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This article draws an analogy between prime and irrational numbers with respect
to how these numbers are defined and how they are perceived by learners.
Excerpts are presented from two research studies: a study on understanding prime
numbers by pre-service elementary school teachers and a study on understanding
irrational numbers by pre-service secondary school teachers. Considering the
results of these studies, the author calls for further attention in teaching to
transparent features in representation of numbers and suggests several strategies
on how this may be achieved.

1. What do irrational numbers and prime numbers have in common?

The readers are invited to examine for a minute their answer or reaction to this
question, before continuing reading.

When we asked students this question, the most common response was either
a puzzled look, like saying without saying ‘What kind of stupid question is that?’
or simply ‘nothing’, accompanied by a shrug. The ‘nothing’ referred to the empty
intersection of the two sets. When we asked colleagues, the most common
response was a puzzled look, followed by something like ‘Oh! Never thought
of this!’

In this paper we draw an unusual analogy between prime numbers and irrational
numbers. This analogy refers to the lack of ‘transparent’ representation (the term is
explained below) for these numbers. We discuss how this may influence students’
perceptions of numbers and present an obstacle for understanding.

2. Definitions and images

Roughly speaking, irrational numbers are those that cannot be represented as
a quotient and prime numbers are those that cannot be represented as a product.
Inserting mathematical rigour into this rough observation we obviously
acknowledge that the above-mentioned quotient refers to a/b, where a is an integer
and b is a non-zero integer, whereas the above-mentioned product is a product
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of natural numbers greater than 1. However, our focus in what follows is not on

the rigorous constraints but on the words ‘cannot be represented’ – that is,

identifying concepts not by what they are but by what they are not and focusing

on representation.

Of course the above description is a vague part of students’ ‘concept image’ à la

Tall and Vinner [1] rather than a definition. Tall and Vinner use the term concept

image to describe ‘the total cognitive structure that is associated with the concept,

which includes all the mental pictures and associate properties and processes’

(p. 152). As such, ‘cannot be represented’ is a part of how these concepts are

perceived. A mathematical definition of an irrational number relies on the concept of

real number, which is formally defined using Dedekind cuts or Cauchy sequences.

However, long before these ideas are accessible for students, the existence of certain

representations is a distinguishing feature. That is, a rational number is a number

that can be represented as a/b, where a is an integer and b is a nonzero integer, and

an irrational number is a number that cannot be represented as a ratio of integers.

An equivalent definition for an irrational number refers to infinite non-

repeating decimal representation – that is, the non-existence of a finite or repeating

representation.

Further, a formal mathematical definition for a prime is that a prime number is

a natural number that has exactly two factors. (We prefer this definition to the one

that refers to divisibility by only 1 and ‘itself’ as it helps exclude the number 1 from

the list of primes). However, in a recent study on pre-service teachers’ understanding

of prime numbers [2] we noticed that neither definition has sufficient explanatory

power for students. Consider, for example, replies of several pre-service teachers

when asked to describe a prime number:

Sally : Prime numbers cannot be divided by anything other than 1 and itself.

Tom : Primes are those that cannot be factored, yeah, like cannot be
factored any further.

Karen : Prime number would be a number that would be divisible only by 1
and itself, it means it wouldn’t have any other factor, besides these
two factors, 1 and itself are the only factors.

Jenny : Prime numbers have only two factors. They are not having other
factors to be broken down into.

We notice that the formal definition of primes, that was presented to students

in the textbook and by the instructor, is either not mentioned at all in these

descriptions of primes or is accompanied by ‘negative’ descriptions. Participants

appear to think of prime numbers not in terms of properties of these numbers but in

terms of properties these numbers do not hold; prime numbers ‘cannot be divided’,

‘cannot be factored’ or ‘wouldn’t have/are not having any other factor’. Zazkis and

Liljedahl [2] reported that negative descriptions appeared in the responses of 15 out

of 18 participants either in their initial description of prime numbers (e.g. Sally and

Tom) or in their additional explanations (e.g. Karen and Jenny).

In summary, negative description is what irrationals and primes have in common,

either as a working definition or as a common perception.
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3. Representations: transparent and opaque

Lesh et al. [3] introduced the distinction between ‘transparent’ and ‘opaque’

representations. According to these researchers, a transparent representation has

no more and no less meaning than the represented idea(s) or structure(s). An opaque

representation emphasizes some aspects of the ideas or structures and de-emphasizes

others. Borrowing the terminology from Lesh et al. [3] in drawing the distinction

between transparent and opaque representations, Zazkis and Gadowsky [4] focused

on representations of numbers introducing the notion of relative transparency and

opaqueness. Namely, they suggested that all representations of numbers are opaque

in the sense that they always hide some of the features of a number, although they

might reveal others, with respect to which they would be transparent. For example,

representing the number 784 as 282 emphasizes – makes transparent – that it is a

perfect square, but de-emphasizes – leaves opaque – that it is divisible by 98.

Representing the same number as 13� 60þ 4 makes it transparent that the remain-

der of 784 on dividing by 13 is 4, but leaves opaque its property of being a perfect

square. In general, we say that a representation is transparent with respect to

a certain property, if the property can be ‘seen’ or derived by considering the given

representation.

Zazkis and Liljedahl [2] extended further the notions of transparency of

representation of specific numbers to the representation of sets of numbers posses-

sing the same property through the use of algebraic notation. That is, for a whole

number k, 17k is a transparent representation for a multiple of 17, as this property is

embedded or ‘can be seen’ in this form of the representation. However, it is

impossible to determine whether 17k is a multiple of 3 by considering the representa-

tion alone. In this case we say that the representation is opaque with respect

to divisibility by 3.

Applying the notions of opaqueness and transparency we suggest that an infinite

non-repeating decimal representation (such as 0.010011000111. . .) is a transparent

representation of an irrational number (that is, irrationality can be derived from

this representation), while representation as a common fraction is a transparent

representation of a rational number (that is, rationality is embedded in the

representation).

However, there is no ‘finite’ transparent representation for an irrational number

(the above example involves an infinite process). Consider, for example, the classical

proof of the irrationality of
ffiffiffi

2
p

. It starts with assuming, by contradiction, that the

number is rational. This assumption is essential because a rational number can be

represented and therefore can be manipulated, unlike its irrational counterpart.

Likewise, we usually denote a prime number by p, but this representation

is opaque in every sense. Primality cannot be derived from this representation in

a way that, for example, oddness of a number can be derived from the representation

2kþ 1. Representing a number as a product of two natural numbers greater than 1

is a transparent representation for a composite number. However, there

is no transparent representation for a prime number.

We believe that lack of transparent representation in both cases contributes

to the ‘negative’ perception of both sets, that is, perception of numbers in terms

of properties they do not possess. In what follows we present excerpts from

two research studies that examined understanding of primes and irrational
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numbers, respectively. Both studies focused on the role representations (or lack
thereof) play in students’ understanding of numbers.

4. On primes and representations

In our recent research study on understanding primality [2] the following was one of
the questions presented to a group for 116 pre-service elementary school teachers.

Consider F¼ 151� 157. Is F a prime number?
Circle YES/NO and explain your decision.

The participants in this study were students enrolled in a ‘Principles of math-
ematics for teachers’ course, which is a core course for certification at the elementary
level. The question was presented to participants upon completion of the unit on
elementary number theory.

Of the 74 students who claimed correctly that F is composite only 52 justified this
by its structure as a product, focusing the explanation on the definition of either
prime or composite numbers. A popular response was to calculate F and apply the
learned algorithms of checking for primality. This resulted in both correct and
incorrect conclusions, as many students checked divisibility of F only by a few
‘small’ primes. For example, Kathy described her strategy in the following way:

151� 157¼ 23707,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

23707
p

¼ 154
Check all prime numbers lower than 154 to see if the number is prime and
if none of them can divide 23707 then the number is prime.

However, this general description was followed by the list of prime numbers up to
23 and a conclusion that F was prime. Kathy’s strategy is not incorrect, but rather
unnecessary and inelegant in the given case; it is the incomplete implementation
of the strategy that led to a wrong conclusion.

Other popular responses included variations on the following:

. Both 151 and 157 are prime numbers, and 2 prime numbers multiplied together
are going to give another prime number

. It is prime because the last digit in the number is 7 and the sum of the digits is
the number 19. 19 is a prime number and is not divisible by anything but itself
and 1. So F is prime.

It is impossible, given a relatively large number, to conclude its primality without
a careful ‘checking’ by, for example, applying the familiar algorithm. However, when
a number is presented as a product, it is composite by definition, it has factors. The
unifying feature in incorrect responses or inappropriate justifications for correct
decisions is lack of attention to this transparent feature – the product of whole
numbers – in the representation of number F.

5. On irrationals and representations

In our recent research study on understanding irrationality [5] the following was one
of the questions presented to a group of 46 pre-service secondary mathematics
teachers.
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Consider 53/83. Let’s call this number M. In performing this division, the
calculator display shows 0.63855421687. Is M a rational or an irrational
number? Explain.

(Note that the numbers are carefully chosen so that the repeating nature of
the decimal representation is ‘opaque’ on a calculator display. The length of the
period in this case is 41 digits.)

The participants in this study had at least two calculus courses in their back-
ground, and the majority held either majors or minors in mathematics. However,
only about 60% of participants provided a correct response that was followed by
an appropriate justification – that is, M is rational since it is a quotient of two
whole numbers. We accept the criticism that this question was intentionally
misleading, but it was our goal to check what kind of distraction could be caused
by a calculator.

Other responses included the following:

. 53/83 is irrational because there is no pattern in the decimal 0.63855421687.

. 53/83 is rational because it terminates (calculator shows 0.63855421687).

. 53/83 could be rational or irrational – I cannot tell whether digits will repeat
because too few digits are shown. They might repeat or they might not.

. There is no way of telling if 53/83 is rational - unless you actually do the
division which could take you forever. Digits might terminate at a millionth
place or they might start repeating after a millionth place.

. It is possible that a number is rational and irrational at the same time.
For example, there are fractions that have non-repeating non-terminating
decimals, yet they can be represented as a/b.

. It is easy to turn a fraction into a decimal. But there is no easy, general way
of turning a decimal into a fraction. Looking at a decimal, unless it is
a terminating decimal, you cannot tell if it is rational or not.

In these responses we identify several overlapping themes: application of an incorrect
or incomplete definition, distraction by a calculator display, and lack of awareness
of the relationship between fractions and repeating decimals. However, the
overall tendency in these responses is lack of attention to or ignorance of the
representational feature – the quotient of integers – that is transparent.

6. The role of representations in mathematics education

The issue of representation is not new to mathematics education. However,
it has recently attracted fresh attention and examination in mathematics education
research and practice [6, 7]. The discussion of representations in mathematics is often
related to qualitatively different representational systems, such as written symbols,
pictures or manipulative models. However, our focus here is on representations
that unravel properties of numbers. What role do these representations play
in mathematics and in learning mathematics?

6.1. Tools for manipulation and communication

Consider for example the sum of two odd numbers. How do we prove that this sum
is even? One popular way is to take two odd numbers to be 2kþ 1 and
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2nþ 1 and to calculate their sum to be (2kþ 1)þ (2nþ 1)¼ 2kþ 2nþ 2¼
2(kþ nþ 1). Note that we started with a representation and interpreted the conclu-
sion based on another representation. As such, we have shown that in this case
representation serves as a tool for manipulating objects and also as a tool for
communicating properties of objects. An alternative visual or pictorial proof also
relies on representing objects, manipulating the representation and interpreting the
results of manipulation.

In a similar fashion, consider the sum of two rational numbers. It is always
rational because the representation

a

b
þ

c

d

can be manipulated to be a quotient

ad þ cb

bd

(considering for rigour that bd 6¼ 0 because b 6¼ 0 and d 6¼ 0 as well as the closure
in addition and multiplication of whole numbers).

Having a representation in hand allows an individual to detach him/
herself from the meaning of this representation and operate on the symbols alone,
making the manipulations automatic, and returning later to interpreting the result of
the symbolic manipulation [8]. Further, the nature of the manipulation to be
performed may influence the choice of representation. It is indisputable that multi-
plication of large numbers is better manipulated when these numbers are represented
in the Hindu-Arabic, rather than the Roman, numeration system. Likewise, for the
purpose of multiplying complex numbers, the polar representation is preferable
to the ordered pair representation of complex numbers.

Consider now the sum of two irrational numbers. Sirotic and Zazkis [9] reported
that 19 out of 46 (41%) pre-service secondary school teachers participating in her
study claimed that this sum (in fact the sum of two positive irrational numbers) is
always irrational. Having intuitive disposition towards closure – that is, a belief that
an operation with two objects of a certain kind will result in a third object of the
same kind [2] – these students did not seek counterexamples, but attempted to justify
their intuitive belief with examples or erroneous claims. Two representative examples
of such claims are:

. Two numbers that have an infinite number of non-repeating digits to the
right of the decimal will have an infinite number of non-repeating digits
in their sum.

. You cannot add
ffiffiffi

2
p

þ �, but you can add their decimal representations; the
sum cannot be a terminating decimal.

Sirotic and Zazkis [9] interpreted these results as over-reliance on decimal
representation of irrational numbers. It was further noted that due to lack of
algorithmic experience students do not perceive expressions such as 1þ

ffiffiffi

2
p

as
numbers, a perception that would automatically lead to a variety of counter
examples. Further we believe that the lack of a finite symbolic represen-
tation for irrational number impedes students’ ability to manipulate these
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numbers in a way that rational numbers can be manipulated relying on standard

representation.

6.2. Tools for understanding

Researchers draw strong connections between the representations students use and

their understanding [10, 11]. Understanding is connected to the ability to apply

various representations and to choose one appropriate to the problem situation.

Janvier [12] describes understanding as a ‘cumulative process mainly based upon the

capacity of dealing with an ‘ever-enriching’ set of representations’ (p. 67).

Furthermore, representations are considered as a means to form conceptual

understanding. The ability to move smoothly between various representations of the

same concept is seen as an indication of conceptual understanding and also

as a goal for instruction [3]. Likewise, Even [13] suggests that knowledge of different

representations is intertwined with knowledge of underlying notions and contexts.

In our recent research on understanding irrational numbers we concluded

that students relied on decimal representations rather than common fraction

representations. We further observed that the connection between two ways to

describe irrational numbers – as lacking representation as a ratio and having infinite

non-repeating representation – were not well understood. Zazkis and Sirotic [5]

described this lack of connection as a ‘missing link’ in understanding. Yet again we

believe that one of the reasons for this missing link is a lack of transparent symbolic

representation for irrational numbers. That is to say, drawing correspondence

between decimal and common fractions, finite or repeating decimals correspond to

fractions, but infinite non-repeating decimals correspond to objects that lack

representation and therefore are hard to grasp.

6.3. Tools for mental constructions

Representations are also described in the literature as tools for generalization and

abstraction, as expressing generality can be achieved by an appropriate choice of

representation. Moreover, according to Kaput [14], possessing an abstract math-

ematical concept ‘is better regarded as a notationally rich web of representations and

applications’ (p. 61).

Treating mathematical concepts as objects supports the construction of

corresponding mental objects in students’ mind [15, 16]. One possible way to

treat concepts as objects is to involve them as inputs in mathematical processes,

that is, to act on them – to perform operations on them. In order to act on

representatives of certain sets of numbers, representation is an asset. We have

mentioned above that in order to consider the sum of two odd numbers we represent

them as 2kþ 1 and 2nþ 1 and perform the operation of addition by acting on this

representation. Of course one can use symbols such as x and y for the two odd

numbers, but in such a case no conclusion about the parity of the sum can be drawn

from considering xþ y. Thus, the choice of representation is of importance.

Researchers agree that achieving an object conception of mathematical

concepts is challenging. We suggest that the lack of transparent representation for

prime numbers as well as for irrational numbers creates an obstacle for acting on

them, and, as such, creates an additional difficulty for constructing a mental object.
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7. Role of examples

Examples play an important role in learning mathematics. In this section we will

argue that this role is even more crucial in cases of irrational and prime numbers –

where the exemplified objects lack transparent representation.

It is hard to imagine learning mathematics without the consideration

of specific examples. Examples provide specific cases that fit the requirements

of the definition under discussion. Examples are used to verify statements and to

illustrate algorithms or procedures. Examples are said to be important component

of expert knowledge [17].

Mason and Pimm [18] claim that when a teacher presents an example, he or she

sees its generality and relates to what the example represents. However, a novice

learner may notice only particular features of a specific example, paying

attention to the example itself and not to what it stands for. Therefore, Mason

and Pimm advocate the use of so-called ‘generic’ examples, examples that represent

the general case and attempt to ignore the specifics of the example itself. A similar

view is expressed by Lakoff [19] who believes that prototypes can serve the purposes

of best and salient examples.

Examples also serve as handy tools when students are required to deal with

objects that have not yet been fully constructed in their minds. Considering

special cases, or specializing, is a useful heuristic [20, 21], the purpose of which is

to guide students towards general solutions. However, students who are unable to

deal with the general case often base their reasoning on consideration of specific

examples. This strategy was described by Hazzan [22] as one of the ways to reduce

the level of abstraction.

7.1. Examples of primes

Let us turn now to specific examples of prime numbers. As an exercise, please list any

ten prime numbers. It is likely that your examples did not include three or four digit

numbers. It is likely that only ‘small primes’, such as 7, 5, 19 or 23 appeared on the

list. Those are ‘generic’ examples of primes. In order to provide an example of a

‘large’ prime we need to consult prime number tables or choose a number that could

be prime (considering the immediately recognizable properties such as odd, not

divisible by 5 or 3) and check. We cannot easily construct a prime number (the

existing computational algorithms are not ‘transparent’) in the same way that we can

construct a number that, for example, leaves a remainder of 7 on division by 17.

The existence of a transparent representation for a specific number property can

help in abstracting and generalizing this property. However, a lack of a transparent

representation for prime numbers may lead students to generalize from examples. Of

course, generalizing from examples takes place regardless of the available represen-

tations; however, with the lack of a transparent representation, this approach may be

preferable for constructing an understanding of primes. Based on generalizing from

examples and experience, some students believe that prime numbers are small and

that every composite number must be divisible by a small prime [23, 2]. A specific

illustration of the latter belief is presented in a previous section, in Kathy’s solution

to determine primality of the number F. (She concluded that the number was prime

by checking its divisibility by primes up to 23.)
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7.2. Examples of irrationals

Let us turn now to examples of irrational numbers. As an exercise, ask your students
to list any 10 irrational numbers. In our experience, some students get stuck after
listing

ffiffiffi

2
p

and �. Sirotic [24] reports on the following conversation witnessed while
observing a mathematics lesson in grade 9:

Student : Is � the only irrational number?
Teacher : No, there is also

ffiffiffi

2
p

Mathematically speaking, the teacher is right. To show that some object is
not unique in its kind it is enough to point to another object of the same kind.
However, we see in this teacher’s response a missed opportunity to open students’
minds at least to a variety of examples, if not to an uncountable infinity of
irrational numbers. Indeed,

ffiffiffi

2
p

and � are the generic examples for irrational
numbers. They also exemplify irrational numbers of different kinds: one is algebraic
and one is transcendental. However, the danger in the case of irrational numbers is
that what is intended as ‘generic’ examples may become limiting examples, if other
examples are not mentioned.

7.3. Enriching the repertoire

If exposure to only a limited set of examples is troublesome, then enriching students’
repertoire of examples could be beneficial. Young learners who are exposed only to
triangles that are isosceles and presented always as ‘standing on the base’ have
trouble recognizing scalene triangles or even isosceles triangles in other orientations
as being ‘triangles’. Having recognized this limitation, the authors of current
mathematics textbooks for elementary school are careful in presenting different
kinds of triangles and varying their spatial orientation. Analogous attempts
can be made with numbers, both prime and irrational. Calculator availability
should encourage exercises of factoring not only ‘nice’ numbers like 3600 (the
have only 2 s, 3 s and 5 s in prime decomposition), but also numbers like 31487
(¼ 23� 372) or 65783 (¼ 157� 419). This experience will ultimately extend the
repertoire of examples available to students and provide some experience with larger
primes.

And why is it always the ‘classical’ square root of two? It could be the case
that a teacher looking at

ffiffiffi

2
p

recognizes the generality of this irrational number
as a square root of any prime. Zazkis [25] has shown difficulties that undergraduate
students experienced in trying to mimic the proof of irrationality of

ffiffiffi

2
p

to irrationality of
ffiffiffi

3
p

, having trouble in generalizing ‘evenness’ to divisibility by 3,
or by any prime for that matter. Maybe, if once in a while we mention

ffiffiffiffiffi

17
p

, the
idea of irrationality will be more easily generalized to include ‘square root of any
prime’.

As mentioned above, examples are an important component of expert’s
content knowledge. Examples are usually given or shown to students by a teacher.
We suggest that these ‘shown’ examples, or examples that emerge in solving ‘given’
problems could be enriched significantly. Further, there is another method of
enriching the repertoire of examples available to learners – these are learner-
generated examples, discussed in detail by Watson and Mason [26]. Watson
and Mason make a case for a teaching strategy that involves learners in
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generating examples according to given constraints. For example, rather than, or in
addition to, engaging in a ‘standard’ task of calculating the Least Common Multiple
(LCM) of two given numbers, learners could be invited to give an example of a pair
of numbers that have LCM of, say, 360. When one pair is given, the teacher may ask
for another, and another, another. . . The ultimate goal is for learners to consider the
structure of the numbers in all the possible pairs.

Implementing this strategy we can ask students to give an example of an
irrational number in a given interval, say between 0 and 1. Avoiding infinite decimal
representation, what is the first example that comes to your mind? Is it the ‘generic’
ffiffiffi

2
p

/2? Or maybe �/6? Further, we can ask students to give an example of a prime
number between 400 and 420. Of course it is impossible to ‘pick’ such a number
without further checking, but it is important for students to ‘see’ that 419 is a better
candidate than 415 or 417. What knowledge and understanding is needed or can be
developed in engaging in a task like this? We believe that by sieving out examples
that do not satisfy the requested properties a further understanding of structure can
be developed.

8. Summary and discussion

The two studies mentioned in this article – understanding primality and under-
standing irrationality – started independently of each other, but converged to the
common theme, the theme of representation. In summary, the common element in
both studies is that the questions presented to participants included a transparent
representation for a number that is not prime and for a number that is not irrational.
The common aspect in participants’ responses was that the transparent features of
the given representations – that make both questions trivial – were either not
recognized or not attended to.

Students’ tendencies in addressing the above question can be explained
from several theoretical perspectives. The most popular could rely on object/process
distinction/duality [15, 16] and suggest that some students do not recognize numbers
represented as either products or quotients as objects and consider those as processes
or instructions to perform operations. Using terminology introduced here, we
claimed that these participants did not capitalize upon transparent features of
representations. Having explained what makes a representation ‘transparent’ we
acknowledged difficulties in representing prime and irrational numbers. We further
claimed that lack of transparent representation increases the role of examples that
students are exposed to in their construction of related concepts. We expressed a
belief that enriching the variety of examples may help students in their mental
constructions.

It is a challenge in undergraduate mathematics education to break students’
habits regarding the execution of algorithms and redirect their attention to
the structures of representation. This challenge is especially crucial when working
with pre-service teachers, the educators of future populations of students. How
can we teach students to see what is visible, to notice what is transparent?
There are no simple solutions, though some simple ‘trivial’ questions like
the above could be a starting point. But most importantly, if we want students
to see what we see, we could start by simply asking them to look, and then to
look again.
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