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This study investigates procedural and conceptual aspects in preservice elementary school 

teachers’ understanding of the Fundamental Theorem of Arithmetic. The data were col- 

lected by the means of a written questionnaire and individual interviews. The results 

suggest that the idea of the uniqueness of prime decomposition is very difficult to grasp. 

Participants’ responses indicated, either implicitly or explicitly. that a possibility of alter- 

native prime decompositions was often not overruled. and this influenced students’ ability 

to make inferences regarding factors and divisors of natural numbers. Some pedagogical 

implications are discussed. 

Andy was asked whether 17’ was a square number. After calculating 17’ and 
observing that its square root was not an integer, Andy gave a negative answer. 
Patty was asked whether 11 was a divisor of M, where M = 3” X 52 X 7. After 
calculating the number M and dividing the product by 11, Patty reached her 
negative conclusion. Bob was asked whether K could have 13 as a divisor, where 
K = 16,199 = 97 X 167 and 97,167 are both primes. He claimed it was quite 
possible because K ended with 9, but had actually to perform division to infer 
that K was not divisible by 13. 

Each one of these questions presents a number in its prime decomposition and 
invites a consideration of its divisors. A common feature in each one of the 
responses forms the focus of this article. Each response appears to admit the 
possibility of an alternative prime decomposition and, hence, reveals an inade- 
quate understanding of one of the basic ideas of Number Theory-The Funda- 
mental Theorem of Arithmetic. 

The Fundamental Theorem of Arithmetic claims that decomposition of a 
composite number into its prime factors exists and is unique except for the order 

in which the prime factors appear in the product. This theorem is a part of the 
core mathematics curriculum for preservice elementary teachers in many institu- 
tions, even though the formal mathematical proof of the theorem is usually not 
provided for this audience. On several occasions we have noticed that many 
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preservice elementary school teachers are familiar with the theorem, may articu- 
late and explain its meaning, but fail to apply it in various problem-solving 
situations. The purpose of our study was to investigate this specific phenomenon 
in order to contribute to an improved pedagogical understanding of the construc- 
tion of knowledge of natural numbers and their multiplicative structure. Follow- 
ing Freudenthal (1983), we use the term multiplicative structure to refer to “the 
whole of the relations (of all possible products) . and all one can think about 
in this context” (pp. I 12- 113). In particular, we will be thinking about products 
pertaining to the decomposition of natural numbers into their prime factors. 

This study is a part of the ongoing research on teachers’ content knowledge in 
mathematics. The specific focus of our inquiry is on teachers’ understanding of 
topics in elementary Number Theory. In previous research we have investigated 
topics of divisibility and factorization (Zazkis & Campbell, 1994, 1996). Extend- 
ing our study to topics involving the Fundamental Theorem of Arithmetic is not 
an isolated goal in and of itself, but rather a natural progression of our investiga- 
tions in this area. 

CONCEPTUAL FRAMEWORK 

Several overlapping ideas about the development of mathematical knowledge 
and its nature form the conceptual framework for this study. A repeating theme in 
the literature is that of the formation of cognitive structures (Piaget, 1972) or 
conceptual entities (Greeno, 1983). More recently, such conceptual entities have 
been addressed in terms of mathematical or mental objects and similar, though 
not identical, ideas regarding object construction have been proposed by various 
authors (Artigue, 1992; Douady, 1985; Dubinsky, 1991; Dubinsky, Leron, 
Dautemann, & Zazkis, 1994; Sfard, 1991). A common theme highlights the 
importance of object construction, referred to as encapsulation (Dubinsky) or 
re$cution (Sfard), in mathematical understanding. These terms theoretically 
express the transition from procedural knowledge to conceptual understanding. 
Furthermore, emphasis has been made on how the treatment of mathematical 
entities as cognitive objects not only contributes to the mathematical understand- 
ing of the learner, but also leads to progress in the historical development of 
mathematical ideas in general. These researchers seem to agree that there is a 
difficulty for the learner to attain object construction and that specific instruction- 
al treatments may help overcome this difficulty. 

METHOD 

The participants in our research were preservice elementary school teachers 
enrolled in a course “Foundations of Mathematics for Teachers,” which served as 
a prerequisite course for teacher certification. The data acquired are based on 
written responses by 54 students on three assessment questions and subsequent 
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clinical interviews with a group of volunteers from the same class. Both the 
questionnaire and the interviews were conducted after the topics of elementary 
number theory were covered in the course. This included topics such as prime 
and composite numbers, factor trees, prime decomposition and Fundamental 
Theorem of Arithmetic, divisibility and divisibility rules, greatest common di- 
visor, and lowest common multiple, among others. 

The three assessment questions were administered on three different occasions 
within a 2-week period of time and the participants were not temporally con- 
strained in addressing them. In these questions, the students were invited to: 

I. Consider the number M = 3’ X 5* X 7 and decide whether it is divisible by 
each of the numbers 7, 5, 3, 2, 15, 11, 9, and 63. 

2. Consider the number K = 16,199 = 97 X 67 (where 97 and 167 are given as 
prime numbers) and decide whether K may be divisible by 3, 5, 11, 13, and 
17. 

3. Look at the list of 15 numbers, such as 82, 172, 173, 2343, 2346, 52 X 17*, 

53 X 7*, 56 X 172, p3 where p is prime, C3 where C is composite, and 
decide which numbers on the list are, or could be, perfect squares. 

In the second question, the participants were explicitly asked to try and answer 
the question without calculators or paper and pencil calculations. In the first and 
the third questions, there were no specific instructions given regarding the strate- 
gy for solution. Explanations were requested for all the questions. 

Qualitative data were obtained from 21 interviews, as part of a larger study 
investigating understandings of concepts from introductory number theory such 
as factors, multiples, and divisibility. The authors followed up in depth on 
participants’ responses and focused on justifications for their decisions. During 
the interviews, each averaging about 1 hour, participants were prompted where 
appropriate for understanding that might not have been apparent from their initial 
response. The interviews were audiotaped and then transcribed. The data for this 
report are drawn from the two following question sets: 

Question Set I 
Consider the number A4 = 3’ X 5’ X 7. Is M divisible by 7? Please explain. 
Is M divisible by 5, 2, 9. 63, I I, 15? Please explain. 

Question Set 2 
Is 391 divisible by 23? Please explain. 
Is 391 divisible by 46? Please explain. 

These questions were originally designed to investigate students’ understand- 
ing of concepts associated with divisibility. In the course of this study, the theme 
of prime decomposition emerged as a coherent topic of analysis in its own right. 
Here, these data are analyzed in terms of students’ procedural and conceptual 
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understandings of prime decomposition in accordance with the Fundamental 
Theorem of Arithmetic. 

RESULTS AND INTERPRETATIONS 

Our participants indeed acquired knowledge of the Fundamental Theorem of 
Arithmetic: They could quote it when asked and illustrate their knowledge by, for 
example, decomposing a “big” number like 360 via different routes and ending 
with the same (unordered) list of prime factors. On the other hand, the examples 
of successful application of the Fundamental Theorem of Arithmetic were lim- 
ited. 

Results From Written Questionnaire 
On Question 1, about one half (25 out of 54) of the students preferred to calculate 
M and then check for divisibility by either performing division or applying 
specific divisibility rules. A majority (29 out of 54) of the participants were able 
to accompany their positive answer regarding the divisibility of M by 7, 5, and 3 
with a mathematical justification “since those are among the factors in prime 
decomposition.” 

On the other hand, 16 out of these 29 participants were unable to apply similar 
reasoning regarding divisibility by 2 and 11; that is, to claim that those primes 
were not among the factors in prime decomposition of M. Noting the “oddness” 
of M resolved the problem of divisibility by 2. When considering II. they 
regressed to procedural calculations and only after carrying out division inferred 
that 11 was not among M’s divisors. Participants’ responses suggest that, for 
these 16 students a possibility of the existence of another prime decomposition 
was not overruled. It is likely that this possibility was not an explicit belief but 
rather a manifestation of a lack of understanding of the relationship between 
factors and divisors. 

In Question 2, 15 out of 54 students claimed, applying specific divisibility 
rules, that 16,199 was not divisible by 5 or 3, but may be divisible by 1 1, 13, or 
17. For many students, the only way to find out (divisibility by 11, 13, or 17) 
was to perform division. Even though the number 16,199 was presented to 
students in its prime decomposition (97 X 167) it seemed, again, that at least 
implicitly our participants believed that an alternative prime decomposition 
might be possible. Lesley’s comment on her questionnaire exemplifies an explicit 
case in this regard: “Because a number is divisible by two primes does not mean 
that it is not divisible by other primes.” 

Thirty-nine (out of 54) students claimed that 16,199 was not divisible by any 
of the numbers on the list; that is, 3, 5, 11, 13, and 17. The arguments to justify 
this claim varied. Only 13 students used the idea of uniqueness of prime decom- 
position, either explicitly (e.g., “the prime decomposition of 16,199 is 167 X 97 
and these are the only two prime divisors”). or implicitly (e.g., “for any of the 



PRIME DECOMPOSITION 211 

following primes: 3, 5, 11, 13, or 17-to be a factor of 16,199, they would have 
to be part of its prime decomposition”). On three worksheets, explicit long 
division was carried out as calculators were not allowed on this question. Five 
students made the claim without providing any additional justification. Three 
students accompanied their correct decision with arguments, such as: “These 
numbers will not divide 16,199, because 16,199 is a product of two prime 
numbers, forming a prime number itself.” These explanations suggest that the 
concept of primeness was not understood. 

The remaining 15 participants (out of 39 answering correctly) claimed that 
16.199 cannot be divisible by 3, 5, 11, 13, and I7 because “ 167 and 97 are both 
primes and cannot be decomposed any more.” That is, the focus of the claim was 
not on 3, 5, 1 I, 13, and 17 being nonfactors of 16,199, but on 3, 5, 1 I, 13, and 
17 being nonfactors of 167 and 97. The students making this claim were likely to 
have been thinking of prime decomposition as a factoring process, rather than 
conceptually in terms of a number expressed as a product of primes. We concur 
with Sfard (1991, 1992) that the step toward higher level object constructions 
seems to be particularly difficult. For these students, as a case in point, this step 
was not attained. 

It is interesting to note that 5 out of these 15 participants wanted to over- 
emphasize their answer by providing additional arguments, unnecessary for this 
case, for indivisibility of 16,199 by 3 and 5, using conventional divisibility rules. 
Several students indicated what they thought (hoped, believed, guessed) the 
correct answer was, but would have preferred to check by performing division. It 

seemed as though they did not have much faith in their own argument, and 
wished to strengthen it. This finding appears consistent with Martin and Hare1 
( 1989) and Fischbein and Kedem (1982) who observed that many students who 
were convinced by deductive arguments wanted further empirical verification. 

On the third question it seemed necessary for one third of the students ( 18 out 
of 54) to calculate the value of a number such as 17’ or 176, and then to find its 
square root, in order to infer whether it was a perfect square. A majority of 
students who claimed that 17’ was not a square number explained their decision 
by observing, “It was cubed.” The cubic form of the number was emphasized 
rather than its prime decomposition. Our conjecture is, even though we have not 
used this specific example, that similar reasoning could be applied by some 
participants claiming that 16’ was not a square number as well, because, “It was 
cubed.” Some students recognized only the numbers of the form B2, although not 
B6 and not even B2A2, as perfect squares. According to Hare1 and Kaput (1991), 
“notations can act as substitutes for conceptual entities, supplanting the need for 
them” (p. 93). We believe that here the notation B* served as a substitute for a 
conceptual entity of a square number. 

We turn now to the following two parts of Question 3: Is p3 a square number, 
when p is prime and is C3 a square number, where C is composite‘? Out of 54 
students, only 5 treated the numbers p3 and C3 differently. Two students correctly 
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claimed that p’ was not a square, but C’ could be a square. The other three 
students claimed that p’ was not a square, but chose not to answer at all the same 
question about C. Because the time to respond was not limited, we take the lack 
of the answer as students’ hesitation to decide. 

The remaining 49 out of 54 students responded in exactly the same way to the 
first question as they did for the second, making no discernible distinction 
between prime and composite numbers. Two students claimed that in both cases 
they needed to know the values of p and C to make up their minds. The remain- 
ing 47 students claimed that both p’ and C3 were not square numbers. Similarity 
in explanations demonstrates that students were treating C as one entity and not 
taking into account the prime decomposition of C. Inability to distinguish be- 
tween the two cases by the overwhelming majority of students suggests that the 
students’ constructions of concepts of prime and composite numbers require 
further refinement. 

Results From the Interviews 
In the interviews, as students engaged in various problems regarding divisibility, 
we found additional indications of gaps in students’ understandings of the 
uniqueness of prime decomposition. 

In the first question of the interview, participants were asked to consider the 
number M = 3’ X 52 X 7 and decide whether it was divisible by each of the 
numbers 7.5.3,2, 1.5, 11,9, and 63. Asking participants to consider the number 
given in its prime decomposition, we hoped to divert their attention from proce- 
dures when determining divisibility and motivate a focus toward the multiplica- 
tive structure of M. The numbers chosen in this question included prime and 
composite divisors of M and prime nondivisors of M. Students’ responses to 
prime versus composite divisors have been discussed in detail in Zazkis and 
Campbell (1996). Here we focus on students’ different approaches in making 
inferences about factors and nonfactors. Consistent with the results of the written 
questionnaire. the “proof” or verification of divisibility was in most cases more 
readily achieved than the refutation. Patty, for example, noted that both 7 and 5 
as factors were both divisors of M (M = 3’ X 52 X 7), but then regressed to 
procedural calculations when asked about divisibility by 2 and 11. 

Interviewer: Okay. And will it (M) be divisible by 2? 

Patty: I would multiply each one and find out what the total number is. So 3 x 3 

is 9 X 3 is 27, and this 25 is X 7, (pause) it’s not, 2 doesn’t go into it 

evenly. 

Interviewer: So you computed the number and you got 4,725. and now you are sure that 

it is not divisible by 2. 

Patty: Right. 

Interviewer: But you were able to conclude about divisibility by 7 before you knew 

what was the number 
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Patty: Urn hm. 
Interviewer: So how is it? 
Patty: Because 7 is a factor of it, so it’s, what is it, the commutative law or 

associate law-7 is a factor of it . . 
Interviewer: And what about divisibility of M by 1 l? 
Patty: I would divide 4,725 by 1 I to find out. 

It appears that Patty may have been thinking that 2 and 11 could possibly be 
divisors of M even if they are not actually factors of M. For some participants, 
the question about 2 seemed easier than the question about I 1, when they noted 
that, “M is an odd number” (as a product of odd numbers), so “2 can’t go into it.” 
For them, the mystery of divisibility by 11 remained unsolved unless the actual 
division was performed. We suggest that these students may not “believe,” or at 
least not “believe in practice, ” in the Fundamental Theorem of Arithmetic that 
assures the uniqueness of prime decomposition. Another possible explanation for 
this phenomenon is that the conceptual understanding of divisibility and indi- 
visibility have not developed at the same rate. It may be the case that for Patty 
divisibility has been conceptualized whereas indivisibility has not. 

In the second part of Question Set 2-“Is 391 divisible by 46?“-there was 
no unanimous conclusion among the 17 participants who were asked this ques- 
tion. This part of the question was presented only after participants had answered 
the first part; that is, had determined the divisibility of 391 by 23 and expressed 
39 I as 23 X 17, by whatever means. 

When presented with the second part of Question Set 2, four participants 
immediately used a calculator and based their conclusion on the calculator’s 
result. After concluding that 391 was not divisible by 46 with the help of her 
calculator, Armin was invited to think of another strategy: 

Interviewer: My question is: if you didn’t have your calculator with you, how would 
you think about this? 391, is it divisible by 46? What would you do? 

Armin: (Pause) Urn, I guess I’d just have to guess out of the blue, I would say, no, 
but, I mean, I would never trust my own opinion, 1 always have to work it 
out just to see (laugh). 

Because Armin lacked any viable alternative to “guess(ing) out of the blue,” it 
seems that carrying out the calculation was her only recourse to addressing this 
problem. 

However, attempts to use more advanced mathematical reasoning did not 
necessarily lead to correct conclusions. On the same question, 5 out of 17 
participants claimed that 391 was indeed divisible by 46, because “46 is just 23 
doubled.” Anita was tempted toward this way of thinking and yet was able to 
correct herself with the use of a specific numerical example: 
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Interviewer: 

Anita: 

Interviewer: 

Anita: 

Interviewer: 

Anita: 

Okay. right. Urn, would 391 be divisible by 46’? 

Yes. 

And why so? 

Oh, maybe not. 

I’m, I’m interested in both of those things that just happened to you. I’m 

interested in the “yes” and the “maybe not.” 

Well, first 1 said yes because I thought 46 is. well 23 is a factor. is a factor 

of 46. it’s 23 X 2, urn, but then again, 1 thought the 5 is a factor, like, for 

example, 5 is a factor of 25 but IO isn’t, and so just because it’s doubled 

doesn’t mean it’s a factor of, so I’m not too sure?? 1 think I’d have to say 

no. 

Bob. Patty, and Anabelle demonstrated in their answers various levels or degrees 
of sophistication. The arguments presented in the following excerpts progress 
from considering the possible last digit in a multiple of 46, to considering the 
“evenness” of number 46. 

Interviewer: Okay. How about 46. would 391 be divisible by 46? 

Bob: (pause) No. it wouldn’t because uh in 46 the unit digit is 6. and the units 

digit of 391 is I. and 6. knowing the multiples of 6, I know that there will 

not be a units digit of I after being multiplied by 6. For example. 6 x 6 is 

36. units digit and that is obviously 6. 

Based on considering the last digit for the multiples of 6, Bob realized that no 
multiple of 6 will end with 1. Here Bob had constructed a novel procedural 
understanding of indivisibility of 39 I by 46. Patty makes a further step when she, 
similarly to Bob, considers the last digit, but also considers the events and 
oddness of the numbers in question. 

Patty: Because 46 ends with an even number and 391 is an odd number 

Interviewer: Urn hm. 

Patty: And 6 is even. it won’t fit into an odd number. 

We note that in Patty’s response, “it won’t fit into,” the procedural aspect of 
division is emphasized. That Anabelle’s explanation is yet further refined is 
evidenced in her consideration of 46 itself as an even number, and not just 
considering its even last digit. 

Intcrviewcr: Okay. Alripht. Now I’d like to ask you if 391 would be divisible by 46? 

Anabellc: No. because it 1461 was an even number. and this one 13911 is an odd 
number. 

Arguments related to odd and even numbers were repeated by 5 participants. 
However, it is not clear from our data how generalizable those arguments are. 
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Our investigations in this area have revealed that encapsulation of divisibility by 
2 (i.e., the conceptualization of the evenness or oddness of a number) need not 

occur simultaneously with encapsulation of divisibility by 3, 4, 5, or any other 
number (Zazkis & Campbell, 1994). It is not evident that Anabelle’s understand- 
ing of divisibility is general enough to accommodate other cases. For instance, if 
we had asked whether or not 391 was divisible by 69 (3 X 23), Anabelle’s 
reasoning here would no longer have been applicable and she may have had to 
resort to calculation. Further research is needed to determine the extent of gener- 
alizability of arguments based on this odd-even heuristic. 

Explicit awareness of factors of 46 and the argument that 391 could not be 
divisible by 46, because it has a factor 2 that is not one of the factors of 391, was 

given by only one participant, Dana: 

Interviewer: Okay, urn, would you say 391 is divisible by 46? 

Dana: (Pause) No, because 23 and 17 are both prime numbers, there is no 2 

involved in there, it’s just 23 times 17. 

Dana has made a powerful connection between the concepts of divisibility and 
prime decomposition to refute divisibility of 391 by 46. In her words, “there is 
no 2 involved in there,” we recognize a hint to the uniqueness of prime decom- 
position of 39 1. It is evident that an understanding of the uniqueness of prime 
decomposition lends itself much more readily to generalized forms of arguments 
regarding divisibility. 

We also found in the interview data some explicit beliefs regarding the nature 
of prime decomposition. A belief that was evidenced explicitly in four interviews 
is that decomposition into prime factors means decomposition into small prime 
factors. This belief is demonstrated in the following excerpts with Lisa and 
Tanya: 

Interviewer: 
Lisa: 
Interviewer: 
1. .] 
Lisa: 
Interviewer: 
Lisa: 
Interviewer: 
Lisa: 

Intcrvicwer: 

Lisa: 

Interviewer: 

Urn. let’s take the number 391. Would 391 be divisible by 23‘~ 

23, (pause), I don’t know. I don’t think so. 

Hmm. and why do you think not’? 

39 I, I think, is a prime. 
And why do you think that 391 is a prime’? 
Because I don’t think it had been divided by 2 or 3, or 5, or 7 (laugh) 

(laugh) 

Like I’m going through my mind with primes, and 1 know that it’s not 

divisible by 2 because it’s not an even number. I know it’s not divisible by 

3, because the sum isn’t urn divisible by 3. Four. same reason for the 2, it’s 

not even. Five, it has to be a 5 or a 0. urn, 7, it’s not divisible by 7. 

And, what would be the next prime? 

11. 

You think it’s divisible by I I’? 
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Lisa: No. 
Interviewer: And uh 23? 
Lisa: No. I think it’s a prime number. 
Interviewer: Okay. So if you were to 
Lisa: I would have to figure it out the long way 

“The long way” for Lisa here means to keep dividing by primes. It is interesting 
to note that she stopped at I 1 to infer the primeness of 391, and did not even try 
to divide by 23, in order to obtain a direct answer for the interview question. 
Tanya, as well as Lisa, conjectured that 391 was a prime number. To the inter- 
viewer’s request for justification, she replied: 

Tanya: 

Interviewer: 
Tanya: 

Interviewer: 
Tanya: 
Interviewer: 
Tanya: 
Interviewer: 
Tanya: 
I. _] 
Tanya: 

Interviewer: 
Tanya: 

1 don’t know. I guess, like 1, urn, like I was saying with, 1 know there’s a 
way to do it, prime factorization, and I know that 23 is a prime number. 
but 1 guess, urn, I was assuming, for some reason, that as long as 391 was 
not a prime number. it would have a factor smaller than 23. a prime factor 
smaller than 23. 
And is there a reason why, why you thought that way’? 
Urn, I guess because in. in my experience in most cases. a large number, 
relatively large number like 391, would have. well any number not even a 
large number, any number has urn some small prime factors in addition to 
whatever else we have, we may have a large number, prime factors like 23. 
but they also tend to have things like 2 and 3 and 5 and 7. 
Well what if we took 2 very large prime numbers‘? 
Urn hm 
And multiplied them together to get another number? 
Urn hm. 
Would that number have a small prime in its prime factorization? 
(Pause) Umm. no, I don’t think so. 

1 guess it’s probably just more experience than anything, but it just seems 
to me that when you factor a number into its primes, I mean what you’re 
doing is, you’re trying to find the smallest. 1 mean numbers that can no 
longer be broken into anything smaller aside from 1 and itself, so that. I 
guess it’s just the whole idea of factoring things down into their smallest 
parts 
Urn hm. 
I guess gives me the idea that those parts are themselves going to be small. 

It is interesting to note here, that Tanya’s belief that prime decomposition is 
decomposition into “small” primes coexists with her awareness of existence of 
very large primes. 

DISCUSSION 

Sfard (1992) pointed out the difficulty in reification in general and suggested 
that, at some particular point or level, it may be “out of reach” for some learners. 
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We have illustrated this difficulty in the case of prime decomposition of a com- 
posite number into its prime factors. It may be the case that this difficulty stems 
from students’ previous experiences of expressing composite numbers as prod- 
ucts. The number 96, for example, can be written as 16 X 6 or 8 X 12. 
Obviously, the decomposition is not unique. Uniqueness, independent of order, 
appears only when the number has been completely decomposed into factors that 
are, one and all, prime. This seems to be the major difference, between factors 
and prime factors, that needs further pedagogical attention. The concept of prime 
decomposition is a unifying schema for prime and composite numbers; that is. it 
relies on these concepts and their interrelation. If the concepts of prime and 
composite numbers have not been adequately constructed, this will likely inhibit 
any meaningful conceptualization of prime decomposition. Although we have 
yet to empirically determine this to be the case, we have investigated similar 
phenomena with respect to inadequate encapsulations of conceptual objects, 
such as distributivity, factoring, and multiplication, used in higher order proces- 
ses pertaining to divisibility (Campbell & Zazkis, 1994; Zazkis & Campbell, 
1996). 

We hypothesize that the concept of divisibility is usually constructed, or 
encapsulated as an object, prior to its negative counterpart, the concept of indi- 
visibility. This is supported by the success of 16 participants to recognize 3, 5, 
and even 1.5, among the divisors of M (Question 1) followed by a failure to 
recognize 11 among M’s nondivisors. We note here that although the two infer- 
ences, “7 is one of M’s prime factors, therefore M is divisible by 7,” and “I 1 is 
not one of M’s prime factors, therefore M is not divisible by 1 1,” share similar 
linguistic structure, they are neither logically nor conceptually equivalent. In 
particular, the latter requires a conceptual understanding of the uniqueness of 
prime decomposition, whereas the former does not. We also find evidence sug- 
gesting that many students believe that decomposition into prime components 
means decomposition into small prime components, a belief that is quite likely 
based on extensive examples using small numbers from prior school experiences 
and textbook examples. 

We believe that a proper understanding of the concept of prime decomposition 
is central for the understanding of the structure of whole numbers. However, our 
data demonstrate that the Fundamental Theorem of Arithmetic has not been 
adequately grasped by a large number of preservice elementary school teachers. 
Whereas the existence of prime decomposition may be taken for granted, the 
uniqueness of prime decomposition appears to be counterintuitive and often a 
possibility of different prime decompositions is assumed. There is also a possi- 
bility, consistent with findings of other researchers (Fischbein & Kedem, 1982; 
Martin & Harel, 1989; Schoenfeld, 1988), that our participants do not understand 
the meaning and significance of the concept of theorem. Because the proof for 
the Fundamental Theorem of Arithmetic is most likely to be omitted in basic 
mathematics courses for preservice elementary school teachers, we feel that 
some pedagogical alternative is needed as compensation. In particular, we sug- 
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gest that specific instructional techniques based on the types of assessment ques- 
tions explored herein offer a means for preservice teachers to understand the 
procedural and conceptual dimensions of prime decomposition and the Funda- 
mental Theorem of Arithmetic. 
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