Zazkis, R., Liljedahl, P. & Sinclair, N. (2009). Lesson Plays: Planning teaching vs. teaching planning. For the Learning of Mathematics, 29 (1), 40-47. |
Mamolo, A. & Zazkis, R. (2008). Paradoxes as a window to infinity. Research in Mathematics Education, 10(2), 167-182. |
Zazkis, R., & Leikin, R. (2008). Exemplifying definitions: A case of a square. Educational Studies in Mathematics, 69(2), 131-148. [Download PDF file] |
Zazkis, R. (2009). Number Theory in mathematics education: Queen and Servant. Mediterranean Journal of Mathematics Education, 8(1). |
Zazkis, R., Liljedahl, P. & Chernoff, E. (2008). The role of examples on forming and refuting generalizations. Zentralblatt für Didaktic en Mathematik – The International Journal on Mathematics Education, 40(1), 131-141. [Download PDF file] |
Zazkis, R. & Chernoff, E. (2008). What makes a counterexample exemplary? Educational Studies in Mathematics, 68(3), 195-208. [Download PDF file] |
Liljedahl, P., Chernoff. E., & Zazkis, R. (2007). Interweaving mathematics and pedagogy in task design: A tale of one task. Journal of Mathematics Teacher Education. 10(4-6), 239-249. [Download PDF file] |
Zazkis, R. & Leikin, R. (2007). Generating examples: From pedagogical tool to a research tool. For the Learning of Mathematics, 27(2), 15-21. [Download PDF file - 600K] |
Sirotic, N. & Zazkis, R. (2007). Irrational numbers on a number line – Where are they? International Journal of Mathematical Education in Science and Technology, 38(4), 477-488. [Download PDF file - 176K] |
Zazkis, R & Sirotic, N. (in press). Representing and defining irrational numbers: Exposing the missing link. Research in Collegiate Mathematics Education. |
Sirotic, N. & Zazkis, R. (2007). Irrational numbers: The gap between formal and intuitive knowledge. Educational Studies in Mathematics, 65(1), 49-76. [Download PDF file - 172K] |
Sinclair, N., Liljedahl, P. & Zazkis, R. (2006). A coloured window on preservice teacher’s conceptions of rational numbers. International Journal of Computers for Mathematical Learning, 11(2), 177-203. [Download PDF file 430K] |
Liljedahl, P., Sinclair, N. & Zazkis, R. (2006). Number concepts with Number Worlds: Thickening understandings. International Journal of Mathematical Education in Science and Technology, 37(3), 253-275. [Download PDF file] |
Zazkis, R., Sinclair, N., Liljedahl, P. (2006). Conjecturing in a computer microworld: Zooming out and zooming in. Focus on Learning Problems in Mathematics, 28(2), 1-19. |
Hazzan, O., & Zazkis, R. (2005). Reducing abstraction: The case of school mathematics. Educational Studies in Mathematics, 58(1), 101-119. [Download PDF file - 156K] |
Zazkis, R. (2005). Representing numbers: Prime and irrational. International Journal of Mathematical Education in Science and Technology, 36 (2-3), 207-218. [Download PDF file - 120K] |
Zazkis, R. & Liljedahl, P. (2004). Understanding primes: The role of representation. Journal for Research in Mathematics Education, 35(3), 164-186. [Download PDF file - 118K] |
Sinclair, N., Zazkis, R. & Liljedahl, P. (2004). Number Worlds: Visual and experimental access to number theory concepts. International Journal of Computers in Mathematical Learning, 8(3), 235-263. [Download PDF file - 320K] |
Zazkis, R., Liljedahl, P. & Gadowsky, K. (2003). Students' conceptions of function translation: Obstacles, intuitions and rerouting. Journal of Mathematical Behavior, 22, 437-450. [Download PDF file 96K] |
Hazzan. O. & Zazkis. R. (2003). Mimicry of proofs with computers: The case of Linear Algebra. Intenational Journal of Mathematics Education in Science and Technology 34(3), 385-402. [Download PDF file - 150K] |
Zazkis, R. & Liljedahl, P. (2002). Generalization of patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49. 379-402. [Download PDF file - 128K] |
Zazkis, R. & Liljedahl, P. (2002). Arithmetic sequence as a bridge among conceptual fields. Canadian Journal of Science, Mathematics and Technology Education, 2(1). 91-118. [Download PDF file - 604K] |
Zazkis, R. & Levy, B. (2001) Truth value of mathematical statements: Can fuzzy logic illustrate students' decision making? Focus on Learning Problems in Mathematics, 23(4). 1-26. |
Moor, J. & Zazkis, R. (2000). Learning mathematics in a virtual classroom: Reflection on experiment. Journal of Computers in Mathematics and Science Teaching, 19(2). 89-114. |
Zazkis, R. (2000) Using Code-switching as a tool for learning mathematical language. For the Learning of Mathematics, 20(3). 38-43. |
Zazkis, R. (2000). Factors, divisors and multiples: Exploring the web of students' connections. Research in Collegiate Mathematics Education. Vol. 4. 210-238. |
Zazkis, R. (1999). Intuitive rules in number theory: Example of "the more of A, the more of B" rule implementation. Educational Studies in Mathematics, 40(2), 197-209. [Download PDF file - 56K] |
Zazkis, R. (1999). Divisibility: A problem solving approach through generalizing and specializing. Humanistic Mathematics Network Journal, Issue #21, 34-38. [Download PDF file - 360K] |
Zazkis, R. (1999). Challenging basic assumptions: Mathematical experiences for preservice teachers. International Journal of Mathematics Education in Science and Technology, 30(5), 631-650. [Download file - 504K] |
Hazzan, O. & Zazkis, R. (1999). A perspective on "give an example" tasks as opportunities to construct links among mathematical concepts. Focus on Learning Problems in Mathematics, 21(4), 1-14. |
Zazkis, R. & Hazzan, O. (1998). Interviewing in mathematics education research: Choosing the questions. Journal of Mathematical Behavior, 17(4), 429-239. [Download PDF file - 100K] |
Zazkis, R. (1998). Divisors and quotients: Acknowledging polysemy. For the Learning of Mathematics, 18(3), 27-30. |
Zazkis, R. (1998). Odds and ends of odds and evens: An inquiry into students' understanding of even and odd numbers. Educational Studies in Mathematics, 36(1), 73-89. [Download PDF file - 92K] |
Zazkis, R. & Gunn, C. (1997). Sets, subsets and the empty set: Students' constructions and mathematical conventions. Journal of Computers in Mathematics and Science Teaching, 16(1), 133-169. |
Dubinsky, E., Leron, U., Dautermann, J., & Zazkis, R. (1997) A Reaction to Burn's "What are the Fundamental Concepts of Group Theory?" Educational Studies in Mathematics, 34(3), 249-253. [Download PDF file 36K] |
Zazkis, R. & Campbell. S. R. (1996). Prime decomposition: Understanding uniqueness. Journal of Mathematical Behavior, 15(2), 207-218. [Download PDF file - 808K] |
Zazkis, R. & Campbell. S. R. (1996). Divisibility and Multiplicative Structure of Natural Numbers: Preservice teachers' understanding. Journal for Research in Mathematics Education, 27(5), 540-563. [Download PDF file] |
Zazkis, R. & Dubinsky, E. (1996) Dihedral groups: A tale of two interpretations. Research in Collegiate Mathematics Education. Vol. 2. 61-82. [Download PDF file 7.1MB] |
Leron, U., Hazzan, O., & Zazkis, R. (1995). Students' conceptions and misconceptions of group isomorphism. Educational Studies in Mathematics, 29(2), 153-174 |
Zazkis, R. (1995). Fuzzy thinking on non-fuzzy situations: Understanding students' perspective. For the Learning of Mathematics, 15 (3). 39-42. |
Dubinsky, E., Leron, U., Dautermann, J., & Zazkis, R. (1994) On learning fundamental concepts of group theory. Educational Studies in Mathematics, 27(3), 267-305. [Download PDF file - 750K] |
Zazkis, R. & Khoury, H. (1994). To the right of the decimal point: Preservice teachers' concepts of place value and multidigit structures. Research in Collegiate Mathematics Education, 1, 195-224 |
Khoury, H. & Zazkis, R. (1994). On fractions and non-standard representations. Educational Studies in Mathematics, 27(2), 191-204. |
Edwards, L. & Zazkis, R. (1993). Transformation geometry: Naive ideas and formal embodiments. Journal of Computers in Mathematics and Science Teaching, 12(2), 121-145. |
Zazkis, R. & Whitkanack, D.(1993). Non-decimals: Fractions in bases other than ten. International Journal of Mathematics Education in Science and Technology, 24(1), 77-83. |
Zazkis, R. & Khoury, H. (1993). Place value and rational number representations: Problem solving in the unfamiliar domain of non-decimals. Focus on Learning Problems in Mathematics, 15(1), 38-51. |
Zazkis, R. (1992). Theorem-out-of-action: Formal vs. naive knowledge in solving a graphic programming problem. The Journal of Mathematical Behavior, 11(2), 179-192. |
Zazkis, R. & Leron, U. (1991). Capturing congruence with a turtle. Educational Studies in Mathematics, 22, 285-295. [Download PDF file - 428K] |
Zazkis, R. & Leron, U. (1990). Implementing powerful ideas - the case of RUN. The Computing Teacher, 17(6), 40-43. Reprinted (1989) in SIGCS Newsletter, 3(4), 9-12. |
Leron, U. & Zazkis, R. (1989). Functions and variables - a case study of learning mathematics through Logo programming. Mathematics and Computer Education Journal, 23(1), 186-192. |
Leron, U. & Zazkis, R. (1986). Mathematical induction and computational recursion. For the Learning of Mathematics, 6(2), 25-28. [View the article here] |