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Dihedral Groups: A Tale
of Two Interpretations

RINA ZAZKIS AND ED DUBINSKY

This note is concerned with mathematical objects and their naming schemes,
that is, means of assigning to an object some algebraic quantity. We start with
an empirically-based examination of a phenomenon observed in undergraduate
Abstract Algebra courses and then we continue with the analysis of related phe-
nomena that are found in the literature.

Our specific interest is with mathematical and psychological aspects of con-
structing a group on the set of symmetries of a regular polygon of n sides and
on the set of permutations of n objects. The points we wish to make are amply
illustrated in a specific example and so we will mainly consider the case n = 4
with the corresponding set Dy of 8 symmetries, and the symmetric group Sy of
24 permutations. As is well known, the elements of Dy correspond to elements of
S4 and so it would seem that there are two ways of constructing (representing, if
you like) a group structure on Dy: one as motions of the square with composition
(of transformations) as the operation and the other as a set of permutations with
multiplication (of permutations) as the operation. They should be isomorphic.

One can see the first construction as a geometric or visual way of thinking
about a certain group and the second as a symbolic or analytic way of thinking
of the same group. We were (and are) interested in how students used these two
modes of thinking when they were trying to understand the construction of these
groups. We found that students tended to make a certain error in moving back
and forth between the two representations and, in analyzing this error we came to
the view that the situation was a little more complicated (both mathematically
and psychologically) than one might think. Indeed, we even came to question
our belief that the group D, can be constructed in a completely visual manner.

We think that these questions are important because they are related to the
pedagogical issue of students’ visual and analytic approaches to making sense
out of mathematical situations. The observations we are making in this note
form a small piece of a larger study of general visual/analytic issues [11].
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62 RINA ZAZKIS AND ED DUBINSKY

In the following pages, we explain how we were motivated to think through
the issues discussed in this paper, state the main problem, propose an explana-
tion of the students’ difficulty, suggest an analysis that could form the basis for
eliminating the difficulty, and describe how we think students may be thinking
about the relationship between dihedral groups and groups of symmetries.

Having done that, we attempt to clarify certain complex relationships between
mathematical objects and their names. We analyze several related problems (of
double interpretation) described in literature, such as Birkhoff and Mac Lane’s
alibi/alias dichotomy [3, 9]. Our main purpose in such an analysis is to reveal
complexities that are often not acknowledged by mathematics experts. We ex-
plain in what way our problem is related to other problems from the literature
and in what way it differs. We also suggest possible avenues for future research
that will further explore the mathematical and psychological phenomena we have
encountered.

Our Motivation

Our considerations were motivated by ten individual interviews with under-
graduate mathematics majors in the middle of a first course in Abstract Algebra.
In one of the tasks presented to the students in the interview, they were asked to
list the elements of D4, and then to calculate a product of two specific elements
of Ds. The interviewer made no attempt to suggest a particular representation
of D; and each student made one of two choices of how to do it: geometrically,
using a physical model of a square, or analytically, multiplying permutations.
The interviewer then asked the student for another way to do it and to see that
both methods gave the same answer. As it turned out, eight of the ten students
did not get the same answer and felt they had made an error (they each did the
same thing) and this note resulted from our attempts to understand what they
did and why it seems wrong.

Let us introduce the notation used in the Abstract Algebra course which these
students were taking. The elements of D4 were familiar to them as four clockwise
rotations, denoted Ry, Rgg, Riso, Raro, and four reflections across horizontal,
vertical and diagonal axes, denoted H, V, Dy, (left diagonal) and Dg (right
diagonal). (See Figure 1.) The permutations of S; were denoted as sequences of
four digits, that represent the “first floor” of a standard “double decker” notation.
For example, [4123] represented the permutation “1 —4,2—1,3—+2, 43/
usually listed as (}7a3)-

The following excerpt from an interview with Peter! was typical of the stu-
dent performance of the task of computing Rgo * V' and their reactions upon its
completion. Note that the student applies the convention of starting with the
element on the right in computing a product, that is, Rgo * V' is interpreted as
“V followed by Rog.” (See Figure 2.)

1The names of the interviewees have been changed to protect their identities.
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FIGURE 1. Elements of D4—Global interpretation.



Peter:

Peter:
Int:

Peter:

Peter:

Int:

Peter:

Peter appears to perform the manipulations and calculations correctly, but
using two different methods, he gets two different answers. He sees this and,
in listening to the tape we took his reaction to be a kind of nervous laughter
indicating some discomfort with the situation or what is called in learning theory,
disequilibration [4]. Since the calculations are performed correctly, the difficulty
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FIGURE 2. Carrying out V followed by Rgq.

Rgo * V7?7 1 would take this, do the vertical flip, and then do Rgo,
which is a 90 degree rotation to the East, and that would give me
[3214].

And according to your element table there, which element would
that be?

[3214] is Dg.
Now let's do it again and this time with permutations.

OK, Rgo*V. Rgo from our permutations is [4123] and V is [2143)].
OK, and the way I would do it was start and feed 1 into 2 and
then . . . , 2 in Rgg feeds into 1, so 1 goes to 1. Uh, 2 goes to 1,
1 goes to 4; 3 goes to 4, 4 goes to 3; and 4 goes to 3, 3 goes to 2.
[1432] which is Dy.

: Ummm, that’s interesting.

Yes, it is. (chuckles softly).

Why do you think we got different answers? (pause) More than
likely, they’re not both correct.

I'd say they're not. Dy is certainly not Dr. So what did we do
wrong? We did a V and then Ry, [3214]. Did I put them down
wrong? Rog is [4123] and V is [2143], so I didn’t do that wrong.
(pause) I'm stumped (chuckle).

appears to lie in the two representations and their connections,
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The Problem

The conventional view is that the dihedral groups D, are established from
geometrical considerations of rigid motions of a regular polygon of n sides and
the symmetric groups S,, are established from considerations of permutations
of n objects. Then, there is an isomorphism of D,, into S,. Textbooks on
group theory, however, usually don't spell out these isomorphisms to the learner
explicitly. The books prefer to leave this as an exercise to the reader (e.g.,
Armstrong [2, p. 36] or to list the elements of D3 or Dy as permutations,
without making explicit correspondence to the transformations they represent
(e.g., Fraleigh [6, p. 70]. As demonstrated in the previous section, learners who
try to use an explicit correspondence, can be surprised by unexpected results.
This raises pedagogical and attitudinal issues. Will students try to resolve these
contradictions or will they give up and eliminate their disequilibration by making
unnecessary conclusions regarding the nature of mathematical anomalies? What
pedagogical strategies are promising for getting more of the former and less of
the latter?

In trying to analyze the mathematical situation from & psychological point of
view, we tried to understand how one might think about the connection between
D4 and S4. Following the traditional point of view we began with introspection
into our own way of constructing the group D,;. The idea was to do this first
and then think about the connection with Sj.

The eight symmetries of a square are clear. They are dynamic processes which
with a little mental activity that is non-trivial, but reasonable for the students we
have in mind, can be thought of as eight individual objects and it is reasonable
to name them as in Figure 1. Do these eight objects form a group? Previous
research has reported [5] that beginners in Group Theory have a tendency to
ignore the operation and relate only to the set of elements of the group. However,
even when the need for operation is recognized, applying the binary operation of
composition to the symmetries of a square is not as obvious as it may seem. To
avoid the undue influence of permutations we tried to do this without labeling
the vertices. It is not so easy, for example, for the composition Ry7g * H. That
got us to wonder about the “easy” cases, say Rayg * Rigo. Obviously the answer
is Rgy. But is it?

Take a square which is completely blank and looks exactly the same on both
sides. Rotate it by 180 degrees and then by 270 degrees. In what sense can one
say that you have rotated the square 90 degrees? You can't tell by the result,
because the square looks exactly like it would lock if you had not rotated it at
all. You can't tell by watching the action because, in reality the composition of
the two acts of rotation is indeed an act of rotation—of 450 degrees, not of 90
degrees! A combination of more thought and choice of convention has to go into
a decision to call it rotation by 90 degrees.

In this sense, one can suggest that specifying the binary operation on a set
of symmetries is not sufficient to define a group, since from a purely visual
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point of view, unless some analytic structure and representational conventions
are introduced (labeling of vertices, addition mod 360, etc.) the eight rigid
motions of a square are not closed under composition. There is a real difficulty
in specifying the net result of a sequence of transformations without some form
of labeling. It seems that labeling vertices implies an embedding of the set Dy
in the set 54 and carrying the group structure to Dy from (a subset of) Ss. Our
conclusion from this is that the connection between D, and S,, if considered
carefully, must be established on the level of sets, not as groups. One constructs a
one-to-one map of D, into S,, (using a considerable amount of visualization) and
then the operation on D, is constructed without ambiguity by pulling back the
operation on Sy,. It may seem that paying explicit attention to the construction
of this injection could help students avoid pitfalls related to this connection.

Unfortunately, this is not quite enough. There is more than one reasonable
way to embed the set D,, in the set S,,.

Two Embeddings

There are (at least) two possible ways to correspond a symmetry of a (labeled)
square to a permutation. One way is to look at the vertices of the square as
objects being moved. In performing Rgg, vertex 1 is moved to vertex 2, vertex
2 is moved to vertex 3, 3 is moved to 4 and 4 is moved to 1. Therefore we
may represent Rgn as [2341]. We will refer to this correspondence as “object
interpretation.”

Another way of interpreting the situation is to look at the environment of
the square and think not about vertices moving but about positions and which
vertices they contain. In this interpretation, after Rgg, position 1 contains vertex
4, position 2 contains vertex 1, position 3 contains 2, and 4 contains 1. This is
represented by a permutation [4123).

We will refer to this correspondence as “position interpretation.”

Clearly, these two correspondences are inverses in the sense that, given an
element of Dy, the permutation to which it corresponds under the object in-
terpretation is the inverse of the permutation to which it corresponds under the
position interpretation. That is, there is an underlying anti-automorphism of the
group S and hence there are two, essentially different, ways in which groups can
be constructed on the set D4 by using permutations. The difference, of course,
is small in the case of Dy since all but two of its elements are idempotents. For
example, the fact that Rigp has order two assures that when vertex 1 moves to
vertex 3, position 1 contains vertex 3; when vertex 2 moves to vertex 4, position2
contains vertex 4; and so on. The same situation exists with the reflections. We
can predict from this analysis that the error which our students make will never
appear unless we ask them to form a product involving Rgg or Royg as either a
factor or a result.

We can use our analysis to give a plausible explanation of the errors made
by our students. Peter made a square, labeled the sides and performed the
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manipulations as indicated in Figure 2. There is no question about what to
do with the first motion—the square is flipped across its vertical axis. The
problem arises with the second motion because the square is no longer in its
original position. In order to decide whether applying Rgy means that the square
should be rotated clockwise or counter-clockwise, it is necessary to describe the
correspondence more carefully and we will do this below. We will see that a
clockwise rotation is consistent with the object interpretation. The final position
of the square can only be interpreted as the motion Dg and so, Peter’s first
response is correct.

Why did Peter get a different answer when he did it by permutation product?
Notice that in choosing [4123] for Ryg he says that “1 goes to 4,” that is, position
1 contains vertex 4 which is the position interpretation. Indeed, as can be seen
by comparing the excerpt with Figure 3, Peter used the position interpretation
in going from symmetries to permutations, and therefore, he was in effect calcu-
lating this time with group elements that are the inverses of the V and Ry used
in his first calculation.

Element of D4 Object interpretation Pasition interpretation
%o [1234] [1234]
R0 [2341] [4123]
R 80 [3412] [3412] .
Rymo [4123] [2341]
H [4321) [4321]
v [2143] pug P
D, [1432] (14321 ‘ pif:
Dg (3214] [3214]

FIGURE 3. Corresponding transformations to permutations.

We can see explicit descriptions of how students used the position interpreta-
tion in corresponding symmetries to permutations. For example, Stacey explains
how she corresponded a permutation to Rgg.

Stacey: [1234] was my beginning position. And then I rotated it once , 90
degrees (clockwise), yes. OK, and then again by reading the top
left all the way down through bottom left, my first rotation of 90
degrees was [4123].

John mentions “position” in his answer.
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Int: How would you write out Rgg as a permutation?

John: OK, um, Rgo would map the corners [1234] to the new positions
[4123).

And Jeff explicitly acknowledges the choice of “positional” interpretation in his
explanation.

Int: Alright, you made a rotation 90 degrees in a clockwise fashion.
Alright, now how did you get the permutation to correspond to
the set?

Jeff: OK, the first element in this permutation would be where the 1
used to be. And the second one would be where the 2 used to be,
the third one where the 3 used to be and the fourth one where the
4 used to be. So we got [4123] from there.

These excerpts suggest that for many students the position interpretation
is natural for setting up the correspondence. However, we submit that it is
not so easy to use this interpretation in actually manipulating a square. For
example, consider the middle square in Figure 2. We will argue below that to
be consistent with the position interpretation the correct implementation here
of Ry is what appears to be a counterclockwise rotation. At the very least,
the reader might agree at this point that for the middle square in Figure 2,
the position interpretation does not tell us how to interpret Rgy. The reason
is that this interpretation involves “vertices repositioned” from an initial state.
But after performing one motion, the initial positions have changed. Thus we
suggest that the interpretations we have given are reasonable for deciding which
permutations to assign to a single motion, but can be confusing to use in a
context in which more than one motion is being performed. We need a more
powerful model.

Local And Global Transformation—A Possible Solution

We would like to suggest such a model. The position interpretation corre-
sponds to a different perspective on symmetries that we will call “local.” Ac-
cording to this perspective, a symmetry is a “local” transformation of an object
in the sense that the object is moved according to axes and directions that are
transformed along with the object. The term “local,” as well as the idea of local
representation, is borrowed from Turtle Geometry (1, 8] where transformations
are functions of the position of the object transformed.

More precisely, in the case of Dy, the idea is to construct the four axes and
directions on the square and move them along with the square as shown in Figure
4.
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FIGURE 4. Elements of Dy—Local interpretation.
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The “global” interpretation corresponds to a perspective on symmetries that
is already illustrated in Figure 1. Here we consider that in each symmetry the
entire plane is transformed, but the axes and directions remain fixed. The motion
of the square results from this global transformation.

How can this model be used in practice? Figure 3 shows how each symmetry
corresponds to a permutation in the two interpretations. The inflexible require-
ment is that you first choose one of the two interpretations and then you must
use it both in going back and forth between symmetries and permutations as
well as in deciding how to implement a composition with a square.

For example, we have seen in Figure 2 how to perform Rgo * V' in the object
or global interpretation. One performs the motions relative to an immutable set
of axes which are fixed in the plane. As indicated in Figure 1, to perform the
transformation, one does not need any information on the square, only the axes
and directions on the plane that contains the square. The labels on the vertices
are used only in deciding relative to these fixed axes which transformation has
resulted.

In the case of the same operation performed according to the position or
local interpretation, the axes and directions must be considered to be on the
square as indicated in Figure 4. We choose the “canonical starting position” to
be the position in which the names of the axes make sense (V is the vertical
axis, Dy the left diagonal, etc.). The transformations are defined entirely in
terms of these axes which are fixed on the square. Thus, the transformation
V is reflection of the square about the V-axis and a rotation moves the V-axis
towards the adjacent Dg-axis. In performing V # Ry as shown in Figure 5, first
Ry is performed on the canonical position. Then, if we want to follow up with
V, we should flip the square according to the new position of the V-axes, that is,
“horizontally” in the plane, since the original “vertical” axis was transformed to
horizontal position by 90 degrees rotation. The resulting transformation is Dg
and one does not need to keep track of the labels on the vertices to determine
this. In performing Rgo*V as shown in Figure 6, we first start with V performed
on the canonical position. Then, to follow up with Ry, we have to rotate the
square left or counterclockwise, since the direction, which is a part of the square,
has been changed by the flip. The result is Dy, which is consistent with Peter’s
multiplication of permutations.

Connecting The Two Models

It is perhaps reasonable to think about the object-position dichotomy as more -
a property of permutations and the global-local characterizations as belonging
to the symmetries. In the former case, one must label the vertices and consider
whether one is moving these four objects to new positions or changing what
appears at a given position. For the latter case, it is the axes that are labeled
and one must distinguish between moving the plane which happens to contain a
square versus moving a square which happens to sit in a plane. In either case,
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FIGURE 6. Carrying out V followed by Rgo—Local interpretation.

some analytic structure must be added to the square. This gives further support
to our earlier observation that the analytic structure of labeling vertices or axes
is necessary to formally define the group of symmetries of a regular polygon with
the operation of composition.

As we have indicated above, the important thing is to use a single interpre-
tation throughout any particular discussion. This interpretation must remain
invariant as one moves back and forth between permutations and symmetries or
switches from listing elements to performing the group operation. The overall
situation is described in Figure 7. The maps obj and pos are bijections of Dy
onto subgroups of Sy , defined respectively by columns 1,2 of Figure 3 for obj
and columns 1,3 of Figure 3 for pos. The map inv sends an element of S5 into
its inverse. All of the other maps in the diagram are the identity on Dy . The
entire diagram commutes. For the identity maps this is clear and for the right
hand portion it follows from the relation,

pos(z) = inv(obj(z)) for all z in Dy

The horizontal identity maps are automorphisms of Dy with the indicated op-
erations because the operation obtained from the object (respectively, position)
interpretation is the same as the operation obtained from using global (respec-
tively, local) axes. Another way of expressing this is that global transformations
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are consistent with the object interpretation and local transformations are con-
sistent with the position interpretation.
The vertical identity maps are anti-isomorphisms in the sense that

i(zy) = i(y)i(z)

where ¢ is the name of one of them.

FIGURE 7. Interpretations of binary operations on D,.

Following through the interview segment with Peter, we suggest that he used
global interpretations for performing transformations with a physical square in
his first calculation, obtaining the answer Dy. In his second calculation he
used the position interpretation to correspond permutations to transformations,
obtaining the answer Dy. Put another way, in his first calculation he worked
at the upper level of the diagram and in his second calculation he worked on
the lower level. The two structures are connected by maps which do not always
preserve the operations and this explains why he obtained two different answers.

Of course, in the case of commuting elements the inconsistent choice of global
symmetries and position interpretation doesn’t lead to an error and disequilibra-
tion but leaves “an illusion of isomorphism.”

Dealing With Disequilibration

As we indicated above, the error and the inconsistent interpretations which
caused it were seen explicitly in eight of the ten students that were interviewed.
Actually, neither of the other interviewees did the problem correctly. One stu-
dent was confused and failed to carry out the composition at all. The tenth
student reversed the order of elements when carrying out the transformations,
and therefore, didn’t “have a problem.”
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Following are some indications of the eight students’ attempts to reequilibrate.
The first reaction usually was to look for a computational error. When such was
not found, the students concluded that the order of applying transformations
should have been different from the order of multiplying permutations. Jeff

explains:

Jeff: I think, using the actual square we didn't do them in the right
correct order. For some of them it didn’t really matter . . .

John explains:

John: When you do it in permutations, you have to work right to left,
but if you're actually going to manipulate the square, you perform
the operations left to right.

The idea of “starting on the right” when composing functions may appear
strange for novices, and makes sense only with an appropriate interpretation of
function composition as fg(z) = f(g(z)). A decision to alternate the order,
once starting on the left and once on the right, indeed helps with temporary
reequilibration. On the other hand it reveals a poor understanding of functions.
Thinking of transformations and of permutations as functions would have elim-
inated the possibility of such a solution.

Resolving disturbing inconsistencies by accepting a “mid-stream order switch”
is an approach to which even experienced mathematicians can be reduced. For
example, Halmos (7, p. 66] in discussing matrices that correspond to linear
transformations acknowledged the “unpleasant phenomenon of indices turning
around.” Halmos also wrote that “it is a perversity not of the author, but of
nature” that makes us use an equation that “works” instead of the “more usual
equation.” We will return to this example in the following section.

Let us consider briefly the robustness of the students’ interpretation. On
several occasions, the interviewer pointed out to the student that the rota-
tion Rgo should have corresponded to [2341], rather than [4123). In trying to
make sense of this remark, the typical response was “Oh, that should have been
left /counterclockwise rotation. I thought it was right/clockwise rotation. That’s
why it didn’t work.” An excerpt from a student’s protocol is given below:

Int: Let's talk about Rgo. Why don't you tell me how you came up
with [4123] as a permutation.

Mark: Well Rgo, we got [4123] because we had a square labeled [1234]
starting at the upper left-hand corner. And then we rotated ours
clockwise, which gave us, 4 would be in the upper left-hand corner
and you'd go [4123] around that way [clockwise]. We rotated ours
clockwise. I think you said it should have been, what? [2314]?
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[2341], yes. Which would have been a counterclockwise rotation of
once around.

The “coincidence” resulting from the fact that Ry has order 4 is that the
position interpretation of the right turn leads to the same result as the object in-
terpretation of the left turn. When a different correspondence was suggested, the
students had a tendency to change the transformation (from right rotation to left
rotation) rather than to change the interpretation (from position interpretation
to object interpretation). Such behavior suggests that the position interpreta-
tion is not just an occasional preference—it may be a very salient interpretation
by novices in group theory. If so, then why? Is it an artifact of instruction or
is it based in deeper perceptual and conceptual factors? We regard this as a
matter deserving close empirically-based attention.

Similar Phenomena

We would like to situate our considerations of two ways to interpret the sym-
metries of a square with a collection of other phenomena which have some simi-
larities to, but also differences with our situation. We will consider

(1) the alibi/alias dichotomy introduced by Birkhoff and Mac Lane [3, 9]
considered in the case of translation in R? [3, p. 238] and rotation in R?
[10, p. 75].

(2) the alibi/alias dichotomy for quadratic forms [3, pp. 250-251; 9, pp.
387-388),

(3) an observation of Halmos on the matrix of a linear transformation [7, p.
65] and

(4) the effect of an automorphism of a vector space on the matrix of a linear
transformation.

First, we will describe these phenomena and then compare and contrast them
with our object /position dichotomy.

Example 1: Alias/alibi for translation and rotation in R2.

Birkhoff and Mac Lane (3, p. 238] suggest that an affine transformation of
R? into itself, can be interpreted as an alibi: a transformation, in which each
point z is carried into a point y on the same coordinate system, or an alias: a
change of coordinates, in which the original coordinate system is replaced by a
new one. For example, the equations

n=z1+2, pp=z2-1

can be seen-as a translation of every point in the plane two units east and one
unit south (alibi) or as a change of the coordinate system to a parallel system
with the origin two units west and one unit north of the given origin (alias).
We note that both interpretations change the representation, or name, of the
point to the same new name: e.g., the point (0,0) is either carried to the point
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whose coordinates are (2,—1) in the original coordinate system or the point
remains in the same place but, in the new coordinate system, it has coordinates
(2,—1). We also note that the way this is done in the alibi case is by applying
the transformation to points and it is done in the alias case by applying the
inverse of the transformation to the coordinate axes (or basis).

A similar example was discussed by Synge [10] who considered the following
equations in the Euclidean plane

z’ = zcosf + ysinb

Y =ycosf —zsind

as a transformation which can be interpreted in two different ways. “First, we
may think of fixed axes, and of a point which at first has coordinates (z,y)
and later has coordinates (z', 3'), all coordinates being measured with respect to
the fixed axes. In this way of looking at the transformation, the axes are fixed
and the plane rotates through an angle 6, in the sense from Oy towards Oz.
Secondly, we may think of a fixed point, referred first to axes Ozy and secondly
to axes Ox'y’, the axes Oz'y’ being obtained from Ozy by rotating them through
an angle 6 in the sense from Oz towards Oy. Now the plane is fixed and the
axes “rotate”[10, p. 75]. We note here that even though Synge didn't name
the interpretations alibi/alias, his two interpretations are essentially the same as
those of Birkhoff and Mac Lane. In both cases discussed in Example 1, both the
alias and the alibi interpretations lead to the same result in that both change the
coordinates to the same new coordinates, and in order to do this, it is necessary
to make use of the inverse of the original transformation.

Example 2: Quadratic forms under automorphism.

In a later work, Mac Lane and Birkhoff [9] applied the alibi/alias analysis
to several situations such as similar matrices and the signature of a quadratic
form. Our next example is adapted from Birkhoff and Mac Lane, [3, pp. 250-
251] and Mac Lane and Birkhoff, [9, pp. 387-388|. It discusses what happens
to the (symmetric) matrix of a quadratic form with respect to a basis when an
automorphism is introduced. Recall that a quadratic form g on a vector space
V over R is a function g : V — R such that the following expression defines a
bilinear function on R x R.

g(v+u) —q(v) —g(u), v,uinV.

Consider a finite dimensional vector space V, a quadratic form ¢ with the
symmetric matrix A relative to some basis (z;). This means that if X is the co-
ordinate function which assigns to a vector v in V the coefficients of its expansion
in terms of the basis (z;), then we have in vector and matrix notation,

a(v) = X () A(X(v))"

for all v in V. (Here, X(v) is considered to be a “row” vector and (X(v))” a
“column” vector.) Now, suppose we have an automorphism s : V — V, and that
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its matrix relative to the basis (x;) is P. This means that P = (p;;) and
s(i) = pijz;.
i

What is the effect on the (symmetric) matrix of the quadratic form v if the
automorphism s is applied to V?

We can again make either an alibi interpretation in which we consider that s
changes the vectors in v or an alias interpretation in which the vector remains
the same, but the coordinates are changed.

For the alibi interpretation, we consider that s changes a vector v to s(v).
The coordinates of v are thereby changed from X (v) to the coordinates of s(v),
which are X (s(v)). Using the transition matrix, we have

X(s(v)) = X(v)P
Then we can write,

g o s(v) = q(s(v))
= X (s(v))A(X (s(v)))"
= (X(v)P)A(X () P)"
= X (v)(PAPT)(X (v))"
That is, relative to the basis (2;) the matrix of g is changed to the matrix of
g o s, which is the symmetric matrix PAPT.
Now for the alias interpretation we may consider that the coordinates of a

given vector v are changed from X (v), its coordinates with respect to the basis
(%:), to its coordinates with respect to a new basis (y;) given by

v = 8(z)
The new coordinates of a vector v, with respect to the basis (y;) satisfy
X(v)=Y(@)P or Y(v)=X(v)P .
So we may write,
q(v) = X (v)A(X (v))"

= (Y ()P)A(Y () P)"

= (Y(v)P)A(P"(Y(v))")

= Y (v)(PAPT)(Y (v))".
That is, the matrix of ¢ relative to the basis (s(z;)) is the symmetric matrix
PAPT, :

We note that both interpretations result in the same new matrix of the qua-

dratic form. We also note that in going from the alibi to the alias interpretation

it is necessary to replace the transformation of coordinates X (v)P to the inverse
transformation, that is, X (v)P~1L.
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Example 3: Matrix of a linear transformation.

The following example is discussed in Halmos [7, p. 66]. Consider a finite
dimensional vector space V and a basis (z;) for V. If T is a linear transformation
on V, then it can be represented by a matrix. One way to do this is to write out
the expansion of each T'(z;) in terms of the basis and lift the coefficients.

Thus, for example if D is the differentiation transformation on the vector
space of polynomials of degree < n and we take the monomials for the basis,
then we can write

D:Cl = 0.'.!.'1 + 022 b T Oﬂin-l + 02':“
Dz = 1zy+0x3+---+ Ozn—1 + 0z,
Dry = 0xy+2x5+-+ 0z, + 0z,
Dz, = 0x1+0x2+---+ (n—1)z,—1 + 0z,

so that deleting everything but the explicit numbers leads to the matrix,

000 .. 0 0
100 ... 0 0
020 0 0

i\ (Bt o1
000 0 0
000 n—1 0

On the other hand, if we wish to use the standard convention of applying
a linear transformation to a vector by placing the coefficients of the vector on
the right of the matrix as a column vector and multiplying, then we have to
first transpose the matrix. Thus, we define the matrix of a transformation T'
with respect to a basis (z;) to be (a;;) where i indicates the row, j indicates the
column and a;; is the j** component of the expansion of T'(z;) with respect to
the basis (z;) . This choice of the transpose of [D] and not [D)] to represent the
linear transformation was referred to by Halmos [7, p. 66] as “the unpleasant
phenomenon of indices turning around.”

Example 4: Effect of an automorphism on a matrix of a linear
transformation.

Let T : V — V be a linear transformation and (z;) a basis for V. Here we
will couch our discussion of bases and the representations they provide in the
language of duality, rather than transposes and row versus column vectors. We
will denote by (a;;) the matrix of T relative to the basis (z;). It is given by

a;; =< T-Th :B*j >
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where (z*j) is the dual basis of (z;) for the dual V* of V. Let s be an auto-
morphism of V' and we may consider two interpretations of how s might change
the matrix. In the first interpretation, s changes the basis (z;) to the basis (y;)
where y; = 8(2;). This gives rise to a new matrix (bij) given by

bi_-'.' =< Ty{, y} >

where (y;) is the dual basis of (y;) for the dual V* of V.

In the second interpretation, we consider that s changes T by conjugation:
that is, instead of applying T to V, one first applies s, then T and then s™!. In
this case, the matrix of T" is now the matrix of the conjugated transformation
s~ 1T's relative to the original basis. Thus we have the new matrix (c;;) given by

Cij =< 8 'Tszi, z} >.

Using the fact that the transpose of the inverse of an automorphism is the inverse
of the transpose and also the fact that sy} = z], we get:

€y =< s 1 Tsx;, a:; >
=< Ts&:;,a"-:c;- >
=< Tyi,y; >
= byj.

Thus we have an example that is very similar to the alias/alibi situations except
that here the two interpretations still give the same new names but it is not
necessary to switch to an inverse. One could, of course, argue that there is an
inverse present in that transforming the basis (2;) to the basis s(z;) amounts to
applying the inverse of s to the elements of V. It is not necessary, however, to
consider this inverse whereas in the alias/alibi situations, the inverse plays an
essential role.

Comparing with Examples 1 and 2, we observe that the use of the inverse
transformation in alias situations, to obtain the same new name as in alibi sit-
uations, arises only when the objects in the discussion are vectors in a finite-
dimensional vector space (points in R? in Example 1). This is due to the fact
that applying a transformation to a basis results in applying its inverse to the
coordinates of elements of a vector space. In Example 2 however, the objects
in the discussion are quadratic forms and not vectors. The same automorphism
s is applied either to the quadratic form (alibi) and to the basis (alias). The
inverse of s appears in the discussion because we chose to perform the calcula-
tion at the level of vectors and their coordinates. In the following paragraph,
we repeat the analysis of Example 2 avoiding the introduction of the inverse of
a transformation by performing the calculations at the level of quadratic forms
and their matrix representations.
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Revisiting Example 2: Quadratic forms under automorphism.
Let V be a finite dimensional vector space and ¢ a quadratic form on V. Given
a basis (z;) for V, there is a unique symmetric matrix (a;;) which satisfies,

q(v)=z<v,z;>a.rj <,z >, for all v in V.
1,
Now suppose that s is an automorphism of V. Then we can interpret the effect
of s in two ways. The alias interpretation is that s changes the basis (z;) to
the basis (y;) where y; = s(x;). This gives rise to a new symmetric matrix (b;;)
uniquely determined by the relation :

q(v)=z<v,y,‘-‘>b,-_,- <wy; >, for all » in V.
i,j
In the alibi interpretation, it is considered that s changes g to g o s. In this case,
the matrix of the new quadratic form, relative to the original basis is the unique
symmetric matrix (c;;) which satisfies,

qos(v)=z<v,xf>c,;j<v,x;>, for all v in V.
.7
Now, write w = s(v). Using the fact that s*y; = 2} and that the dual of the
inverse of an automorphism is the inverse of the dual, we get

g(w) = Z <slw,z%i > ¢ < 57wy z) >

ij
=) <w,sVz] > <w,87 V75 >

1J

=Z<w,y§>c‘-j<w,yg>, for all w in V.
iJ

By the uniqueness, (b;;) is identical to (c;;). Thus we see that the two inter-
pretations lead to the same new matrix for the quadratic form and in both the
alibi and alias interpretations, the automorphism s and not its inverse is used to
make the change.

It may be that applying a transformation to points, but the inverse of the
transformation to the basis (as in Examples 1 and 2) will appear arbitrary to
students and cause some confusion. If that is the case, the fact that in an analysis
such as this there is no such switch to the inverse may cause this situation to be
less confusing. These are research questions which should be investigated.

Similarities in these situations.

In each of the situations we have described, there are certain objects and
in each case there are two naming schemes or means of assigning to an object
some algebraic quantity. Thus in Example 1, the objects are the points in R?
and the first naming scheme is the Cartesian coordinate system. The second
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naming scheme comes from the introduction of the translation or the rotation.
In Example 2 the objects are the quadratic forms and the first naming scheme
is the matrix of a quadratic form with respect to a basis. The second naming
scheme comes from introducing an automorphism of a vector space. In Exam-
ple 3 the objects are the linear transformations on a vector space V and the
naming schemes are the two ways of lifting the matrix elements from a set of
equations—with and without a transpose. In Example 4 the objects are the
linear transformations on a vector space V and the first naming scheme is the
matrix of a linear transformation with respect to a basis (one of the choices in
Example 3). The second naming scheme results from the introduction of an
automorphism of a vector space. Finally, in our situation, rigid motions of a
square, the objects are the symmetries of the square and the naming schemes
are the two ways of assigning a permutation to a symmetry that come from the
object /position interpretations.

Before moving over to focus on the differences, we should acknowledge that
because of the existence of two naming procedures, there is a potential for mixing
them up with a resulting confusion and even error.

Differences among the situations.

One very concrete difference is that in some of these situations such as posi-
tion/object, and matrix of a linear transformation, the two procedures for naming
give different names, whereas in the others, the two new names are the same. In
fact, in the first stages of our investigation, after considering Fxample 1 only as
a case of alibi/alias dichotomy, we assumed that the same name was due to the
choice to use one transformation in alibi interpretation and its inverse in alias
interpretation, which may seem a bit unnatural. If the inverse were not intro-
duced, the two interpretations would give different results. However, our further
investigation revealed that the use of the inverse is not essential when moving
to a higher level objects, such as quadratic forms or linear transformations.

There is another significant difference, that appears to us more fundamental
wihen comparing the above examples, Consider the object/position situation as
opposed to the alibi/alias dichotomy. In the former case, attention is focused on
a single object (a symmetry) which is not in any way changed in the discussion.
There are, however, two different interpretations that lead to two procedures for
naming this object as a permutation. In the latter case, however, attention is
again focused on a single object (point on a plane) and a single naming scheme
(assignment of Cartesian coordinates), so that no ambiguity exists at first. But
then, a transformation is introduced and the question arises of whether to apply
it to the objects or to the naming schemes. The two possible answers to this
question then give rise to two new procedures for naming the object. Thus, in
this second case, one has objects with original names (before the transformation)
and then (after the transformation) two possibilities for new names for a total
of three names (two of which may be the same) connected with each object. In
the former case, there is, from the beginning two names for each object, but that
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is all that we have. It seems to us that the matrix of a linear transformation is
similar in this last respect to the object/position dichotomy while the situation
in Example 4 could be another example of the alias/alibi dichotomy.

This last kind of difference seems to us to be essential and we can see no way
of embedding all of these types of situations in a single analysis. That identifies
one more question to which future research might be directed. However this
research comes out, the similarities among the situations appear to be enough
to warrant considering them together when searching for effective pedagogical
strategies.

We have shown in this paper how difficulties can arise in our situation of
object or position interpretations used to assign permutations to symmetries of
the square. Synge expresses the opinion that these difficulties do not have to
arise in the case of rotations of axes which he considered. He claims that when
operations are easily followed intuitively, the change between interpretations is
not expected to cause confusion. He makes a point of the importance of making
one’s interpretation clear in space-time transformations, where “our intuition is
not so active” [10, p. 75].

It seems that research is called for regarding the other situations to see if they
can be the cause of any student difficulties. If there are such indications, then
the question arises as to what pedagogical strategies might help students make
sense out of these situations and their multiple interpretations.

Conclusion

Our investigation revealed confusion when Abstract Algebra students at-
tempted to connect symmetries of a square with permutations of 5;. Based
on these few students we can say that one possibility is suggested. The posi-
tion/local interpretation may be more natural for students to use when making
a formal correspondence between symmetries and permutations whereas the ob-
ject/global interpretation may be more natural to use when deciding how to
actually move a square (after one or more transformations have been made).
Such a situation would, of course, represent an error waiting to be made.

Clearly, transformation groups as well as permutation groups are important
examples in the introductory Abstract Algebra course and establishing relation-
ships between the two can be very beneficial for the learner. “The great essential
is to try to be quite clear which view we are taking in any particular argument,
because otherwise great confusion may result.” [10, p. 76]. Therefore, we sug-
gest that the issues discussed above should not be “swept under the rug” or left
as exercises, but treated with sufficient attention paid to, and acknowledgment
of, the difficulties involved. Of course that is easy to say, but we cannot forget
that simply pointing things out to students has very little effect on helping them
understand something. Pedagogical strategies must be devised that will help
students become aware of these subtleties and use them to make sense out of
these important early examples of groups.
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However, a more general goal of an Abstract Algebra course is to use the D,

and S, relationship to introduce mathematics students to broadly applicable
gkills and invoke or increase their awareness of complexities and nén-unigueness
of mathematical interpretations. Qur presentation is only an overture to a variety
of areas in which such skills or awareness could prove useful. This article is
a step in the direction of clarifying a kind of complexity that undergraduate
mathematics instructors should be attuned to in order to facilitate the success
of their students.
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