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DIVISIBILITY AND MULTIPLICATIVE
STRUCTURE OF NATURAL NUMBERS:
PRESERVICE TEACHERS’ UNDERSTANDING

RINA ZAZKIS, Simon Fraser University
STEPHEN CAMPBELL, Simon Fraser University

This study contributes to a growing body of research on teachers’ content knowledge in mathematics.
The domain under investigation was elementary number theory. Our main focus concerned the con-
cept of divisibility and its relation to division, multiplication, prime and composite numbers, fac-
torization, divisibility rules, and prime decomposition. We used a constructivist-oriented theoretical
framework for analyzing and interpreting data acquired in clinical interviews with preservice teach-
ers. Participants’ responses to questions and tasks indicated pervasive dispositions toward procedural
attachments, even when some degree of conceptual understanding was evident. The results of this
study provide a preliminary overview of cognitive structures in elementary number theory.

This study is a contribution to the growing body of research on teachers’ content
knowledge in mathematics. The specific content under investigation is elementary
number theory. Elementary concepts of number theory, despite their importance to
the field of mathematics, have received scant attention in mathematics education
research. Previous studies have used concepts of elementary number theory as a math-
ematical context for investigating different issues; for example, Martin and Harel
(1989) used notions of divisibility in research on preservice teachers’ understand-
ing of mathematical proof. Leron (1985) adapted a theorem on the infinity of prime
numbers to illustrate a more constructive approach to indirect proofs. Lester and
Mau (1993) used prime factors in research on problem solving in a course for prospec-
tive elementary school teachers. Movshovitz-Hadar and Hadass (1990) applied proofs
for irrationality of square roots of prime numbers for investigating the pedagogi-
cal role of paradox and conflict resolution in the education of prospective mathematics
teachers. In our research, number-theory concepts themselves are the primary
focus of investigation, rather than a means to another end.

The main emphasis of this study is concepts involving divisibility and the mul-
tiplicative structure of natural numbers. Previous investigations of multiplicative
structures have focused mainly on contextual situations, that is, a story (word) prob-
lem that can be solved by applying either multiplication or division (e.g., Ball, 1990;
Graeber, Tirosh, & Glover, 1989; Vergnaud, 1988). In accordance with this line of
investigation, Schwartz (1988) considered arithmetical concepts and operations as
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a modeling activity in terms of practical applications and Greer (1992) provided an
extensive summary of multiplication and division as models of situations. These
studies and many others have revealed numerous complexities in understanding ele-
mentary arithmetic in various pedagogical contexts. We attempt to complement these
studies with an investigation of multiplicative structures of natural numbers per se.
By multiplicative structure we do not mean the multiplicative structure of a prob-
lem situation but rather the more abstract multiplicative structure of natural num-
bers independent of situation or context (Freudenthal, 1983, p. 112). That is to say,
we consider multiplicative structure in terms of conceptual attributes and relations
pertaining to and implied by the decomposition of natural numbers as unique
products of prime factors, as defined by the fundamental theorem of arithmetic.

The objectives motivating this study were threefold—(a) to explore preservice
teachers’ understanding of elementary concepts in number theory, with emphasis
given to concepts involving divisibility and the multiplicative structure of natural
numbers; (b) to analyze and describe cognitive strategies used in solving unfamiliar
problems involving and combining these concepts within this context; (c) to adapt
a constructivist-oriented theoretical framework for the analysis and interpretation
of these strategies and to model the cognitive structures supporting them.

The purpose and utility of this investigation is to design and aid the implemen-
tation of pedagogical methods that meet contemporary professional-development
standards for teachers in the conceptual understanding of mathematics. We agree
with Steffe (1990) and many others that improvement of mathematics education starts
with improvement of the mathematical knowledge of teachers. Improvement of the
mathematical knowledge of teachers starts with a deeper understanding of their exist-
ing knowledge and its construction. This study provides details of knowledge, or,
to use Schoenfeld’s terminology, serves to provide a finer granularity (Schoenfeld,
Smith, & Arcavi, 1992) in the domain of divisibility and factorization.

METHODOLOGY

Participants

Twenty-one preservice elementary school teachers participated in the study. They
were volunteers from the group of students involved in a professional development
course called “Foundations of Mathematics for Teachers.” The mathematical
background and experience of the participants varied considerably. Concepts or top-
ics of their curriculum included factorization, least common multiple, greatest com-
mon divisor, prime and composite numbers, prime decomposition and the funda-
mental theorem of arithmetic, and divisibility and alternative “divisibility rules” for
the numbers 2, 3, 5, and 9.

Data Collection Procedures

Within a 2-week period, approximately a week after the number-theory-related top-
ics were covered in the course, individual clinical interviews with preservice elementary
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teachers were conducted using an instrument that allowed for flexibility in probing
and clarifying participants’ understanding of number theory concepts. The instrument
was designed to reveal our participants’ ability to address problems by recall or con-
struction of connections within their existing content knowledge. Our objective was
not to determine statistical occurrences of particular understandings in any detail but
rather to probe for and determine distinctive qualitative features of cognitive struc-
ture commonly exhibited in this domain. The questions covered a spectrum ranging
from elementary number concepts (e.g., What does it mean to you that a number is
an even number?) to more subtle and sophisticated problems requiring deeper
insight into the elementary theoretical properties and relationships of numbers (e.g.,
What is the smallest positive integer divisible by every integer, 1 through 10?). The
specific subset of questions used in this report is described in the next section.

During the interviews, which lasted about 1 hour each, the participants were probed
for understanding that may not have been apparent from their initial responses. A
consequence of this methodological strategy was that not all, nor necessarily the same,
questions were addressed by each participant. In circumstances in which participants
experienced difficulties with a particular question, they were encouraged to reflect
on and articulate the nature of those difficulties. In cases in which such activity proved
inadequate for leading the participant to a realization of a solution or a resolution of
his or her difficulties, the interviewer would progressively allude to or provide addi-
tional information. Calculators were available to participants upon request.

Interview Questions

The questions were designed to clarify our participants’ understanding of procedures
and concepts relating to divisibility and to investigate their ability to make connections
and inferences from them. All questions presented specific examples of numbers in
order to minimize any complexities added by algebraic abstraction. The interview ques-
tion sets analyzed for this report and the rationale for their formulation are as follows.

Question Set 1

Consider the number M = 33x 52x 7.
Is M divisible by 77 Explain.
Is M divisible by 5, 2,9, 63, 11, 15? Explain.

We designed these questions to investigate our participants’ understanding of the
connection between the concepts of divisibility and prime decomposition. We were
interested in determining whether our participants would take advantage of the fact
that M is given as a product of its prime factors, or whether they would actually cal-
culate the value of the product and then divide. In our choice of numbers as divi-
sors we included prime factors of M, prime nonfactors of M, and composite factors
of M in order to investigate the extent to which the nature of the divisor would educe
differences in our participants’ approach to inferring divisibility.

Question Set 2
(a) Is 391 divisible by 23?
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(b) Is 391 divisible by 467

We designed these questions to investigate our participants’ understanding of the
connection between the operation of division and the concept of divisibility by pro-
viding cases in which division is warranted (Part a) and in which division is sub-
sequently unnecessary (Part b). We chose the numbers for Part a carefully to
eliminate any obvious applications of divisibility properties for specific numbers
such as 2, 3, 5, and so forth.

Question Set 3

Consider the numbers 12 358 and 12 368. Is there a number between these two
numbers that is divisible by 77 By 12?

These questions served to assess our participants’ ability to minimize or forego
calculation and argue for the existence or nonexistence of a number with a partic-
ular property. We were interested in participants’ understanding of the modular dis-
tribution of numbers sharing the same divisibility property. We were particularly
interested in determining specific procedural and conceptual strategies used in address-
ing these questions.

Question Set 4

(a) The number 15 has exactly four divisors. Can you list them all? Can you
think of several other numbers that have exactly four divisors?

(b) The number 45 has exactly six divisors. Can you list them all? Can you think
of several other numbers that have exactly six divisors?

The participants were presented with either Part a or Part b of this question set,
depending on their success with previous questions. We designed this question set
to determine the extent to which the participants would systematically construct num-
bers with the desired properties. We also used it as an indicator of thematization
of multiplicative structure in general.

Data Reduction

We recorded, transcribed and then categorized the interviews with respect to ques-
tion sets, their difficulty, and identifiable cognitive patterns of various degrees of
sophistication exhibited by the participants. We analyzed and coded responses to
the interview questions in accordance with their contribution to the purposes for which
the interview questions were originally designed. In particular, we were con-
cerned with (a) applying and evaluating the adequacy of our theoretical framework
(see below) for interpreting the development of divisibility concepts and (b)
exploring procedural and conceptual relationships between divisibility and division.
As our investigation progressed, a third area of analysis, with important implica-
tions regarding the first two, emerged, (c) the use of divisibility rules.
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THEORY

Action-Process-Object (APO) Framework

The particular interpretation of constructivism used in this study is based on Dubinsky’s
action-process-object (APO) developmental framework (Dubinsky, 1991). Dubinsky
developed this framework as an adaptation of some of Piaget’s ideas that are cen-
tral to the study of advanced mathematical thinking. This framework has been used
previously in studies of undergraduate mathematics topics such as functions and
groups (Ayres, Davis, Dubinsky, & Lewin, 1988; Breidenbach, Dubinsky, Hawks,
& Nichols, 1992; Dubinsky, Leron, Dautermann, & Zazkis, 1994). We hoped that
by applying this framework to a domain involving less advanced mathematical under-
standing, we would contribute to determining the extent to which APO can be use-
ful for investigating the development of mathematical understanding in general.

A central tenet of Piaget’s theory is that an individual, disequilibrated by a perceived
problem situation in a particular context, will attempt to reequilibrate by assimilating
the situation to existing schemas or, if necessary, reconstruct particular schemas to accom-
modate the situation. Dubinsky (1991) stated that the constructions involved are
mainly of three kinds—actions, processes, and objects. An action is any repeatable phys-
ical or mental manipulation that transforms objects in some way. When the total
action can take place entirely in the mind of an individual or just be imagined as tak-
ing place without the individual’s necessarily running through all of the specific steps,
the action has been interiorized to become a process. New processes can also be con-
structed by inverting or coordinating existing processes. When it becomes possible for
a process itself to be transformed by some action, then we say that it has been encap-
sulated to become an object. We express the construction of connections that relate dis-
parate actions, processes, or objects to a particular object as the thematization of the schema
associated with that object. In this way, we take each object to be a kernel of a schema.
These notions will be illustrated below as we explore the extent to which this theoret-
ical framework contributes to an understanding of number-theory-knowledge construction
and development.

The cognitive events of interiorizing an activity into a process, encapsulating a
process into an object, or thematizing a schema are accounted for in this framework
in terms of equilibration. For instance, some form of disequilibration within a par-
ticular context, such as a need to perform an action on an existing process, is taken
to serve as a precondition of or motivation for encapsulation, with encapsulation
subsequently restoring equilibration. Equilibration serves as an explanatory prin-
ciple in what otherwise would be a purely descriptive framework.

Divisibility: An Abbreviated Illustration of Genetic Decomposition

We used the action-process-object framework to guide the analysis and interpretation
of the interviews for the manners in which the participants appeared to think about
the specific topics and problems presented to them. We illustrate the application of
the framework with an abbreviated phenomenological analysis or genetic decom-
position of the concept of divisibility. This is a hypothetical analysis of the way in
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which the concept of divisibility could be constructed by a learner, viewed in terms
of the APO theoretical framework.

A construction of divisibility as a conceptual object starts with specific examples
of divisors. In early examples the divisors are usually small numbers such as 2, 3, 4,
and 5. Initially, divisibility by 3, for example, is an action: A learner has to actively
perform division and obtain a quotient of a whole number (no remainder) in order to
conclude a posteriori that a number is indeed divisible by 3. Later, the activity of divi-
sion may be interiorized as a process, in which the action is intended but not actually
performed. In this case, the student has understood the notion that it is the division pro-
cedure itself that determines whether or not a whole number satisfies the “rule” or cri-
terion for divisibility. In this way, the action/process distinction can be used to distinguish
between what we refer to as procedural activity and procedural understanding.

Processes of divisibility with particular numbers may be coordinated to create new
processes of divisibility, that is, processes for new numbers. For example, coordina-
tion may be demonstrated when divisibility by 2 and 3 is used to infer divisibility by
6. Furthermore, some processes can be inverted. For instance, knowing that the sum
of a whole number’s digits is divisible by 3 implies that the number itself is also divis-
ible by 3 and can be inverted and used to construct numbers divisible by 3.

Encapsulation of divisibility as an object could result in an understanding of the
concept of divisibility as an essential property of whole numbers independent of
the procedural aspects of division. At this level the concept of divisibility is seen
in terms of a bivalent, “yes or no” property of whole numbers. Eventually, it
becomes possible to conceive that, for natural numbers a and d, a is, a priori, either
divisible by d or not divisible by d. An object of divisibility can be evidenced in mak-
ing inferences such as, “If a is divisible by b, and b is divisible by c, then a is divis-
ible by ¢.” When divisibility is related to other cognitive structures such as those
involving factorization and prime decomposition, we would say that divisibility comes
to be thematized to form a higher order object, or schema. The process/object dis-
tinction will be used to distinguish between what we refer to as procedural under-
standing and conceptual understanding. Conceptual understanding is indicated by,
but not restricted to, encapsulation of processes as objects as it pertains to thema-
tization of objects as well.

In accordance with our constructivist-oriented framework, we view mathemat-
ical formalisms as concise expressions of processes and objects that have been prop-
erly interiorized, encapsulated, and thematized. The “properness” of an object’s inte-
riorization, encapsulation, and thematization involves philosophical issues that would
lead beyond the scope of this article. Nevertheless, we take “proper’” here to mean
“consistent with mathematical convention.” Our pedagogical perspective in this regard
is that conceptual understanding should converge toward an understanding of the
mathematical formalism.

DATA ANALYSIS AND INTERPRETATION

We begin with a spectrum of developmental levels of our participants’ understanding
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of divisibility, analyzed and interpreted in terms of the APO framework. We con-
sider the APO framework as both a model of cognitive structure and a lens for inter-
preting the data that allows the data to be seen meaningfully in many cases.
However, as will become evident below, there are important areas where the data
become blurred. Naturally, we have been selective in the presentation of our data
in order to bring out what we feel are the general features of this cognitive domain.
Some of these features may be further resolved with the presentation and acquisi-
tion of more data, whereas others may require refinements in the APO framework
itself. Furthermore, we acknowledge the possibilities of alternative interpreta-
tions of the data, especially in the blurry areas, from within the APO framework and
from alternative theoretical perspectives. We view these possibilities as offering the
potential for further research in this area.

Development of Divisibility Concepts

Actions. A minority (6 out of 21) of the participants in this study group were able
to consistently discuss and demonstrate an understanding of divisibility as a prop-
erty of, or arelation between, natural numbers. However, the majority (15 out of 21)
were unable to do so without at some point performing divisions that such under-
standing would render unnecessary. Of these, about half (8 out of 15) relied exclu-
sively on division procedures. The latter tendency is an indication that their construction
of divisibility had not developed beyond actions. Such a reliance on procedural activ-
ity justifies and supports adherence to and dependence on specific examples that, in
turn, reinforce a strictly empirical attitude toward mathematics—as this excerpt from
the interview with Nicole (arising from Question Set 1) exemplifies:

Interviewer:  Suppose I have an even number which is divisible by 7. Say I’ve now divided
it by 7. Would I still end up with an even number?
Nicole: You’d have to try. You’d have to try to see if it works.

The claim “you’d have to try to see if it works” or “you cannot be sure that the
result is a whole number if you don’t know what the result is” seemed to be typi-
cal in this group of preservice teachers. Even participants who attempted to provide
explanations in terms of multiples and divisors often made statements expressing
their tendency “to work it out to make sure.” This level of understanding requires
the carrying out of an action, not only to obtain but also to assure one’s confidence
in the answer. Thinking of divisibility as an action is further exemplified in the fol-
lowing excerpt (from Question Set 3).

Interviewer: Do you think there is a number between 12 358 and 12 368 that is divisi-

ble by 7?

Nicole: T’ll have to try them all—to divide them all—to make sure. Can I use my
calculator?

Interviewer: ~ Yes, you may, but in a minute. Before you do the divisions, what is your
guess, what is your bet?

Nicole: I really don’t know. If it were 3 or 9 I could sum up the digits. But for 7 we

didn’t have anything like that. So I will have to divide them all.
[Indeed, Nicole performed several divisions to find the number that gives a whole number
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quotient when divided by 7 and only then answered the original question positively.]

Nicole: Yes, there is one. Twelve thousand three hundred and sixty-two divided by
7 is 1766 exactly. No decimal part. So this is the number.

Interviewer: Do you think there is another number in this interval that is divisible by 7?

Nicole: I'll just keep checking, "cause I can’t see a pattern happening, I don’t know
an easier way that you do it to find—in a glance.

For Nicole the approach to decide whether there is a number between 12 358 and
12 368 that is divisible by 7 was to divide by 7 all the numbers in the given inter-
val. “Keep checking” is the main strategy and may be the only strategy Nicole was
aware of, because she claimed she didn’t “know an easier way that you do it.” Another
action is evident in the following excerpt:

Interviewer:  T'm asking you to look at the number, which is 3° x 5% x 7. Do you think
this number is divisible by 7?

Armin: Okay, first I'm just multiplying 27 x 25 x 7 and I get 4725, and now I need

to divide them all by 7.
Interviewer: ~ Okay.
Armin: So [I] get 675, so you have it divisible.

Interviewer:  So this number is divisible by 7. Could you know this without using the cal-
culator and without finding out the product of all the numbers?

Armin: Could I know it? Um, well,  know we discussed something in class about
if, if one number is divisible by 7, then another number is divisible—or what
was it—this number is divided by 7, and this number is divided by 7, then
the sum of those numbers should divide by 7.

Interviewer:  1f I asked you whether this number was divisible by 5, what would you do?
Armin: I’d do the same thing.

Armin, responding here in Question Set 1, preferred to calculate the number M
and decide about its divisibility by 7 by performing division. Unlike Nicole,
Armin seems to be aware that there are ways other than dividing to infer divisibility.
She recalled a theorem related to divisibility, if a | b and a | c then a | ® + o),
which is not applicable in this case. When subsequently asked whether M was divis-
ible by 5, Armin still claimed, “I’d do the same thing,” which is multiply and then
divide by 5.

Interiorization: from action to process. Interiorization can be characterized as a shift
from a procedural activity to an ability to reenact that activity in the imagination with
some understanding of the influence of initial conditions regarding outcome. Such a
shift is what we use to distinguish an action from a process. Thinking of divisibility
as a process is exemplified in the following excerpt (from Question Set 3) in the inter-
view with Jane. She starts with explicit division, but then refers to and draws her
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conclusion on the basis of intended division. This illustrates a procedural understanding,
rather than just the procedural activity, of long division.

Interviewer: Do you think there is a number between 12 358 and 12 368 that is divisi-

ble by 77
Jane: Let’s see. [Performs long division] 12 359 divided by 7 gives remainder 4.
So, 60, 61, 62,... 12 362 will be divisible by 7.
Interviewer:  It’s interesting. How did you know? I haven’t seen you doing division.
Jane: If this one (12 359) gave remainder 4, the next one will give remainder 5, and

the next one, 6; and the next one, 7; which means zero, or no remainder. So
if you divide 12 362 by 7, there will be no remainder—it will be divisible.

Jane demonstrates a procedural understanding that an increment of one in the div-
idend will result in an increment of 1 in the remainder, and that the latter is taken
modulo the divisor 7 (presumably with a concomitant increment of 1 in the quo-
tient). Having calculated that 12 358 leaves a remainder of 4 when divided by 7,
she counts up three numbers to reach the number divisible by 7. Still, Jane does not
claim the existence of such a number before she actually finds one. Also note that
in the last sentence quoted above, Jane provides a clear statement of divisibility in
terms of division.

As the following excerpt indicates, Andy is in a transitional stage toward the inte-
riorization of divisibility.

Interviewer:  Would you please look at the number that is 3* x 52 x 7. I would call this

number M.

Andy: Okay.

Interviewer:  Is M divisible by 77

Andy: (Pause) Um, okay, I know that this is 27 and this is 25,... and you’re ask-
ing divisible by 7?

Interviewer:  Mm hm.

Andy: Oh, um, I"d say “no.”

Interviewer:  And why do you think so?

Andy: Um, I guessed “no” because 25 isn’t divisible by 7 and 27—oh no, maybe
not—I wouldn’t be able to guess, I'd have to multiply it out.

Interviewer: Do you think there is another way?
(Pause)

Andy: Or could I do—oh no—I could do “3 x 5 is 15" and then add those two. (Pause)
Could I do that?

Interviewer:  So you have written “15%x 7.”

Andy: Mm hm, and then I would say that it would be divisible by 7 because you’re

multiplying it by 7, because 7 is a, a factor.

Interviewer:  Factor. Please help me understand something. You looked at this expres-
sion, “27 x 25 x 7,” and you couldn’t draw your conclusion from here, and
then you looked at this expression, which is “15° x 7,” and this helped you
to draw your conclusion. Why was it easier for you to look at this [ 156 7]
than to look at this [27 X 25 x 7 }?

Andy: Um, (pause) because this [15°]is one number.

Early on, in the course of Question Set 1, Andy attempts to carry out the action, “to
multiply it out,” in order to solve the problem. Following the interviewer’s suggestion
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to think of “another way,” Andy “chunks” 3° x 5 to 15° in order to infer divisibility.
The interviewer ignores her error in an attempt to detect in what way the new expres-
sion can help her to draw a conclusion. It seems evident from her answer that she
has failed to associate the product 27 x 25 with a single numerical entity. On the
other hand, when 7 has one multiplicand, Andy claims it “would be divisible by 7
because you’re multiplying it by 7.” She is able to recognize 7 as a factor when it
is one of two factors, but apparently cannot see it as a factor in the list of more than
two factors. Minutes later in the interview Andy claims divisibility by 5 and
denies divisibility by 2:

Andy: Um, I guess, yeah I could. You probably could say that 5 would be a fac-
tor, but that 2 wouldn’t be a factor.

Interviewer: ~ And why?

Andy: Because, because S is, S is a factor of this number.

Interviewer: ~ How do you know?

Andy: Because you’ve multiplied it to get the answer, to get the sum or

total, whatever.

We find Andy, despite referential difficulties between product and sum, to be in
the transition stage from thinking of long division as an action to thinking of it as
a process. Perhaps the interview stimulated this transition. Unfortunately, it was dif-
ficult to ascertain whether Andy actually constructed new knowledge in the course
of the interview or whether she belatedly recalled it. She begins with a reference
to explicit action, but later the action becomes intended. Andy seems to have been
thinking of (possibly prime) factors of M as something one would “multiply by”
and this is a step toward procedural understanding.

Also note that, despite her ambiguity of reference, Andy appears to have been think-
ing of divisibility in terms of multiplication: “It (M) would be divisible by 7 because
you’re multiplying it (M + 7 or actually 3* x 5 or 15°) by 7, because 7 is a, a factor.”
This appears to contrast with Jane’s thinking of divisibility in terms of division: “So
if you divide 12 362 by 7 there will be no remainder—it will be divisible.” It is inter-
esting to note Jane’s and Andy’s use of the future tense in the discussion of divisibil-
ity. Their statements—"it would be divisible” or “if you divide, it will be divisible”—
may be interpreted as a transitional dependence on the procedural activity of division
and/or multiplication. Their responses build on two different conceptual views of divis-
ibility (see discussion), which Lena brings together in the excerpt below. Lena (also
in an excerpt from Question Set 1) notes a seemingly trivial and yet profoundly
important relationship between divisibility and multiplication:

Lena: Yeah, well, I was thinking that, um (pause), I don’t know what I was think-

ing I guess—well no, I was thinking that if the number was multiplied by
7, then is it divisible by 7, but I don’t know if that really means anything.

The assimilation of these perspectives in terms of object encapsulation and schema
thematization eventually leads to a more comprehensive understanding of divisibil-
ity that can accommodate connections to other related concepts. First, however, we
consider the development of new processes from existing ones.

New processes: coordinating and inverting. One of the tenets of Dubinsky’s
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theoretical perspective is that new processes may be obtained from existing
processes by coordinating existing processes or by inverting existing processes. The
tasks presented to participants in the interviews made it possible for us to observe
their constructions and their struggles with coordination, as well as with inverting.

According to the APO framework, the process of divisibility by 15 can also be taken
as coordination of divisibility by 5 and by 3. In terms of coordination and inversion
of processes, a number is divisible by 15 if and only if it is divisible by 5 and by 3.
In other words, if both 3 and 5 are divisors of M, then 15 must be a divisor as well.
In the following excerpts, Linda and Anita attempt to make such coordinations.

Interviewer: And what about 63?

Linda: If I’m multiplying right here, 3 x 3 is 9, 9 X 7 is 63, therefore I would sug-
gest that it would be able to, to go in like that.

Interviewer: ~ And why would you make that suggestion?

Linda: Um, because it’s similarly the way I multiply the 3 and the 3, I know through
a principle that I can multiply that as well with the 7, because it’s all mul-
tiplication. I can’t remember the name for it.

Interviewer: Mm hm.

Linda: So you multiply the 3 by the 3 and then multiply it by the 7. I would need
3" and 5% besides 63 to get M.

Interviewer: ~ Okay. And 9?

Anita: Yes, because um, because you have 3 to the power of 3 and 9 is 3%, you can
make 9 from 3%

Interviewer: ~ Okay. And how about 63?

Anita: Yes, because 63 is 9 x 7, and you have the 7 and you can make 9 by 32

Although Anita simply notices that 7 x 3% is 63, and that explains for her why M
is divisible by 63, for Linda pointing out how prime factors of M form 63 doesn’t
seem to be sufficient. Linda implicitly represents M as a multiple of 63. The
“principle” for which Linda “can’t remember the name” may reflect coordination
of commutativity and associativity that led Linda to represent M as 63 x (3' x 5%).
We’ve observed that participants’ insufficient proficiency with these kinds of
basic arithmetic calculations were one of the obstacles in coordination of processes
(Campbell & Zazkis, 1994).

Tasks involving coordination appeared difficult for many of our participants. In
fact, 13 out of 21 participants were able to infer divisibility of the number M in the
first question by 7, 3, and 5 by identifying these as factors in M’s prime decomposition.
But only 6 of these 13 were able to coordinate these processes of divisibility to infer
divisibility by 15 or by 63. Both excerpts from the interview with Bob in the sec-
tion on encapsulation (below) illustrate some interpretive challenges that can arise
from this phenomenon.

Another major difficulty was encountered with inverting processes. Checking whether
or not an object has a certain property appears to be easier than constructing an object
that has such a property. In a pilot study carried out in the previous year with sim-
ilar participants and in similar circumstances, 16 participants who were able to check
successfully whether a number was divisible by 15 using simple divisibility rules
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for 3 and 5 had significant difficulties providing examples of six-digit numbers divis-
ible by 15 that are quite readily constructed using those very same rules. Most exam-
ples provided seemed to relate to structures associated with long division. These
included numbers such as 150 000, 300 000, 151 515, or 153 045 (concatenating
15-30-45). However, when disequilibrated by a further request to determine the largest
six-digit number divisible by 15, or give an example of a number without repeating
digits—most of the participants resorted to trial and error. That is to say, they would
guess a particular six-digit number and then divide it to see if it was divisible by 15.
These attempts may not have been as random as they appeared to us at the time of
the interviews: A possible interpretation here is that some of these participants may
have, consciously or not, returned to long division with an eye open to discovering
the subtleties of a much more demanding inversion of the algorithm. Be this as it may,
even the participants who were successful in coordinating the divisibility rules for 3
and 5 were unable to follow through with inverting this procedure—which would have
allowed them to obtain more easily a solution to the problem presented.

Further evidence of inverting a process was found in the students’ responses for
Question Set 4: When asked to give an example of a number that had exactly four
(or six) divisors, all but three participants preferred to choose a number and then
“check it” by listing and counting its divisors. If the “guess” was successful, par-
ticipants were disequilibrated with a request to generate 10 more examples. We had
anticipated that some of our participants would interiorize or encapsulate whatever
particular procedure they may have been using. Armin had “guessed” that the num-
ber 6 had four divisors, and after noting that “it’s any two prime numbers” that give
the desired solution, she could easily generate additional examples such as 21, 35,
and 55. Tara, after identifying the example of 45 = 3? X 5 as a number with six divi-
sors, claimed that 3> x 7 = 63 and 3? x 2 = 18 also had exactly six divisors.
Unfortunately, it was not clear from the interview whether Tara would be able to
generalize “3” to mean “any prime” when asked to provide more examples. Linda,
for instance, was very close to Tara in recognizing a pattern of this kind. Considering
45 and 18, she concluded “it must be 3? times something,” but her attempt to try
to list the divisors of 3% x 4 placed her conjecture in doubt.

Encapsulation: from process to object. Encapsulation of divisibility as an object
is indicated when a learner begins to distinguish the concept of divisibility from pro-
cedures of division and/or multiplication. The following is an excerpt from the inter-
view with Bob, who explains divisibility of M by 7 and 5 in terms of factors in the
prime decomposition of M.

Interviewer: ~ Bob, I’'m going to ask you to write down a number, please. And that num-

beris 3’ x 57 x 7, and we re going to call this number M. Now, my first ques-
tion is, is M divisible by 77

Bob: Yes, it is.
Interviewer:  And would you explain why?
Bob: Well if 7 (pause), let’s see (laugh), M is, or let’s see, so 7 is a factor of M,

therefore, it’s divisible by M, pardon me, by 7.
Interviewer: ~ And how about 5?
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Bob: Five is also a factor of M.

Interviewer: ~ Okay, and would M be divisible by 2?

Bob: No, it would not, since 2 is, um (pause), since 2 is not seen here, it’s not a
factor of M.

Interviewer: ~ Hmm, okay, and why do you feel that that’s the case?

Bob: Um, explain this clearly (pause), since 2 is not one of the numbers that’s

being multiplied, the product, therefore, can’t be divided by 2.

Bob: Okay. And that since, obviously, 2 is a prime number, the prime number
of 2 is not in this solution; therefore, whatever the product M turns out to
be, 2 cannot divide into that.

This excerpt illustrates that Bob has made some important connections regard-
ing relationships between factors of multiplication with divisors, and that he may
have encapsulated divisibility as an object. In particular, Bob’s phrase “whatever
the product M turns out to be” expresses the crucial step required in crossing over
from procedural to conceptual understanding. However, although some encapsu-
lation may be indicated in determining divisibility by 7 and in refuting divisibility
by 2, encapsulation of divisibility may as yet be incomplete. For some, the ability
to infer divisibility on the basis of a connection with prime decomposition or mul-
tiplicative factors is not necessarily achieved simultaneously with the ability to infer
indivisibility. Patty, for example, notes that both 7 and 5, as factors, were divisors
of M, but then regresses to procedure when asked about divisibility by 2 and 11.

Interviewer: ~ Okay. And will it be divisible by 2?

Patty: I would multiply each one and find out what the total number is. So 3 x 3
is 9 x 3is 27, and this 25 is times 7. (Pause) It's not, 2 doesn’t go into it evenly.

Interviewer: ~ So you computed the number and you got 4725, and now you are sure that
it is not divisible by 2.

Patty: Right.

Interviewer: ~ But you were able to conclude about divisibility by 7 with, before you knew
what was the number.

Patty: Mm hm.
Interviewer: So how is it?
Patty: Because 7 is a factor of it, so it’s, what is it, the commutative law or asso-

ciate law, 7 is a factor of it.
Interviewer: ~ And what about divisibility of M by 11?
Patty: I would divide 4725 by 11 to find out.

Like Andy in a previous section, Patty may be appealing to associativity in order
to “chunk” M as (3° x 5%) x 7. Aside from this important question as to what con-
stitutes a factor, it appears that Patty may not have made the connection that only
factors of M are divisors of M. In other words, she may have been thinking that 2
and 11 could possibly be divisors of M even if they are not actually factors of M.

Unlike Patty, Bob discusses both divisibility and indivisibility in terms of M’s
divisors and nondivisors. It is indeed tempting to conclude from his responses that
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Bob has completely encapsulated divisibility. The next excerpt illustrates that
this is not quite the case.

Interviewer: ~ Would you think that 81 would divide M?

Bob: I’d want to find out what M would be, I guess that’s the, the best thing, that’s
what I’d prefer.

Interviewer:  Mm hm.

Bob: I guess knowing what M would equal, and then from there working back-
wards, finding which numbers can go into that.

Interviewer: Mm hm.

Bob: Um, right now I can’t see whether or not 81 can go in there.

Interviewer: ~ Okay. Uh, how about 63?

Bob: (Pause) Once again, um, we have 7. Now, 7 can go into 63, well [??] 3 can,
as well (pause). Once again I'd have to solve for M, in order to find out whether
63 can divide M.

Interviewer: ~ Okay, so when you say “solve for M,” you mean, like, multiply it out and
then divide by 63?

Bob: Yeah, exactly, exactly.

Interviewer: ~ Okay. How about if you wish to divide M by 15?

Bob: (Pause) Um, well, since there’s 5, 5% in this problem, we know that the, that

the units digit will be 5. Now 15 obviously has a 5 in it as well, therefore,
quite possibly, 15 will go into M, and once again I’d have to solve for that.

Bob provides logical arguments when discussing divisibility of M by 7 and 5 and
indivisibility of M by 2. However, when asked about 81, 63, and 15, Bob describes
his strategy as “to solve for M,” that is, to find out the value of the number and then
perform division. From the previous excerpt it seems fairly evident that Bob rec-
ognizes that a factor of M will also be a divisor of M. It is remotely possible that
Bob’s logic only reflects a linguistic procedure; however, it is more likely that, like
Andy, and perhaps Patty as well, his subsequent difficulties reflect deficiencies in
fully understanding what constitutes a factor. This would explain his compromised
ability to fully connect prime decomposition with divisibility. Has Bob not fully encap-
sulated divisibility or has he yet to thematize the relations between divisibility, prime
decomposition, and multiplicative structure? This is a difficult call. Bob has at least
encapsulated divisibility as an object to the extent that he recognizes a priori that
some prime numbers will either divide or not divide M. However, it is apparent that
his construction of divisibility as an object is not solid enough to accommodate com-
posite numbers. That Bob has yet to make certain connections with other objects,
such as factors and composite numbers, may illustrate that he has yet to fully the-
matize divisibility as a schema. On the other hand, perhaps he has yet to adequately
coordinate specific cases in order to encapsulate “divisibility by #” as an object for
all n—that is to say, for composite, as well as prime, numbers.

These interpretive ambiguities warrant further empirical investigation and may require
further refinements in our theoretical framework, as well. Be this as it may, it
appears that encapsulation of divisibility as an object does not necessarily occur as
a singular event or realization. Patty’s and Bob’s interviews provide evidence that
encapsulating divisibility involves coordination and inversion of specific examples
of divisibility by specific numbers.
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Thematization: from object to schema. Our interpretation of the Dubinsky the-
oretical framework is that thematizing divisibility as a schema involves con-
structing specific relationships between divisibility and other objects from number
theory such as primes, factors, and so on. The following excerpts illustrate that Jane
was able to coordinate divisibility smoothly by different primes to draw conclusions
about composite cases.

Interviewer: ~ And what about something like 637

Jane: Sixty-three, 7 X 9 is 63, so yeah, it would be.
Interviewer:  So, what have you done here? Would you please explain?
Jane: I took some of the kind of factors, I took 3 x 3—so 3% which is 9—and I

multiplied that by 7, which gives me 63. And because 3% and 7 are both part
of the prime factorization, then the entire number is divisible by 63.

Jane demonstrates her understanding of M’s divisibility not only by its prime fac-
tors, but also by composite products of its prime factors. Making this connection between
factors and prime decomposition with divisibility appears to greatly contribute to the
thematization of divisibility. Dana clearly illustrates the power of thematization of
divisibility as a schema by applying the connection with prime decomposition to refute
divisibility of 391 by 46.

Interviewer: ~ Okay, um, would you say 391 is divisible by 46?
Dana: (Pause) No, because 23 and 17 are both prime numbers. There is no 2 involved
in there, it’s just 23 times 17.

Our concluding example in this section indicates in one sense how deeply
thematization of a schema can reach and in another how deeply entrenched the obsta-
cles to encapsulation can be. The following excerpt shows that Pam not only
infers divisibility by 7 as an a priori property but can also explain how often this
property is found within a contiguous set of whole numbers.

Interviewer: Do you think there is a number between 12 358 and 12 368 that is divisi-

ble by 7?
Pam: I think there is.
Interviewer: Do you know which number it is?
Pam: Not yet, but I can find it if you want me to.

Interviewer: ~ No, you don’t have to find it. But if you don’t know what it is, how do you
know it is there?

Pam: Here we have 9 numbers. And I know that if I take any 7 numbers there will
be one divisible by 7. And here I have 9, which is more than 7.

Interviewer:  Are you saying that if I pick any 7 numbers I wish, there will be one divis-
ible by 7?

Pam: 1 didn’t mean that. What I mean is if you take these numbers one after another,
there will be one of them divisible by 7.

The understanding of this modular distribution of numbers that share a certain divis-
ibility property is an indication of the depth of Pam’s schema for divisibility, in that
a strong connection may be made between it and multiplicative structure. Pam’s idea
that “every seventh number is divisible by 7 was part of the repertoire of only 7 par-
ticipants in this group of 21 preservice teachers. Nicole, for instance, after finding the
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number divisible by 7 in the given interval, was asked whether she could have pre-
dicted the existence of such a number without calculating it. Her answer was neg-
ative, followed with the explanation: “The further you go, the more they grow apart.
By the time you get up into numbers that are this high, the difference between the
two numbers is only 10. There would be a larger difference between the two num-
bers (divisible by 7).” This description was accompanied by a hand-waving
that indicated progressively increasing intervals. It is possible that Nicole was con-
fusing multiplication with exponentiation here. Nevertheless, this and other
instances led us to suspect that, for many of our participants, the process of repeated
addition had not been properly encapsulated in terms of multiplication as an object.
Deficiencies in relating addition to multiplication, and thus multiplication to divis-
ibility, appear partially responsible for Nicole’s reliance on procedure and would
present obstacles to both encapsulation and further thematization of divisibility.

Divisibility and Division

Is the number 41 418 divisible by 177? Unless one’s answer comes from divine
inspiration or one has memorized the multiplication table for 177, there is but one
obvious way to find out—divide. It was mentioned above that encapsulation of divis-
ibility as an object must begin by discerning between divisibility as a property and
division as a procedure. But even with a clear understanding of divisibility, there is
no evident alternative strategy for answering the above question without perform-
ing division. Indeed, a majority of our participants applied this strategy when
addressing the first part of Question Set 2: “Is 391 divisible by 237" These numbers
were carefully chosen to make it difficult to guess or to determine an answer using
divisibility rules, yet easy enough to perform division, even without the help of a cal-
culator. However, 6 out of the 21 participants applied strategies other than carrying
out division.

Lena and Joan infer divisibility by performing multiplication. Here, Lena looks
for a number that gives 391 when multiplied by 23.

Interviewer:  I'm going to ask you, is 391 divisible by 23?

Lena: Hmm, (pause) I'm not sure if it’s divisible evenly or not.
Interviewer: ~ Mm hm. How would you go about answering that question for yourself?
Lena: Okay, this is what I would do. Twenty-three, um, if I was given this ques-

tion, I would honestly just, you know, plug in a few numbers and multiply
them by 23 to see how close I get to 391. So, I'm going to try that....

Interviewer: It was, “Bingo!”

Lena: Right, okay, well, the only reason I chose 17 is because I know that 7 x 3
is 21, and I know that it’s not 7, because 7 X 23 is too small of a number,
soIputal in front of it.

Lena’s approach is creatively based on estimation and considering the number pat-
terns for the last digit. Joan uses a rough estimation to establish a starting point, and
then converges toward the product via a tedious set of incremental multiplications.

Interviewer:  Is 391 divisible by 23?
Joan: (Pause) Do you want me to figure it out, or just...
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Interviewer: Sure, go ahead, take your time.
Joan: (Pause) Okay, yeah, it’s 17 times.

Interviewer: ~ Okay. Okay, could you explain to me how you’ve approached this
problem, Joan?

Joan: Um, well, I just took as many, I kept sort of going up, well, from 23 x 10
it would be 230, so I went up from there. I multiplied by 13—it might be
a bit more than that—and then ultimately I kept going up and up until I mul-
tiplied it by 17 and found that 23 x 17 is 391, so the 391 divided by 23 would
equal 17.

Joan’s approach consists of multiplying (with paper and pencil) 23 by 13, 14, 15,
16, and 17. To the question about her choice of strategy, Joan replies:

Joan: 1 always feel that it’s easier just to keep multiplying, because I have to mul-
tiply anyways to figure out what this is and what this is.

Joan: Um, I suppose I could have (done) long division, but it, um, whenever I get
one like that, I always multiply to divide, because it’s just, I find it easier.

Joan has some understanding of the relationship between multiplication and divi-
sion, and she demonstrates a clear preference for the former. To emphasize, she prefers
to perform five long multiplications instead of one long division. It may be the case
that both Lena and Joan carry with them from elementary school some discomfort
with long division. But during the rest of the interview, Joan and Lena perform long
division several times with ease and without seeking the help of the calculator that
was placed in front of them on the desk. Therefore, we suggest that, for these par-
ticipants, the concept of divisibility was related to multiplication by the definition
“b is divisible by a, or a divides b, if there exists a natural number d such that ad
=b.” Both Lena’s and Joan’s activity demonstrate a search for such ad.

Karen, Anabelle, and Tara claim that 391 is not divisible by 23 because 391 is
prime. The “primeness” of 391 was inferred in different ways. Karen claims that
391 is a prime number because the sum of its digits is a prime number.

Interviewer:  Let’s take the number 391. Is 391 divisible by 237

Karen: Ugh, (pause) um, I don’t think so, because when, when I'add 3 + 9 is 12 and
1is 13, and 13 is not really divisible, like the sum of the digits in 391 aren’t
really divisible. Thirteen is not really divisible by anything—it’s sort of a
prime, like the prime number. Um, so basically I don’t think 391 is divis-
ible by anything, because, because the sum of the digits is 13. I don’t think
it’s divisible by anything, except for, um, 1 and itself.

Anabelle and Tara reach the conclusion about the primeness of 391 after they are
unable to find a small prime number by which it is divisible.
Interviewer:  Let’s take the number 391. Would 391 be divisible by 23?

Anabelle: Twenty-three (pause), I don’t know. I don’t think so.
Interviewer: ~ Hmm, and why do you think not?
Anabelle: Three hundred ninety-one, I think, is a prime.

Interviewer: ~ And why do you think that 391 is a prime?
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Anabelle: Because I don’t think it had been divided by 2 or 3, or 5, or 7 (laugh).

In the next step Anabelle divided 391 by 11, and the fractional result on the cal-
culator confirmed her conclusion about the primeness of 391. Tara doesn’t stop at
11, but proceeds a little further.

Interviewer:  Okay, alright, um, so if you were to determine for yourself one way or another
whether or not 391 was divisible by 23, how would you go about it?

Tara: Um, I would find the prime factorization of 391....

Tara: I have a feeling this is probably a prime number....

Interviewer:  And can you tell me how you’re going about this?

Tara: Oh, yeah, um, I'm trying to find a prime that divides 391 evenly, and I tried

11 for some reason, but I thought maybe it would work. It didn’t, I tried 13,
it didn’t work, so, so I have to come to the conclusion that maybe it’s a prime
number, uh (pause).

After about ten minutes of prompting in search of divisors of 391, attempts to estab-
lish its primeness, and facing the evident with the help of a calculator, Tara was asked
why she didn’t simply divide 391 by 23 from the beginning. Her answer was as follows.
Tara: Idon’t know. I guess, like, I, um, like I was saying with, I know there’s a

way to do it, prime factorization, and I know that 23 is a prime number, but
I guess, um, I was assuming, for some reason, that as long as 391 was not
a prime number, it would have a factor smaller than 23, a prime factor smaller
than 23.

We believe in the context of the rest of Tara’s interview that her reference to “prime
factor smaller than 23" was not based on estimating the square root of 391 and look-
ing for a factor smaller than a square root. We conclude that Tara simply wanted
to see “small numbers” in the prime decomposition. In our research we have
found additional evidence supporting some students’ belief that “prime decomposition”
means “decomposition into small primes” and that this belief coexists with their aware-
ness of existence of “very big” primes. A detailed discussion of this issue can be
found in Zazkis and Campbell (1994).

Stanley, similarly to Karen, tries to generalize a rule for divisibility by consid-
ering the sum of the digits. In his opinion, 391 is not divisible by 23 because the
sum of the digits was not divisible by 23.

Interviewer: ~ Okay, is 391 divisible by 23?

Stanley: By 23?7 Um, let me think. (Pause) I don’t think so.

Interviewer: ~ Okay, can you tell me, uh, a bit about what you’ve done here in terms of how
you’ve thought about it, and how that corresponds to what you’ ve written?

Stanley: Okay. Um, basically I'm just going on assumption, that I just learned in my

last class there, in that, uh, if I add the digits of 391, it'll go 13, and if 13
is divisible by 23, then the number itself should be divisible by 23, but, uh,
seeing as it’s not, then the number isn’t divisible by 23.

Interviewer:  Okay, and before you used that, uh, or learned that rule, um, how would you
have gone about answering the question?

Stanley: Uh, I probably would have sat and counted up 23 enough times until it gets
close enough to 391, it’ll either be under it or over it, or dead on, um, and
depending what the result was, I would decide....
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The “rule” that Stanley uses here was most likely confused with divisibility rules
for 3 and 9. But even when specifically asked not to apply his rule, Stanley did not
opt to use division, nor did he choose multiplication. He would rather have
“counted up” by 23. Apparently, Stanley was more at ease with addition in deter-
mining divisibility than with either division or multiplication (this phenomenon is
further investigated in Campbell & Zazkis, 1994).

As a matter of fact, four of these six students gave reasonable and mostly correct
answers on Question 1, arguing divisibility of the number M in terms of its divi-
sors and nondivisors. It may be the case that they tried to avoid division in a search
for more powerful strategies, accompanied by a belief that such strategies do
exist for most, if not all, cases.

Divisibility Rules

Divisibility can always be inferred by performing division; however, carrying out
the division algorithm can be tedious and time-consuming. If quotients or remainders
are not required, divisibility rules allow for the possibility of inferring divisibility with-
out performing division. Such “permission” may help the learner to separate performing
division from considering divisibility as an intrinsic property of a number. Therefore,
understanding and application of divisibility rules may help students move toward
encapsulation of divisibility by a specific number as a conceptual object. On the other
hand, there is a danger that divisibility as a property of a number may be procedurally
reduced to seeking patterns of digits. For example, when Andy was asked, “Do you
think there is a number between 12 358 and 12 368 that is divisible by 7,” she attempted
to find a number in this interval with the sum of the digits divisible by 7. A more
common answer (repeated three times in this group of 21 students) was “Twelve
thousand three hundred and sixty-three is divisible by 7 since 63 is divisible by 7.”
These responses do well to summarize the misapplication of the divisibility rules
learned or reviewed by this group of students. As mentioned above, the participants
were familiar with the divisibility rules for 3 and 9 (the sum-of-the-digits rule) and
with the divisibility rules for 2, 5, and 10 (the last-digit rules). Eight out of 21 par-
ticipants managed to inappropriately generalize or apply at least one of the rules in
response to at least one of the questions. In the previous section we observed Karen’s
conclusion that 391 was prime because the sum of its digits, 13, was prime, and Stanley’s
conclusion that 391 was not divisible by 23 because the sum of its digits was not
divisible by 23. Here is another example from Question Set 1.

Jennifer: 1 went 225 x 7 and got 1575 and figured 1575 isn’t divisible by 7.
Interviewer: ~ Okay, and the, the basis of your conclusion there?

Jennifer: Because I looked at the last digit....

Interviewer: ~ Okay. And 97

Jennifer: Um, 9 as well, is not divisible, or 1575 isn’t divisible by 9 because I’'m look-

ing at the last two numbers, 75, and know that 75 isn’t divisible by 9.

Jennifer denied divisibility of M by 7 and by 9 by considering the last digit and
the last two digits of the product 1575. When Anabelle was asked the third ques-
tion (“Is there a number between 12 358 and 12 368 divisible by 77”), she claimed,
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“I don’t know how to figure out how a number is divisible by 7,” and this, just after

she had tested divisibility by 23 by long division. Anabelle’s answer may indicate

more than an unawareness of a divisibility rule for 7; she may be assuming the exis-
tence of such rules for most, if not all, numbers.

Karen, in order to find the prime decomposition of 391 considers the prime decom-
position of 91. Her conclusion that 91 is prime confirms her previous idea that 391
may be prime.

Karen: Well, I, I think what I'd do is, I"d take 391 and try to think about, um, break-
ing it down into the prime factorization, if I could.

Interviewer: Mm hm.

Karen: But see, um, I sort of realized that if this were 390, it would automatically
be divisible by 10 and 39, I think, ... 39. But because it’s 391, um, and also,
like, if you look at the, even the 91 here, um, we know that 91—we don’t
have anything in the times tables that actually equals 91 too—we know that
that’s prime.

A point to note from this excerpt, aside from our main discussion here, is the claim
that “we don’t have anything in the times tables that actually equals 91.” Indeed,
in times tables for one-digit numbers typically memorized in third grade, nothing
equals 91. Nevertheless, it is a fact that 91 = 13 x 7. Is it just a computational omis-
sion or is there a procedural dependence on times tables?

Tara, in the excerpt below, repeats Karen’s assumption that “391 would be
prime if 91 was prime,” and later tests her conjecture that the prime decomposition
of 391 can be found as a sum, whatever the “sum” could mean here, of prime decom-
position of 300, 80, and 11.

Tara: Yeah, I'm trying to prime, find the prime factorization of 391, so that I can
determine whether or not 23 divides into 391. Umm, (pause) hmm, and 391
is not prime? Can you tell me that?

Interviewer: No comment.

Tara: (Laugh) I have to determine that, right? Well, I guess, I mean, 391 would
be prime if 91 was prime.
Interviewer: ~ And how so?

Tara: Hmm, I don’t know. I'm not sure of that statement either, but, hmm, for some
reason like it seems to make sense to me and I don’t know why (laugh). Hmm,
(pause) actually, I have a question for you and I know you’re not going to
answer. I was going to say, “Now if I write it in this form and I prime fac-
torize this, wouldn’t that be the same thing as to find the prime factoriza-
tion of this number?”

Interviewer: Oh, I see, um, you’ve written 391 as 300 plus 80 plus 11, and you’d like to
know whether or not it would be equivalent to do the prime factorization
of the three numbers in that sum as an equivalent procedure to finding the
prime factorization of 391.

Tara: That’s right.

Interviewer: ~ Okay. Um, well, I would suggest that you experiment with that.

[Tara experiments]

Tara: Well, that wouldn’t be the same. I couldn’t do the prime factorization of 300

plus 80 plus 11 if T wanted to get the prime factorization of 391. (Pause) Hmm,
well, uh...
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Tara’s conjecture, even though she rejects it after experimenting, may be an addi-
tional example of what is described by Matz (1982) as a “misapplication of linearity”
or an “overgeneralization of distributivity.” The erroneous claim that sin(a + b) =
sin(a) + sin(b) is one of the “‘classical” examples of such overgeneralization. In Tara’s
case, a similar overgeneralization is apparent: prime decomposition(a + b) =
prime decomposition(a) + prime decomposition().

Many of our participants overgeneralized and misapplied divisibility rules when
specific rules were not available. According to Matz (1982), these errors may be
explained as students’ reasonable, although unsuccessful, attempts to adapt previously
acquired knowledge to a new situation. We also note, from these pseudodivisibil-
ity rules, not only students’ propensities to grasp at procedures in the absence of
conceptual understanding, but also a sense of disequilibration in the absence of a
rule to use or follow and a subsequent sense of reequilibration from the creation of
such pseudorules.

DISCUSSION

The action-process-object framework has proved useful for describing the con-
struction of mathematical knowledge and has provided a reasonable, although not
totally unambiguous, vocabulary to describe students’ difficulties in these construc-
tions. The data indicated complex interpenetrating layers of cognitive structure under-
lying the concepts of number theory that extend deep into the elementary operations
and concepts of arithmetic. The data also indicated some theoretical ambiguities with
respect to coordination of processes and thematization of schemata. When analyzed
and interpreted in terms of this framework, responses to questions and tasks such
as considered herein worked particularly well in revealing the pervasiveness of pro-
cedural attachments, even when some degree of conceptual understanding is in evi-
dence. We agree with Sfard (1991) that procedural and conceptual dispositions are
not incompatible but rather are complementary. The manifestation of procedural
understanding cannot be taken strictly as the absence of conceptual understanding.
However, the amount of time and effort that a learner requires to resolve or com-
plete a particular problem or task offers some indication of the degree of concep-
tual understanding involved. We have attempted to design questions that require
significant time and effort to be solved procedurally and yet are readily resolvable
with the appropriate conceptual understanding.

Some of the interview questions revealed a tension in the subjects between the
desire to apply recently acquired mathematical knowledge on one hand and the desire
to feel certain with the answer on the other hand. Calculating the number M (in Question
Set 1) or dividing all the numbers in the given interval by 7 (in Question Set 3) left
the participants certain of their conclusions, although many of them made statements
indicating their dissatisfaction with the chosen approach, for instance, “There
should be a better way” and “I did it the long way—I couldn’t think of any short-
cut.” But can one be certain of one’s claim of existence of a number divisible by
7 between 12 358 and 12 368 without actually determining such a number? Can one
be certain that the result of division would turn out to be a whole number without
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knowing what this number would be? Achieving such certainty is a step toward
mathematical maturity as well as toward encapsulation of divisibility.

We have argued that encapsulation of divisibility as an object requires a movement
beyond the outcome of actual or intended procedures with numbers toward a conceptual
understanding of the intrinsic multiplicative structure of numbers. Many of our par-
ticipants who demonstrated process or even object constructions of divisibility
claimed they would have preferred to carry out the action in order to feel sure about
their conclusions. This appears consistent with the findings of Martin and Harel (1989)
and Fischbein and Kedem (1982), who observed that many students who were con-
vinced by deductive arguments wanted further empirical verification.

However, procedural dependencies without some form of conceptual guidance often
result in tedious and time-consuming “hit and miss” strategies (such as Joan’s and Stanley’s,
above) potentially leading toward total disenchantment with the subject. As long as
procedures lead to some form of conceptual understanding, “hit and miss” strategies
can be quite fruitful. For some students (such as Jane above) the strategy of “hit and
miss” progresses toward more guided and constrained strategies of “guesses and checks”
and is essential as a midpoint between experimentation and structural insight. In some
cases just a handful of successful guesses is all that is needed to uncover the general
structure beneath such guesses and achieve a greater sense of certainty. We believe
that a useful pedagogical approach for preservice elementary school teachers would
be to accompany any abstract reasoning with particular examples and calculations,
using calculators for calculations with larger numbers. Our hope is that at some level
the particular calculations instantiating the abstraction would reinforce the abstrac-
tion and then gradually give way to it.

A major interpretive difficulty was encountered with respect to the encapsula-
tion of divisibility as an object. This may simply reflect the fact that divisibility is
a very complex cognitive structure. Understanding “divisibility by #” as a gener-
alized object in some, and quite possibly all, cases is preceded by the encapsula-
tion of separate processes of divisibility for specific numbers. These encapsulations
need not occur simultaneously for all numbers. For example, in reviewing Bob’s
interview we suggest that he is thinking of “evenness,” or divisibility by 5, as an
object and of divisibility by 15 as an action or process. At some point, perhaps, a
“critical mass” is obtained with the accumulating encapsulation of divisibility for
specific numbers serving as a catalyst for the encapsulation of “divisibility by n.”

This raises an important issue regarding the pedagogical role of divisibility rules. For
individuals who are procedurally oriented, divisibility rules are likely to be considered
procedurally, as well. This added complexity and heterogeneity regarding various divi-
sion procedures may confuse and compromise encapsulation of “divisibility by n.” For
those who are well versed in division and its relationship with divisibility, the divisi-
bility rules may serve to emancipate the concept from the procedure. Or, perhaps divis-
ibility rules should be avoided altogether until after divisibility has been fully encap-
sulated. However, these conjectures can only be substantiated with further study.

Furthermore, encapsulation of divisibility appears to be intimately bound up with
a more general thematization of divisibility as a schema—that is, with the construc-
tion of connections with other actions-processes-objects involving multiplication, divi-
sion, factoring, prime decomposition, and so on. We have noted that as the framework
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is applied to more elementary concepts, the relationship between encapsulation and
thematization blurs into a host of “cognitive substructures.” To some extent this effect
appears to be related to the fact that objects may be used in processes and within
schemas without being adequately encapsulated. In the course of this investigation
we have noted many cases that suggest that our participants appear not to have encap-
sulated basic objects such as factors, multiplication, and distributivity. These
issues have been pursued in more detail in Campbell and Zazkis (1994).

Aside from these “finer-grained” interpretive difficulties, there is strong evidence
for the central role of conceiving divisibility in terms of both multiplication and divi-
sion. That is to say, in terms of division, a |b (a divides b) if and only if b + a = d where
d is a natural number; and in terms of multiplication, a |bif and only if there exists
a natural number d such that ad = b. It seems that insufficient connections between
these two definitions were a source of cognitive discord for many of the participants
in this study. If this were true, it would be quite ironic in the sense that these differ-
ences are complementary and could be used pedagogically to highlight the important
inverse relationship between multiplication and division. That is, in terms of natural
numbers a, b, and d, ad = b if and only if b + a = d. In particular, a progressively sophis-
ticated pedagogical approach with regard to this inverse relationship would seem to
be most viable. Such an approach would emphasize the equivalence of factors and
divisors and subsequently their representation in terms of prime decomposition.

We have provided examples demonstrating how both of these forms of understanding
can be manifested as actions or processes, either by performing division or finding
the “missing multiplier.” We believe a proper encapsulation of “divisibility by #” requires
a firm understanding of the inverse relationship between the operations of multipli-
cation and division. This relationship may be perceived as trivial when multiplica-
tion involves two elements only; however, when there are more than two elements
in the product (see Question Set 1), the relation of multiplication to division, as our
data demonstrates, is often not implied. Making this connection between divisibility
and prime decomposition appears to greatly contribute to the understanding of divis-
ibility as a thematized schema.

Overall, our results suggest that in the schooling of the participants involved in
this study, insufficient pedagogical emphasis has been placed on developing an under-
standing of the most basic and elementary concepts of arithmetic. At some point,
if one is to meaningfully continue in mathematics, the basic concepts of arithmetic
must be grasped. If this is not happening in the middle grades, then it should come
as no surprise that many students fail to make a successful transition to algebra. We
believe that developing a conceptual understanding of divisibility and factorization
is essential in the development of conceptual understanding of the multiplicative
structure of numbers in general. In fact, we suggest that the successful development
of conceptual understanding in algebra requires a firm grounding in the conceptual
understanding of arithmetic and elementary number theory.
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