blocks,
while a single divider is shared across all PEs. The shared PE
design is more resource efficient and can accommodate more
PEs on the same FPGA to achieve higher performance.
Buffer-based v.s. Streaming-based Design: To handle the
complex data dependencies between LUD blocks, designs like
[10], [14], [11] incorporate a buffer-based on-chip memory
system to buffer all dependent blocks with high on-chip mem-
ory consumption. For example, [10] buffers multiple upper
perimeters and lower perimeter blocks for the computation
of trailing matrix for better data reuse. Moreover, it applies
ping-pong buffering to hide the off-chip memory latency of
each single block. [11] buffers block C to compute perimeter
blocks, and buffers block U and block L to compute block T
in a ping-pong buffering scheme. Due to the limitation of one-
level parallelism, block size must exceed the number of PEs
processing one row or column in parallel, which consumes a
substantial amount of on-chip memory and impacts scalability.

In streaming-based designs, each PE operates in a data-
driven pattern. In [9], the output of each PE becomes the
input for the next PE. To facilitate iteration-level parallelism,
described below, each PE buffers at most one row and one
column of dependent block. [16] proposes a streaming-based
systolic array that supports only impractically small matrices
and does not adequately handle dependencies between PEs.
Parallelism Dimension: Row-level, Column-level, and
Iteration-level: Shared PE designs only explore one-level
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PEs is the time to process one row and one column.

parallelism, either row/column-level parallelism or iteration-
level parallelism. For example, in [11], all PEs process either
one row of block U or one column of block L in parallel. Note
[11] only provided HLS synthesis results and did not run on
the actual FPGA board. [9] organizes each PE to process one
iteration of a block. For example in block C shown in Figure
4, all PEs compute different iterations in a dataflow manner
and the trailing matrix for each PE keeps shrinking. Note the
current PE can only start when its prior PE finishes computing
one row and one column of data that the current PE depends
on, which creates a long inter-PE delay.

In existing separate PE designs like [10], [11], they only
explore row-level or column-level parallelism for the corner,
lower perimeter, and upper perimeter blocks. While for the
trailing block, which is basically matrix multiplication, both
row-level and column-level parallelism are explored. However,
none of them explored iteration-level parallelism.
Summary and Our Novelty: As summarized in Table I, all
prior FPGA studies for LUD acceleration suffer from one or
more of the limitations discussed above. To address these
limitations, we propose FLUD, a streaming-based systolic
array design that shares PEs to accelerate different LUD blocks
and exploits both column-level and iteration-level parallelism.

III. FLUD DESIGN AND IMPLEMENTATION

First, we analyze how to combine column-level and
iteration-level parallelism for different LUD blocks. Second,
we present our streaming-based systolic array design that
exploits both levels of parallelism and is shared by different
LUD blocks. In addition, we further optimize our systolic array
design with column-level PE grouping to improve resource
efficiency. After that, we devise the computation schedule for
resource sharing among different blocks. Finally, we develop
an automation tool, together with an analytical model, to
automatically generate the optimized design for a given FPGA
platform and user configurations.

A. Combination of Column- and Iteration-level Parallelism
Figure 3 presents how FLUD combines column-level and

iteration-level parallelism. Each cell in the figure presents one

element of a block in the current iteration. Each block is
transferred column by column. Different iterations of the same
block are distributed among various PE groups (PEGs), thus
implementing iteration-level parallelism. Inside each PEG,
various PEs exploit the column-level parallelism by processing
elements within the same column in parallel.
1. For the C and L blocks, each PEG buffers the results of

the first column and updates the remaining columns, then
forwards them to the next PEG to process the next iteration.

2. For the U blocks, data dependency exists across rows and
each iteration performs computation of the trailing matrix
dependent on one row. To realize column-level parallelism,
each PEG uses the first element of a column to update the
remaining elements in the same column.

3. For the T blocks, each PEG receives one T block along with
one row of dependent U blocks. Each iteration it computes
the intermediate results of matrix multiplication with the
buffered column of the L blocks.
In summary, all blocks can be accelerated using a com-

bination of column-level and iteration-level parallelism. Note
since each column is now processed in parallel, the inter-PEG
delay is only the time to process one cell. The underlying
architecture can be implemented by a streaming-based 2D
systolic array, which includes a grid of PEs.

B. FLUD Shared Systolic Array Design

1) Baseline 2D Systolic Array (Non-Grouped): Based on
the above analysis, we adopt a 2D systolic array architec-
ture to support the block LUD algorithm: where a column
of PEs support column-level parallelism and a row of PEs
support iteration-level parallelism. As shown in Figure 5a,
PEs are organized as a grid-like structure, and adjacent PEs
are connected through FIFOs. Each PE contains one MAC
unit (multiply-accumulate, adder can be used to implement
subtraction) and PEs on the diagonal line have one additional
divider; please refer the basic operations to Algorithm 1. All
PEs are data-driven and capable of operating independently,
each scheduled by their own finite state machine (FSM) to
work for different LUD blocks.

While this design can handle diverse computation patterns
with shared computing resources, the FIFO channels between
PEs and local FSMs per PE consumes substantial amount of
LUTs, which limits the total number of PEs that can be placed
on the FPGA and thus constraints the parallelism.

2) Grouped Systolic Array: To tackle the limitation of the
2D systolic array, FLUD groups PEs on the same column
into a PEG. As shown in Figure 5b, communication between
PEs inside a PEG is implemented by economical registers
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Fig. 5: Overview of FLUD architecture: comparison between baseline 2D systolic array and grouped systolic array design

instead. We further optimize the computation schedule so that
PEs within the same PEG share one FSM. In this way, we
reduce the resource cost of interconnects between PEs and
simplify the complexity of control logic. Alternative grouping
strategies, such as organizing PEs into a rectangle PEG, lead
to a more complicated resource sharing schedule.

When computing C and U blocks, only PEs on and below
the diagonal line are involved in the calculation. Rest PEs
merely forward the input to the output as shown in Figure 6a
and 6b, where input data is only fed from the left input ports.
As shown in Figure 6c and 6d, when it comes to L and T
blocks, all the PEs execute the same operations. Data is fed
from both the left and top input ports. Detailed computation
schedule is covered in Section III-C.

Overall, FLUD consists of B PEGs and each PEG contains
B PEs, where B2 is the size of a square LUD block. PEGs
process the iteration-level parallelism, while PEs within each
PEG perform column-level parallelism. As shown in Figure
5b, each PEG has three FIFO ports, one left input port, one
top input port, and one right output port. Both left and right
ports are coalesced with B elements and the top input port is
one element wide. For each block, the data transfer controller
streams in the input data from off-chip memory and forwards
data to the left input port of the first PEG. The corner and
upper perimeter blocks will be forwarded through the top input
port when computing the left perimeter and trailing blocks,
respectively. The output of the last PEG will be streamed out
to off-chip memory.

C. Computation Schedule for Resource Sharing

In this paper, we assume the memory layout of the input
matrix is column-major: we transfer each block column by
column and process multiple blocks row by row. FLUD can
also accommodate to a row-major matrix by transferring each
block row by row and processing blocks column by column.

In each round of block LUD, we first compute the corner
state and upper perimeter state for the first row of blocks,
then process the rest rows of blocks by repeating the lower
perimeter state and trailing state sequentially.

To optimize data locality, we process blocks row by row and
buffers the results of the first block of each row, where each
PEG buffers one column of the first block. In other words, the
results of blocks C and L will be buffered for the computation
of the rest blocks in the same row.

Assuming the original input matrix size is N ×N and the
block size is B × B, the matrix for the current round can be
divided into b × b blocks, with b initially set as b = N/B.
Block C and T are both square where they consist of 1 and
(b − 1) × (b − 1) blocks, respectively. The upper perimeter
consists of 1× (b−1) blocks and the lower perimeter consists
of (b− 1)× 1 blocks.

Figure 6 shows the computation of jth columns within one
row of blocks in PEGs at various locations where 0 < j < bB.
We denote the PEG number with p where 0 < p ≤ B.

1) Corner State: In the corner state, when processing jth

column in pth PEG, only elements below pth row will be
processed. As shown in Figure 3a and Figure 6a, jth column
first flows into PEGs where j > p, and each PEG updates part
of jth column by C[p+1 : B][j] = C[p+1 : B][j]−C[p+1 :
B][p] ∗ C[p][j]. When j = p, the pth PEG applies division to
elements below the diagonal line by multiplying the reciprocal,
where C[p+1 : B][j] = C[p+1 : B][j]/C[p][p]. Note only pth

PE contains a divider unit. Both results and reciprocal value
will be buffered in this PEG for the computation of subsequent
columns and lower perimeter, respectively. When j < p, those
PEGs simply forward input to output.

2) Upper Perimeter State: In the upper perimeter state,
when a column flows into pth PEG, elements below pth row
are updated using buffered value as shown in Figure 3b and
Figure 6b. The jth column, U [:][j], is processed in pth PEG:

U [p+ 1 : B][j] = U [p+ 1 : B][j]− U [p][j] ∗ C[p+ 1 : B][p] (4)

3) Lower Perimeter State: The operations of the lower
perimeter state are similar to that of the corner state but all
elements are updated when j ≥ p. Process on jth column of
a B ×B lower perimeter block, L[:][j], can be presented as:

L[:][j] =
L[:][j]−

∑j−1
p=1 L[:][p] ∗ C[p][j]

C[j][j]
(5)
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When j > p, each PEG will process one step of L[:][j] −∑j−1
p=1 L[:][p] ∗ C[p][j] as shown in Figure 3c and Figure 6c.

Each C[p][j] is drained from top_input port. When j = p,
the pth PEG processes division with the buffered reciprocal
value, C[j][j]. The results will be stored in registers for the
computation of trailing blocks on the same row. When j < p,
the rest PEs simply forward jth column.

4) Trailing State: After the lower perimeter state, blocks of
trailing matrix on the same row will be arranged. In this state,
(b − 1) blocks in the same row are fed to the systolic array
continuously along with corresponding values of the upper
perimeter block, which is drained from top_input:

T [:][j] = T [:][j]−
∑B

p=1 L[:][p] ∗ U [:][j] (6)
Each PEG processes one step of the above matrix multiplica-
tion operations as shown in Figure 3d and Figure 6d.

In the proposed data schedule, the initial delay between
PEGs is not decided by block size but only by the latency
of one MAC operation and division. Additionally, the matrix
size is dynamically configurable at run-time by passing it as
a parameter to the kernel, allowing for flexible adaptation.

D. Throughput Modeling and Analysis

Assuming the original input matrix size is N×N , the block
size and the number of PEs are both B × B, and the current
number of blocks is b× b where 1 ≤ b ≤ N

B . We first present
the latency of each row of blocks separately:

The first row of blocks consists of the corner state and the
upper perimeter state. The pth PEG first applies division to pth

column, then computes MAC operations on the rest columns.
Let LDIV be the latency of division, LMUL be the latency
of multiplication, and LMAC be the latency of MAC opera-
tion. The first PEG first computes the division by reciprocal
value on the first column, and applies MAC to the second
column, then forwards the results to subsequent PEG. Delay
between PEGs can be presented as (LDIV +LMUL+LMAC).
The last PEG starts its own MAC operation pipeline after
(LDIV + LMUL + LMAC)B cycles. Rest B(b − 1) columns
within the same row of blocks are computed continuously. The
total latency to finish the last PEG can be presented as:

Lrow1 = (LDIV + LMUL + LMAC)B +B(b− 1) (7)
For the rest of the rows, each consists of one lower perimeter
block and b−1 trailing blocks. As each PEG already buffered
the reciprocal value, the latency of each row can be similarly
presented as:

Lrestrow = (LMUL + LMAC)B +B(b− 1) (8)
The latency of each iteration can be presented as:

Liter = Lrow1 + (b− 1)Lrestrow (9)
And the overall latency is the sum of all iterations:

L =

N/B∑
iter=1

Liter (10)

The total number of LUD operations needs N3

3 multiplication
and N3

3 subtraction, which are approximately 2N3

3 operations
in total. Assuming the frequency is f , the throughput of the
proposed design can be expressed as:
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Fig. 7: FLUD performance across various data types, number of PEs, and input matrix sizes
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T = 2N3f/3L (11)

Based on Equations 7 to 11, when the matrix dimension N
is large enough, the throughput T (N) is proportional to B2,
which is also the total number of PEs:

lim
N→∞

T (N) = 2fB2 ∝ B2 (12)

E. Design Automation Tool

To enable fast design space exploration, we also develop
an automation tool, as shown in Figure 8, to generate the
highly-optimized FLUD accelerator on a given FPGA. The
input of our automation tool includes 1) the FPGA platform
information such as available resources, 2) user-specified con-
figuration such as the block size and data precision (default
is float). Based on these inputs and our FLUD PE and PEG
templates pre-designed in Vitis HLS and TAPA [19], our code
generator will automatically generate both the host code and
the FLUD design in TAPA, which will be finally built into the
FPGA bitstream. TAPA [19] is a programming framework that
provides coarse-grained floorplanning and pipelining optimiza-
tions that improve the timing closure for task-parallel HLS
designs on modern multi-die FPGAs. When a user omits the
block size, our tool will automatically choose the maximum
block size (i.e., the maximum number of PEs) that can fit on
the target FPGA, based on our performance models presented
in Section III-D and the resource estimation.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

FLUD is built for the AMD/Xilinx Alveo U280 datacenter
FPGA using Vitis and Vitis HLS 2021.2, together with the
TAPA framework [19] to improve its floorplanning. The host
code is written using XRT 2021.2 APIs, which runs on the In-
tel Xeon Sliver 4212 CPU with Ubuntu 18.04 OS. We measure

the on-board performance of FLUD on different precisions
(half, single, and double-precision floating-point) across a
range of matrix sizes (1024× 1024 to 16, 384× 16, 384).

The FPGA power consumption is measured using the ven-
dor xbutil tool and the resource utilization is extracted from
the post place and route report. Last, we also compare the
performance and power efficiency of FLUD with the widely
used LAPACK library [15] on the 12-core Xeon Sliver 4212
CPU with g++ -O2 optimization and 24 hyper-threads.

B. FLUD Performance
We evaluate the throughput of our designs with multiple

data precisions, including float, float16, and double,
as shown in Figure 7a to Figure 7c. In each sub-figure, on
the x-axis, we sweep the number of PEs from 8 × 8 to the
maximum number of PEs that can pass the timing on the Alveo
U280 FPGA. Each line shows the throughput under a different
matrix size from 1024× 1024 to 16, 384× 16, 384.

As shown in Figure 7a, FLUD can reach a peak throughput
of 427.95 GFLOPS with 32 × 32 PEs (32 PEGs) on float
data type. The throughput increases as the number of PEs
grows, as analyzed in Section III-D. When the input matrix
size increases, the throughput of FLUD also increases and
progressively approaches its upper limit, because the fixed
overhead in Equations 7 and 8 (LDIV , LMUL, and LMAC)
plays a less weight. In fact, with 32 PEGs, where each PEG
includes 31 PEs that perform on a MAC operation and 1
PE that performs a MAC and DIV operation, the theoretical
maximum throughput is 32×(31×2+3) = 2,080 FLOPs/cycle.
As HBM reaches its maximum bandwidth at 225 MHz in
our configurations (512-bit streaming width) [20] and FLUD
operates in a streaming way, the theoretical maximum through-
put is 2,080 FLOPs/cycle × 225 MHz = 468 GFLOPS. Our
design achieves more than 91% of the theoretical maximum
throughput; the small gap is due to the resource under-
utilization in C, L, and U blocks.

The throughput for float16 and double present a sim-
ilar trend to float. Due to the resource consumption differ-
ence, float16 can accommodate more PEs while double
allows for fewer PEs. float16 achieves a peak throughput
of 659.48 GFLOPS with 40×40 PEs, while double reaches
a peak throughput of 153.46 GFLOPS with 20× 20 PEs.

C. Accuracy of Our Performance Model
To evaluate the accuracy of our analytical performance

model in Section III-D, we compare the measured performance
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Fig. 9: FLUD performance model accuracy across various data types, number of PEs, and input matrix sizes

TABLE II: Performance and energy efficiency comparison
between FLUD, prior FPGA implementations, and CPU

Platform Peak GFLOPS GFLOPS / W Frequency
CPU: LAPACK 90.72 1.07 NA

FPGA: [14] 142.15 3.64 156 MHz
FPGA: [13] 158.27* NA NA

FLUD (float) 427.95 10.97 255 MHz

of each configuration against the predicted one. Figure 9a to 9c
presents the prediction error rates of our performance model
across various matrix sizes and numbers of PEs, under float,
float16, and double. For all configurations, the accuracy of our
performance model lies within 7%.

D. Comparison to Prior FPGA Accelerators

In Table II, we compare FLUD to two recent FPGA designs
that achieved the highest on-board performance for LUD.
The approach in [14] evaluates their design on a cluster of
four U280 FPGAs under the single-precision float, with a
projected performance of 142 GFLOPS on a single U280. Our
method achieves a significant speedup of 3x. The study in [13]
provides one OpenCL benchmark on LUD (without detailed
implementation details), evaluated on an Intel Arria 10 FPGA
with a matrix size of 8,192×8,192, achieving a throughput of
133.52 GFLOPS under float. Given that each DSP on Arria
10 can process one MAC operation, this performance can
be extrapolated to U280, projecting a potential throughput
of 158.27 GFLOPS. Our design is still 2.7x higher than the
projected result of [13].

E. Comparison to CPU Library

Table II also compares the performance and energy-
efficiency between FLUD and the widely used LAPACK [15]
library on the CPU. Compared to LAPACK, FLUD achieves
4.71x higher GFLOPS and 10.25x better GFLOPS/watt.

F. Resource Utilization Comparison

Table III compares resource utilization between grouped PE
design and non-grouped PE design (baseline 2D systolic array)
on float data type. All resource utilization is collected post
placement and routing except that the 32×32 non-grouped PE
design is collected after synthesis. We compare the resource
utilization from 8 × 8 PEs to 32 × 32 PEs on Alveo U280.
The grouped PE design can fit at most 32× 32 PEs while the
non-grouped PE design can only fit 18× 18 PEs.

On average, the grouped PE design can save 32.77% LUTs
and 27.49% FFs on the Alveo U280 FPGA compared to
the non-grouped PE design. Both grouped and non-grouped

TABLE III: Resource utilization comparison between grouped
design and non-grouped design (baseline 2D systolic array)

Design Type #PE LUT FF BRAM DSP

Non-Grouped
Design

8× 8 11.00% 6.00% 0.60% 3.10%
16× 16 31.72% 18.95% 0.60% 13.00%
18× 18 47.84% 30.77% 1.16% 14.61%
32× 32* 150.60% 100.90% 1.16% 60.30%

Grouped
Design

8× 8 7.30% 4.30% 0.60% 3.10%
16× 16 21.60% 13.90% 0.60% 13.00%
18× 18 27.70% 17.30% 4.10% 14.61%
32× 32 53.12% 37.92% 10.12% 60.30%

[14] 51% 49% 69%

designs consume the same amount of DSPs when the number
of PEs is identical, as they equip the same computation units.
Note when the number of PEs exceeds 16×16, the grouped PE
design will implement the register array inside each PE with
BRAMs to offload the usage of LUTs and FFs, consuming
more BRAMs than the non-grouped PE design.

Finally, compared to the prior design [14], our design
achieves better throughput while consuming fewer resources.
Specifically, our streaming-based systolic array design requires
significantly fewer BRAMs.

V. CONCLUSION

In this work, we have presented FLUD, a streaming-based
systolic array design on the FPGA to effectively accelerate
block LUD for arbitrary input sizes. FLUD exploits both
column-level parallelism and iteration-level parallelism in the
systolic array design and further shares the design to compute
different LUD blocks with an optimized computation schedule.
Moreover, FLUD groups a column of PEs together to replace
their costly FIFO connections with lightweight registers and
reduce multiple copies of local control logic inside each PE
into a global one. Lastly, we also develop an automation tool
to automatically generate the optimized FLUD design on a
given FPGA platform with user configurations. Experimental
results demonstrate that FLUD achieves a peak throughput of
427.95 GFLOPS for float, which is about 3x faster than state-
of-the-art FPGA design and 4.71x faster than the widely used
LAPACK library running on a 12-core Xeon Silver 4214 CPU.
In future work, we plan to open source the design of FLUD.
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