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Abstract. Recently learned image compression (LIC) has achieved great
progress and even outperformed the traditional approach using DCT or
discrete wavelet transform (DWT). However, LIC mainly reduces spatial
redundancy in the autoencoder networks and entropy coding, but has
not fully removed the frequency-domain correlation explicitly as in DCT
or DWT. To leverage the best of both worlds, we propose a surprisingly
simple but efficient WeConvene framework, which introduces the DWT
to both the convolution layers and entropy coding of CNN-based LIC.
First, in both the core and hyperprior autoencoder networks, we pro-
pose a Wavelet-domain Convolution (WeConv) module, which performs
convolution after DWT, and then converts the data back to spatial do-
main via inverse DWT. This module is used at selected layers in a CNN
network to reduce the frequency-domain correlation explicitly and make
the signal sparser in DWT domain. We also propose a Wavelet-domain
Channel-wise Auto-Regressive entropy Model (WeChARM), where the
output latent representations from the encoder network are first trans-
formed by the DWT, before applying quantization and entropy coding,
as in the traditional paradigm. Moreover, the entropy coding is split
into two steps. We first code all low-frequency DWT coefficients, and
then use them as prior to code high-frequency coefficients. The channel-
wise entropy coding is further used in each step. By combining WeConv
and WeChARM, the proposed WeConvene scheme achieves superior R-
D performance compared to other state-of-the-art LIC methods as well
as the latest H.266/VVC. For the Kodak dataset and the baseline net-
work with −0.4% BD-Rate saving over H.266/VVC, introducing We-
Conv with the simplest Haar transform improves the saving to −4.7%.
This is quite impressive given the simplicity of the Haar transform. En-
abling Haar-based WeChARM entropy coding further boosts the sav-
ing to −8.2%. When the Haar transform is replaced by the 5/3 or 9/7
wavelet, the overall saving becomes −9.4% and −9.8% respectively. The
standalone WeConv layer can also be used in many other computer vi-
sion tasks beyond image/video compression. The source code is available
at https://github.com/fengyurenpingsheng/WeConvene.

Keywords: Learned Image Compression · Wavelet Transform · Learn-
ing in Wavelet Domain · Wavelet-domain Convolution · Wavelet-domain
Entropy Coding
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1 Introduction

In the last few years, learned image compression (LIC) methods have quickly
outperformed the traditional approaches in both subjective and objective met-
rics. Linear transform such as the discrete cosine transform (DCT) and discrete
wavelet transform (DWT) is a key component in the traditional paradigm, fol-
lowed by quantization and entropy coding in the transform domain. In LIC, the
linear transform is replaced by deep learning-based neural networks, which can
be more powerful than linear transform in learning the compact latent represen-
tations of the images.

Earlier LIC designs were mainly based on convolutional neural networks
(CNN) [5, 13, 16, 17, 20, 23, 24, 30]. Recently the transformer network has been
introduced [28, 32, 38], which can achieve better rate-distortion (R-D) perfor-
mance, but transformer-based schemes are more difficult to train and have higher
requirements on the GPU. These neural networks are also used in the entropy
coding part to learn the distributions of the latent representations. As a result,
many LIC schemes can get better performance than the traditional approaches,
including intra coding in the latest H.266/VVC video coding standard.

Despite its great success, a major limitation of the state-of-the-art LIC schemes
is that they do not explicitly remove the frequency-domain redundancy of the
latent representations. Although there are some efforts in introducing transform-
domain processing to the LIC [1–3, 10, 14, 19, 25, 29, 37], their performances are
not satisfactory.

In this paper, we propose a surprisingly simple but efficient way of using
DWT in both the autoencoder network and entropy coding parts of the LIC
framework, and demonstrate that DWT can indeed significantly improve the
performance in the learned image compression paradigm, as expected from the
experience in the traditional approach.

Our contributions are summarized as follows:

– We propose an effective, low-cost, modular, and plug-and-play WeConv layer,
which embeds the convolution between DWT and IDWT, so that the module
can still be one layer of a large CNN network. This allows it to enjoy the
benefits of CNNs, and also improve the sparsity in the DWT domain. For
the Kodak dataset and the baseline network with −0.4% BD rate saving
over H.266/VVC, introducing WeConv with the simplest Haar transform
can improve the saving to −4.7%, with negligible change of model size and
running time.

– We propose a wavelet domain quantization and entropy coding, denoted as
WeChARM, which can explicitly benefit from the improved sparsity given by
the WeConv module. For the Kodak dataset, combining Haar-based WeConv
and WeChARM entropy coding further boosts the saving to −8.2%, with
moderate increase of model size and running time. When the Haar transform
is replaced by the 5/3 or 9/7 wavelet, the overall saving can be improved to
−9.4% and −9.8% respectively.



WeConvene 3

100 150 200 250 300 350 400
Decoding Time (ms)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

BD
-R

at
e 

Sa
vi

ng
 o

ve
r V

VC
 (%

)

Better

Ours-5/3WT (WeConv+WeChARM)
Ours-Haar (WeConv+WeChARM)
Ours-Haar (WeConv)
Zhu2022
Zou2022

0 20 40 60 80
Decoding Time (s)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Better

Fu2023
Xie2021
Cheng2020
Qian2022
He2021

Fig. 1: The decoding time and BD-Rate reductions over H.266/VVC for different LIC
schemes on the Kodak dataset.

– Since the proposed scheme is based on CNN, it is easier to train and has
less requirements on GPU than transformer-based schemes. It also does not
use other high complexity operators such as non-local modules. It therefore
achieves a good trade-off between complexity and performance, as shown in
Fig. 1, establishing our approach as the new state of the art in LIC.

– We show that with judicious design, the traditional wavelet transform can
be used in LIC and achieve the state of the art. The scheme can be further
improved. This opens up many future topics, and will bring in more atten-
tions from the signal processing community. The proposed WeConv module
can also be used in other applications beyond image compression.

2 Background and Related Work

2.1 Traditional Image Compression Methods

Traditional image and video codings, such as JPEG [35], JPEG 2000 [33], and
H.264/H.265/H.266, extensively utilize linear transforms such as the Discrete
Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) to remove the
redundancy in the frequency domain. The transformed data is then quantized
to remove small coefficients in the frequency domain without introducing too
much reconstruction error. The remaining redundancy is removed using entropy
coding.

2.2 Representative LIC Methods

In the last few years, learned image compression (LIC) [11, 12, 15–17, 28, 32, 38]
has witnessed remarkable advancements, and started to outperform traditional
methods, including the latest H.266/VVC. In [6], the first end-to-end learned
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image compression framework was proposed, which outperformed JPEG and
JPEG2000 by using a novel architecture of convolutions and nonlinear activa-
tion functions. In [5], a variational autoencoder structure with a hyperprior is
proposed for capturing spatial dependencies, achieving comparable performance
to BPG (4:4:4). In [30], based on [5] and by combining autoregressive and hi-
erarchical priors, the method was able to beat BPG (4:4:4) on both PSNR and
MS-SSIM metrics.

Based on [30], some LIC methods [13,22,23,36] utilize serial context-adaptive
models to achieve better performance than H.266/VVC. However, serial context
models are time-consuming. To address this issue, a channel-wise autoregres-
sive entropy model (ChARM) is introduced in [31] to avoid element-level serial
processing. Furthermore, in [16], a spatial-channel contextual adaptive model is
proposed to speed us the entropy coding without compromising the R-D perfor-
mance. Similarly, in [17], a checkerboard context model (CCM) is developed to
improve parallelism, but the R-D performance is reduced slightly compared to
serial context model.

In [9], efficient residual network is proposed to extract more compact and
efficient latent representation. Attention modules are also used, which has been
adopted in some other schemes [14,22,39]. In [36], the invertible neural networks
(INNs) are used to enhance overall performance.

Recently the transformer network has been introduced to LIC [28, 32, 38].
For example, in [28], the swin-transformer is combined with a ChARM model to
enhance spatial dependency capture. However, transformer-based schemes are
more difficult to train and have higher requirements on the GPU.

2.3 Efforts in Frequency-domain LIC

There have been some efforts in introducing frequency-domain processing to the
LIC.

In [3], the authors applied “3-scale Daubechies-1” wavelets, and then intro-
duced various CNN layers in the wavelet domain. The IDWT is only used at the
end of the decoder. However, the performance was 5-6dB lower than JPEG, and
8-9 dB lower than JPEG2000. A similar idea was used in [19], where the 9/7
wavelet and the network in [5] are used, but its results are also not satisfactory.

In [1, 2, 10, 25], the octave convolution proposed in [8] is introduced in LIC,
where the feature map in each layer is divided into a low-resolution part and
a high-resolution part. The multi-resolution concept is similar to wavelet trans-
form, but the learned filters for the two parts do not necessarily have high-pass
or low-pass frequency responses.

In [14], the image is decomposed into a low-frequency (LF) part and the
residual high-frequency (HF) part, via simple pooling and subtraction operators,
similar to Laplacian pyramid. The two parts are processed separately and merged
by a dual attention module. In [37], the idea is applied to a transformer-based
LIC, where the heads in the multi-head self-attention module in the transformer
are split into HF heads and LF heads, using pooling and subtraction.
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In [29], the lifting structure in the wavelet transform is imposed by the neural
network architecture, and the filters in each lifting step are learned via training,
but it does not use the existing wavelet coefficients, such as 5/3 and 9/7 wavelets.

3 WeConvene: LIC with Wavelet-Domain Convolution
and Entropy Model

In this section, we describe the entire architecture of the proposed method, the
proposed new components of WeConv and WeChARM, the loss function, and
the training of the system.

The proposed scheme is depicted in Fig. 2. As in other popular LIC meth-
ods, our system includes the core autoencoder ga to extract the compact latent
representations of the input image, the core decoder network gs to reconstruct
the image, the hyperprior networks ha and hs to encode and decode the side
information that helps the entropy coding of the latents.

The input color image has dimension W×H×3. The pixel values are normal-
ized to the range of [−1, 1]. The encoder network ga includes multiple layers of
convolutions and leaky ReLU. Some layers are grouped into ResGroup modules,
each includes three residual blocks, as shown in Fig. 2. Some layers use the pro-
posed WeConv module, which includes the pooling or downsampling operation,
and will be described in Sec. 3.1.

Another contribution of our scheme is to apply the DWT at the end of
the core encoder network to convert the latent representations into the wavelet
domain. This makes the coefficients sparser and can improve the subsequent
quantization and entropy coding.

The wavelet-domain coefficients are then quantized. To reduce the bit rate,
the entropy coding is divided into two steps. The LF quantized DWT subband
ŷL is first encoded, which is then used to encode/decode the three quantized HF
DWT subbands ŷH .

As in [28, 31], we use the fast channel-wise entropy coding (ChARM) to
encode the LF and HF coefficients, denoted by WeChARM (L) and WeChARM
(H) in Fig. 2. The details of WeChARM will be explained in Sec. 3.2.

As in other LIC schemes, to improve the entropy coding performance, the
hyperprior networks ha and hs are utilized to encode and decode additional
prior information z for both yL and yH . The WeConv module is also used in the
hyperprior encoding networks. The inverse WeConv (IWeConv) module with
transposed convolution is used in the core decoding network and the hyperprior
decoding network, as described in Sec. 3.1.

3.1 Wavelet-domain Convolution (WeConv) Module

Fig. 3 shows the details of the proposed WeConv and inverse WeConv modules.
In this paper, we use WeConv when the size of the latent representation is
changed (this might not be necessary in other applications). The input signal
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Fig. 2: The architecture of the proposed WeConvene scheme. Conv(3, s, n) represents
a convolution layer with 3× 3 kernel size, stride s, and n filters. TConv(3, s, n) is the
transposed convolution. Dashed shortcut connections represent change of tensor size.
AE and AD stand for Arithmetic Encoder and Arithmetic Decoder, respectively.
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Fig. 3: (a) The architecture of forward WeConv network with downsampling; (b) The
architecture of inverse WeConv (IWeConv) network with upsampling.

first passes through a convolutional layer, which also performs downsampling or
upsampling, and then converted to the wavelet domain by the DWT operator.

In this paper, we use the 2× 2 Haar transform, the 5/3 and 9/7 wavelets in
JPEG 2000 as examples of the DWT. In Sec. 4, we will compare the performance
of the three wavelets.

After the DWT, the coefficients in the LF subband, F1, are filtered by one
set of convolutions. The three HF subbands, F2, F3, F4, are concatenated and
filtered by another set of convolutions.

We then split the HF subbands to their original locations, and apply the
inverse DWT to obtain the corresponding spatial-domain latent representations,
which can be processed by the subsequent convolution layers as usual. The short-
cut connection with different sizes as proposed in the ResNet is applied in the
spatial domain.

The structure of the inverse WeConv module is similar to the forward We-
Conv, except that the transposed convolution is used to upsample the signal.
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The Generalized Divisive Normalization (GDN) is used in WeConv and IWe-
Conv modules, which has better performance than the Leakly ReLU [5].

The proposed WeConv module uses DWT to transform the input data into
the wavelet domain, performs subband-based convolution, and then transforms
the signal back to the time domain by IDWT. Therefore, it can be used as
a standalone layer in CNN networks without drastically disrupting the typical
signal distributions in CNNs, which could make it difficult to design a good
network, as shown by the unsatisfactory performance in [3,19], where the entire
CNNs are performed in the wavelet domain.

3.2 Wavelet-domain Channel-Wise Auto-Regressive Entropy Model
(WeChARM)

In this part, we explain the details of the two WeChARM modules in Fig. 2 to
encode the LF and HF components yL and yH in the wavelet domain, as shown
in Fig. 4 and Fig. 5.

The channel-wise auto-regressive entropy (ChARM) module was first intro-
duced in [31]. In [28], a Swin-transformer-based attention mechanism (SWAtten)
is used. It also reduces the number of slices in [31] from 10 to 5 to improve the
trade-off between running speed and R-D performance.
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Fig. 4: The details of the proposed WeChARM modules for LF and HF subbands.

In this paper, we apply the ChARM model in [28] with 5 slices to encode
both the LF and HF components yL and yH in the wavelet domain, as shown in
Fig. 4. Each slice includes 64 channels. Since our probability modeling is learned
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in the wavelet domain, it is sparser and more efficient than in the spatial domain.
As a result, we found that we can remove the time-consuming SWAtten module
in [28] without affecting the R-D performance.

The five LF slices yiL are encoded sequentially by five slice coding networks
eiL (i = 0, ..., 4), with the help of the side information Sscale

L and Smean
L from

hyperprior network (yiL is assumed to follow a Gaussian distribution), as well as
outputs from the preceding slices to reduce inter-slice redundancy.

After the LF components are coded, they are used to code the five HF slices
yiH via five networks eiH .

Fig. 5 illustrates the details of the slice coding network eiH . The network
structure of eiL is similar to eiH , except that there is no prior information from
yL.
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Fig. 5: The slice coding network eiH for the HF entropy coding in Fig. 4.

3.3 Loss Function

Our loss function is to optimize the R-D performance of the system. Let R
represent the expected bitstream length, and D denote the reconstruction error
between the source and reconstructed images. The trade-off between rate and
distortion is regulated by a Lagrange multiplier, λ. Consequently, the objective
cost function is defined as follows:

L = λD(x, x̂) +H(ŷL) +H(ŷH) +H(ẑ),

H(ẑ) = E[− log2(Pẑ(ẑ))],

H(ŷL) = E[− log2(PŷL|ẑ(ŷL|ẑ))],
H(ŷH) = E[− log2(PŷH |ŷL,ẑ(ŷH |ŷL, ẑ))],

(1)
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where D(x, x̂) is the distortion between the original image x and reconstructed
image x̂. We utilize the mean squared error (MSE) and multi-scale structural
similarity (MS-SSIM) respectively as our optimized metrics to train our net-
works. H(ŷL), H(ŷH) and H(ẑ) represent the entropies of the LF, HF compo-
nents and the hyperprior latent representations, respectively.

3.4 Model Training

The training images are obtained from the CLIC [34], LIU4K [27] and Coco
datasets [26], and are resized to 2000× 2000 pixels as part of the data augmen-
tation process, which also includes rotation and scaling. We then obtain 160,000
training image patches with a resolution of 480× 480 pixels.

Our models are optimized using MSE and MS-SSIM metrics respectively.
For MSE optimization, the λ values are selected from the set of 0.0025, 0.0035,
0.0067, 0.013, 0.025, 0.05, each corresponding to a fixed bit rate, with the number
of filters (N) for the latent features is set as 128 for all rates. For MS-SSIM metric,
λ is set at 5, 8, 16, 32, and 64, with the filter number N remaining at 128. Each
model is trained by 1.5× 106 iterations using the Adam optimizer, with a batch
size of 8 and an initial learning rate of 1× 10−4, which is trained every 100,000
iterations after the initial 750,000 iterations.

4 Experimental Results

This section evaluates the proposed method against some state-of-the-art LIC
methods and traditional image codes, using both the Peak Signal-to-Noise Ratio
(PSNR) and MS-SSIM metrics. The LIC methods include Fu2023 [13], FuOc-
tave2023 [10], Zhu2022 [38], Yi2022 [32], He2022 [16], He2021 [17], Xie2021 [36],
AkbariAAAI2021 [1], AkbariTMM202 [2], Cheng2020 [9], Minnen2020 [31], and
Minnen2018 [30]. The traditional methods are H.266/VVC Intra (4:4:4), and
H.265/BPG Intra (4:4:4).

Three popular test sets are selected, namely the Kodak PhotoCD test set [21]
(24 images with 768× 512 or 512× 768 resolution), the Tecnick 100 test set [4]
(100 images with 1200 × 1200 resolution), and the CLIC 2021 test set [34] (60
images with resolutions ranging from 751× 500 to 2048× 2048).

To ensure fair comparisons, we retain the Cheng2020 [9] method by increas-
ing its number of filters N from 192 to 256 for scenarios requiring higher rates,
thereby achieving better performance compared to the original results in [9] re-
sults. The results of other methods come from open-source codes or their original
papers.

In the propose WeConvene method, we test three different wavelets: the 2×2
Haar transform, as well as the 5/3 wavelet and the 9/7 wavelet used in JPEG
2000. Symmetric extension is used at the boundary to avoid boundary artifact
and improve the sparsity.
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Fig. 6: The average PSNR (a) and MS-SSIM (b) performances of different methods in
the Kodak test set.

4.1 R-D Performance

Fig. 6 depicts the average R-D curves of different methods in all images of
the Kodak dataset in terms of PSNR and MS-SSIM metrics. Among the other
PSNR-optimized methods, Zhu2022 (MSE) [38] achieves the best performance
when the bit rate is lower than 0.43 bpp. It is also better than H.266/VVC at
all rates. When the bit rate is higher than 0.43 bpp, Fu2023 (MSE) [13] achieves
the best performance.

Our proposed WeConvene method with the simple Haar transform consis-
tently outperforms the best of Zhu2022 [38] and Fu2023 [13] by about 0.2 dB at
all rates, and has a gain of more than 0.5 dB over VVC, especially at low rates.
This is quite impressive given the simplicity of the Haar transform.

When the 5/3 wavelet is used, our performance can be further improved by
up to 0.10 dB. The performance of 9/7 wavelet is very similar to 5/3 wavelet,
as shown in Fig. 8 (b) later. Therefore the result of 9/7 wavelet is not shown in
Fig. 6.

In the MS-SSIM metric in Fig. 6 (b), our method with the Haar transform
also achieves the best performance. Better results can be expected using 5/3 and
9/7 wavelets.

Fig. 7 (a) reports the PSNR performances of different methods in the Tec-
nick 100 dataset. Among the PSNR-optimized methods, Xie2021 [36] achieves
the best performance in other compared methods. Our method with Haar trans-
form also outperforms Xie2021 [36] by about 0.2 dB at most rates, and achieves
−9.46% BD-Rate reduction over VVC. Our method with 5/3 wavelet can further
improve up to 0.1 dB.

Fig. 7 (b) compares the PSNR performances of different methods in the
CLIC 2021 test set. Our method with Haar transform has even more gains over
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Fig. 7: (a) The average PSNR performances of different methods in the Tecnick
dataset. (b) The average PSNR performances of different methods in the CLIC dataset.

Table 1: Comparisons of encoding/decoding time, BD-Rate reduction over VVC, and
model sizes of the low bit rates and high bit rates for Kodak test set.

Methods Enc. Time Dec Time BD-Rate #Params
VVC 402.3s 0.61s 0.0 -

Cheng2020 [9] 27.6s 28.8s 2.6 % 50.80 MB
Hu2021 [18] 32.7s 77.8s 11.1 % 84.60 MB
He2021 [17] 20.4s 5.2s 8.9 % 46.60 MB
Xie2021 [36] 4.097s 9.250s -0.8 % 128.86 MB
Zhu2022 [38] 0.269s 0.183s -3.9 % 32.34 MB
Zou2022 [39] 0.163s 0.184s -2.2% 99.86 MB
Qian2022 [32] 4.78s 85.82s 3.2 % 128.86 MB
Fu2023 [13] 420.6s 423.8s -3.1% -
Baseline 0.109s 0.142s -0.4% 52.22 MB

Baseline+WeConv(Haar) 0.110s 0.147s -4.7% 58.41 MB
WeConvene(Haar) 0.352s 0.388s -8.2% 107.15 MB

WeConvene(5/3 WT) 0.363s 0.415s -9.4% 109.23 MB
WeConvene(9/7 WT) 0.386s 0.445s -9.8% 113.46 MB

Xie2021 [36], Zou2022 [39], and VVC, with up to 0.5 dB at high rates. Its BD-
Rate reduction over VVC is −9.20%. Our method with 5/3 wavelet is also better
than the Haar transform slightly.

4.2 Performance and Speed Trade-off

Table 1 compares the average encoding/decoding times, BD-rate reductions over
VVC [7], and the number of model parameters (obtained by the PyTorch Flops
Profiler tool) of various methods on the Kodak test set, using a NVIDIA Tesla
V100 GPU with 12 GB memory, except for VVC, which only runs on CPU (a
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Fig. 8: (a) R-D performances of VVC and different configurations of our method for the
Kodak dataset using the Haar transform. (b) R-D performances of VVC and different
wavelets (Haar, 5/3, and 9/7 wavelets) in WeConvene for the Kodak dataset.

2.9GHz Intel Xeon Gold 6226R CPU is used). The number of parameters of [13]
is not available, since it is written in TensorFlow, but it is shown in [13] that its
model complexity is much higher than [9].

To study the contributions of WeConv and WeChARM separately in our
method, we design a simplified baseline scheme for our method by removing the
DWT/IDWT in WeConv and WeChARM, and only using one ChARM module
in entropy coding. On top of the Baseline, we enable the WeConv and then
the two-step WeChARMs. In each case, we retrain the entire system to get its
best performance. Table 1 includes results of our Baseline, Baseline + WeConv
(Haar), and the full WeConvene with Haar, 5/3, and 9/7 wavelets respectively.

The decoding time and BD-Rate reductions of some methods are also re-
ported in Fig. 1 earlier.

The encoding and decoding times of learned methods [9, 13, 32, 36] are rela-
tively slow because they employ sequential entropy models and cannot be accel-
erated by GPU. Some recent LIC approaches such as [38,39] are much faster, by
using GPU-friendly parallelizable entropy models. Their R-D performances are
also among the best.

The BD-Rate reduction of the proposed WeConvene scheme with 9/7 wavelet
is 5.9% better than [38], and −9.8% better than VVC, making our method the
new state of the art. Our model complexity with different wavelets is only 8−14%
higher than [39]. The encoding/decoding time is about twice of [39]. This is
mainly because we use two sequential WeChARM modules in the entropy coding
part, but our method is still significantly faster than many other LIC methods.

4.3 Contributions of Different Modules in WeConvene

Table 1 includes the performances of our Baseline and Baseline + WeConv
(Haar). Both of them are faster than [38, 39]. The BD-rate reduction of the
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Baseline over VVC is only −0.4%. Enabling WeConv with the Haar transform
almost does not increase the encoding/decoding time, but it can achieve an im-
pressive −4.7% BD-rate reduction over VVC, which is already better than other
LIC methods in the table. The model complexity is only increased by about 10%
compared to the Baseline.

Fig. 8 (a) compares the R-D curves of VVC and different configurations of
our scheme on the Kodak dataset using the Haar transform. It can be seen that
our baseline achieves similar performance to VVC. When WeConv is enabled,
the performance is improve by about 0.2 dB at all rates. When WeChARM is
also enabled, another gain of 0.2 dB can be achieved.

4.4 Contributions of Different Wavelets

In this experiment, we replace the Haar wavelet with the 9/7 and 5/3 wavelet.
Other configurations remain the same. The experimental results are shown in
Fig. 8 (b). The 5/3 wavelet improves performance by about 0.05-0.1 dB at the
same bit rate compared to the Haar. The 9/7 wavelet has almost the same
performance as the 5/3 wavelet. The reason is that the input sizes to the WeConv
modules are not very large in this paper.

4.5 Comparison of Different Channel Slices in WeChARM

Table 2: The performance of different channel slices

Groups Bit rate PSNR MS-SSIM Enc. time Dec. time #Params
5 0.162 30.12 dB 12.78 dB 0.352 ms 0.388 ms 107.15 MB
10 0.167 30.16 dB 12.82 dB 0.424 ms 0.491 ms 179.09 MB
5 0.894 37.96 dB 20.53 dB 0.352 ms 0.388 ms 107.15 MB
10 0.9023 38.01 dB 20.57 dB 0.424 ms 0.491 ms 179.09 MB

Table 2 studies the impact of the number of channel slices in the channel-wise
entropy coding when the Haar transform is used. Results with 5 and 10 slices at
low rate and high rate are reported.

It can be observed that at both low rate and high rate, when the latent
representations are divided into 10 slices instead of 5 slices, the R-D performance
only increases slightly. On the other hand, the model size increases about 67%,
and the encoding/decoding time increases 20-25%. This is because when there
are too many slices, the number of channels is smaller in each slice, making it less
efficient to reduce the redundancy. Moreover, since the slices need to be coded
sequentially, the encoding/decoding time is also increased. Therefore we choose
to use 5 slices in WeChARM.
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5 Conclusions

This paper introduces a simple but efficient approach to use wavelet transform in
both the convolution layers and entropy coding of the learned image compression
(LIC). It makes the latent representations sparser in wavelet domain, which helps
to achieve better R-D performance.

For the Kodak dataset and the baseline network with −0.4% BD-Rate sav-
ing over H.266/VVC, introducing WeConv with the simplest Haar transform
improves the saving to −4.7%. This is quite impressive given the simplicity of
the Haar transform. Enabling Haar-based WeChARM entropy coding further
boosts the saving to −8.2%. When the Haar transform is replaced by the 5/3
or 9/7 wavelet, the overall saving becomes −9.4% and −9.8% respectively. The
complexity of the scheme is also significantly lower than most LIC methods.

The framework in this paper opens up many future research topics, and
allows the rich theories and results in the wavelet community to be introduced
to learned image/video coding. For example, multiple levels of wavelet transforms
can also be employed. Another possible approach is to use different wavelets in
different layers, e.g., longer wavelets when the input size is larger, and shorter
wavelets when the input is smaller.

In addition, as a standalone convolution layer module, the WeConv can also
be used in many other computer vision tasks beyond image/video compression.
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