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Abstract: Arithmetic sequence is used in this study as a means to explore pre-service elementary
school teachers' connections between additive and multiplicative structures as well as several concepts
related to introductory number theory. Vergnaud's theory of conceptual fields is used and refined to
analyze students’ attempts to test membership of given numbers and to generate elements that are
members of a given infinite arithmetic sequence. Our results indicate that participants made a strong
distinction between two types of arithmetic sequences: sequences of multiples(e.g., 7, 14,21, 28, ...) and
sequences of ‘non-multiples,’ (e.g., 8, 15, 22, 29, ...). Students were more successful in recognizing the
underlying structure of elements in sequences of multiples, whereas for sequences of non-multiples
students often preferred algebraic computations and were mostly unaware of the invariant structure
linking the two types. We examine the development of students' schemes asthey identify differencesand
similarities in situations presented to them.

Sommaire exécutif :  Une séquence arithmétique est une séquence de nombres caractérisée par une
différence commune entre des paires adjacentes. Dansle cadre de cette étude, nous voulons en savair plus
sur lafagon dont les futurs enseignants et enseignantes de |’ € émentaire anal ysent lastructure sous-jacente
des séquences arithmétiques. L a séquence arithmétique est utilisée comme moyen d’ analyser, d' une part,
les liens que font les futurs enseignants et enseignantes de I’ élémentaire entre les structures additives et
multiplicatives, et d’ autre part, plusieurs conceptsliésal’introduction de lathéorie des nombres. On leur
aposélesquestions suivantes : Quelles stratégies cognitivesles éléves utilisent-ilslorsqu’ils sont confrontés
ades problemes nouveaux liés aux séquences arithmétiques ? Quels sont |es patterns qui sont manifestes
aux yeux des éléves dans|astructure mathématique des séquences arithmétiques ? Quels sont ceux qui ne
sont pas reconnus ? Comment les él éves appliquent-ils les patterns reconnus a des situations données de
résol ution de problemes ? Quels sont les outils et |es notions mathématiques qu’ ils utilisent ? Dans quels
cas recourent-ils a une approche fondée sur les patterns et dans quels cas préféerent-ils une approche
computationelle ? Par quoi leurs choix sont-ilsinfluencés ?

Cette étude s’ inscrit dans | e cadre théori que des champs conceptuel sde Vergnaud. Un champ conceptuel,
dans notre interprétation de Vergnaud (1994, 1996), est un ensemble de concepts, d’ opérations et de
théorémesreliés entre eux. Selon ladéfinition de Vergnaud (1996, p. 238), un concept est un triplet formé
detroiscomposantesC = (S, 1, S), ou Sest I’ ensembl e des situations danslesquelles ce concept prend une
signification, | est I’ensemble desinvariants opérationnel s qui apparai ssent dans|es schemes dével oppés
pour pouvoir faire face a ces situations, et S est I’ensemble des représentations symboliques (langage
naturel, diagrammes, représentations graphiques, ...) qui peuvent étre utilisées pour représenter les
relations impliquées dans ces situations, communiquer a leur propos et aider a les maitriser. Vergnaud
(1994, p. 58) définit les schemes comme des systémes invariants de comportements qui s appliquent a
des classes de problémes bien définies.
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Danscette étude, nous avonsréalisé des entrevues cliniques avec de futurs enseignants et enseignantesde
I’ élémentaire aqui nous avons présenté deux typesde situations : (a) lavérification del’ appartenanced’ un
élément donné a une séquence donnée, par exemple : « 360 est-il un élément delaséquence2,5,8... ?»;
(b) lagénération d’ exemples : « Donnez un exemple de nombre élevé qui soit un élément delaséquence 2,
5, 8 ... » Nous avons analysé | es schemes dynamiques auxquel sfont appel les étudiants et étudiantes dans
leurs tentatives de résoudre les situations, en particulier pour
1 identifier et décrire les stratégies (ou régles d’ action) utilisées |orsque | es participants se
trouvent devant des situations problématiques liées aux séquences arithmétiques ;
2. analyser les stratégies des étudiants et découvrir les « théorémes-en-action » sous-jacents ;
3. suggérer une piste pour le développement des schemes individuels dans le contexte des
situations présentées ;
4, analyser le dével oppement des schemesindividuels sous |’ angle des relations entre les
champs conceptuel s des structures multiplicatives, des structures additives et de I’ algebre
éémentaire.

Nos résultats indiquent que les participants distinguaient nettement deux types de séquences
arithmétiques, les séquences de multiples (par exemple 7, 14, 21, 28 ...) et les séquences « non multiples »
(par exemple 8, 15, 22, 29 ...). |l était plus facile pour les étudiants et étudiantes de reconnaitre la
structure sous-jacente dans les séquences de multiples, tandis que pour les séquences non multiplesiils
préféraient souvent |es computations algébriques et ne percevaient guerelastructureinvariante qui reliait
les deux types. Dansles séquences de multiples, les étudiants et étudiantes reconnaissaient aussi bien les
structures additives (différence commune) que multiplicatives (ot chague élément est le multiple d’ une
différence commune). Dans les séquences non multiples, la majorité n’ont reconnu que la structure
additive. Plusieursincitations ont méme été nécessaires pour que certains étudiants et étudiantes percoivent
les séquences non multi ples comme des « multiples modifiés » et mettent aprofit cet aspect multiplicatif
pour exécuter les taches. Nous analysons le développement des schemes des éléves a mesure qu'ils
percevaient les différences et les similarités dans | es situations qui leur étaient présentées.

En conclusion, le traitement traditionnel des séquences arithmétiques dans I’ enseignement néglige a
notre avis un aspect important : la structure commune des éléments qu’il y a dans toute ségquence. Pour
les apprenants et apprenantes en mathématiques, il est essentiel d’accorder une plus grande place ala
reconnai ssance des patterns et des structures. De plus, unetelle attention pourrait s’ avérer particuliérement
profitable aux futurs enseignants et enseignantes de I’ élémentaire, qui, au cours de leur carriere, seront
plus probablement appel és a enseigner |areconnai ssance des patterns que | es manipul ations algébriques.

Introduction

An arithmetic sequence is a sequence of numbers with acommon difference between adjacent
pairs. The topic of arithmetic sequence, along with other sequences, is usually introduced in high
school, and the standard approach utilizes algebrai ¢ representation and manipulation. Despite being
apart of ahigh school rather than elementary school curriculum, the topic of arithmetic sequenceis
frequently approached in mathematics courses for pre-service elementary school teachers. Thisis
mainly because in many classical activities, such as those using figurative numbers, students can
make use of the ideas of arithmetic sequences as tools for problem solving.

Little research that is not limited to a counting sequence has been done on students’
understanding of arithmetic sequences. However, arithmetic sequences surface in the discussions
of pattern recognition and of understanding relations, generalization, and problem posing techniques
(Brown & Walter, 1990; Principles and Standards for School Mathematics, 2000). Suggestions for
creative teaching of the topic have al so been made, advocating more visualization in devel oping the
formulas (Hurwitz, 1993). Furthermore, arithmetic sequences appear implicitly in the research on
student recognition of linear patterns (Orton & Orton, 1999; Stacey, 1989). We believe that a deeper
understanding of the additive and multiplicative structure of arithmetic sequences will enable
elementary school teachersto provide aricher experiencefor their studentsin exploring patterns and
in grasping the relationship among arithmetic operations.
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Inthisstudy, weareinterested in exploring pre-service elementary school teachers' understanding
of the structure underlying arithmetic sequences. The following questions are addressed: What
cognitive strategies are used by students when facing unfamiliar problems related to arithmetic
sequences? What patterns are apparent to students in the mathematical structure of arithmetic
sequences? What patterns remain unrecognized? How do students apply the recognized patternsin
a problem solving situation? What mathematical tools and concepts are being utilized? In which
cases do students chose a pattern-guided approach and in which cases do they prefer acomputational
approach, and what aspects influence their choice?

By exploring these questions, we contribute to a large body of research on additive and
multiplicative structures (Fuson, 1992; Greer, 1992) and the connection between them. Furthermore,
conceptsof factors, multiples, and divisibility areinherent in the structure of elements of an arithmetic
sequence and are employed by students as they approach arithmetic sequence—related problems.
This study, therefore, contributes to the body of prior research on pre-service elementary school
teachers’ understanding of elementary number theory concepts (Campbell & Zazkis, in press; Zazkis
& Camphbell, 1996).

Theoretical framework

Vergnaud’s theory of conceptual fields

In several publicationsover the past two decades, Vergnaud devel oped, proposed, and elaborated
on histheory of conceptual fields (Vergnaud, 1988, 1994, 1996, 1997). According to Vergnaud (1996),
thetheory of conceptual fieldsaimsto provide‘afruitful and comprehensive framework for studying
complex cognitive competencies and activities and their devel opment through experience and learning’
(p. 219).

Thetheory of conceptual fieldsisbased on the understanding that asingle concept may refer to
several different situations, and asingle situation may be analyzed using several interrelated concepts.
The development of the theory of conceptual fields was motivated by the need to establish
connections among explicit mathematical concepts, relations, and theorems, and between students’
(at times implicit) dynamic conceptions and competencies related to these mathematical concepts,
relations, and theorems. The following terms of reference have been defined and used by Vergnaud:

e A conceptual field (1996, p. 225) isa set of situations, the mastering of which requires
several interconnected concepts. It is at the same time a set of concepts with different
properties, the meaning of which isdrawn from this variety of situation.

e A concept (1996, p. 238) isatupleof threesets (S, | and S), where Sisthe set of situations
that make the concept meaningful, | isthe set of operational invariants contained in the
schemes developed to deal with this set of situations, and S is the set of symbolic
representations.

e A scheme (1996, p. 222; 1997, p. 12) istheinvariant organization of behaviour for acertain
class of situations.

e A theorem-in-action (1996, p. 225) isaproposition that is held to be true by theindividual
subject for a certain range of the situation variables.

e Concepts-in-action (1996, p. 225) are categoriesthat enabl e the subject to cut thereal world
into distinct elements and aspects, and to pick up the most adequate selection of information
according to the situation and scheme involved.

Vergnaud (1997) analysed and described several conceptual fields, including additive structures

and multiplicative structures, ‘ thetwo main conceptual fields of ordinary arithmetic’ (p. 15), aswell as
the conceptual field of elementary algebraand the conceptual field of number and space. Hisanalysis
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included the classification and hierarchical organization of mathematical problemsand tasks(referred
toas‘situations’) for studentsto engagein, and the identification of appropriate schemesfor students
to develop in order to deal with these problems and tasks. Furthermore, possible theorems-in-action
and concepts-in-action that students develop while struggling with situations within a specific
conceptual field were identified (see Vergnaud, 1988, 1994, 1996, and 1997 for a comprehensive
description of specific conceptual fields). Vergnaud's theory of conceptual fields aimsto provide a
theory ‘that would make conceptualization the keystone of cognition’ (1996, p. 224).

Further theoretical considerations

The theory of conceptual fields is comprehensive and integrative, two features that Vergnaud
considers to be particularly useful. These features allow researchers to study a broad range of
phenomena at different levels. We would like to emphasize two additional implied features of
Vergnaud'stheory of conceptual fieldsthat make thistheory aparticularly useful frame of reference
for our investigation. First, it iscontent-specific but not content-limited. That is, itisnot restricted to
the learning of specific topics, but rather can be extended to investigate an individual’slearning in
any domain. Though Vergnaud's examples of conceptual fields focus on elementary mathematics,
they contain clear pointersthat conceptual fields can be studied outside of elementary mathematics
and even outside of mathematicsin general.

The second and morecrucia featureisthat thetheory of conceptual fieldsexplicitly acknowledges
the existence of established mathematical knowledge. Thisknowledge, when restricted to aparticular
domain or content, is described as a conceptua field, in which concepts and relationships are
inherent. It also explicitly acknowledges aparticular learner’s knowledge as his or her scheme. An
individual’'s schemeincludes goals, rules of action, inference possibilities, and operational invariants,
which are theorems-in-action and concepts-in-action. An individual’s scheme is dynamic and
functional. It is being developed and changed over time and it isaimed at achieving agoal.

Situations

Though Vergnaud is very careful to define rigorously the terminology used to present the
theory, oneterm isleft undefined and istherefore subject to interpretations. Thistermis ' situation,’
which isakey featurein defining a scheme, a concept, and a conceptual field. Vergnaud's position
makes clear that situations can be both routine and non-routine problems. In the mathematics
education community, situations are often interpreted as contextualized story- or word-problems
(Greer, 1992). Most of the examples of situationsthat Vernaud providesare of thiskind. Consequently,
in considering multiples and divisors, Vergnaud (1988) suggests that many of the considerations
discussed with respect to the conceptual field of multiplicative structures are not meaningful for this
domain of mathematics because ‘it is accepted that the concepts of multiple and divisor concern
pure numbers' (p. 159).

We suggest that Vergnaud's theory of conceptual fieldsis applicableto abroader interpretation
of situations. We classify as situations not only contextualized problems, but also mathematical
problems and questions that are ‘abstract,” that concern ‘pure numbers,’ or that are
‘decontextualized’ —that is, not rooted in ‘real world' context. For example, asking studentsto find
two numbers that have a sum of 24 is a situation that belongs to the conceptual field of additive
structures.
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Cognitive development in a conceptual field

Vergnaud (1996) claims that the theory of conceptual fieldsis ‘atheory of representation and
cognitive development’ (p. 220). The idea of a ‘situation’ plays an important role in Vergnaud's
theory of conceptual fields. In a way, situations serve as triggers in generating and promoting
cognitive development. When students are faced with a new situation, ‘they use the knowledge
which has been shaped by their experience with simpler and morefamiliar situationsand try to adapt
ittothisnew situation’ (Vergnaud, 1988, p. 141). Thisdescriptionissimilar to Piagetian accommodation
and assimilation. Wewould liketo elaborate further and describein detail the mechanism of learning,
using theterminology of Vergnaud’'stheory of conceptual fields. If taken over along period of time,
learning can be seen as an individual’s cognitive development. If taken over ashort period of time,
learning can be seen as a development of a particular scheme.

Theorems-in-action are identifiers of students' knowledge, as they describe mathematical
relationships, either correct or incorrect, that are taken into account by students when they choose
a path to solve a problem. Vergnaud suggests that ‘ theorems-in-action have the potential to be the
links among situationsin the conceptual fields' (1988, p. 145). We add that theorems-in-action may
also serve as separators rather than links, and that recognizing either could serve as a stepping stone
to learning. Thus, learning within a conceptual field may occur in two ways: (1) A student may
recognize differencesin two seemingly similar classes of situations. Asaresult, different theorems-
in-action will beinvoked and different routeswill betaken by the student in dealing with each of the
two classes of situations. It may be the case that once the difference is recognized, a hierarchy is
established—that is, one situation will appear easier for thelearner than the other. (2) A student may
recognize a common structure between two classes of situations that were formerly perceived as
‘different.” Thismay |lead to an adaptation of two previously used theorems-in-action into one more
general theorem-in-action that is applicable for both classes of situations. Once the situations are
perceived by a student as belonging to the same ‘unified class,’” the same scheme will be invoked.
Furthermore, identifying the invariant structure in situations may serve as a bridge that takes a
student from one conceptual field to another.

Methodology

Vergnaud (1996, p. 225) asserts that cognitive development should be analyzed both from the
perspective of the mathematical situations in which students’ activities take place and from the
perspective of the conceptsinvolved in the analysis of the situations. He mentions two advantages
in taking such a perspective on analysis:

1 Itgivesaway to study the situations, to identify similarities and differences between the
situations as well asthe repertoire of schemesthat is progressively developed to deal with
the situations.

2. It provides the tools to describe students’ at timesimplicit knowledge underlying their
schemes in terms of operational invariants—that is, theorems-in-action and concepts-in
action.

We attend to the above mentioned advantages asaguidelinefor analysis. First, we examine the
situations from the mathematical perspective, as‘ mathematicsisan indispensabletool for thisanalysis
(Vergnaud, 1988, p. 142.). Then we explore students’ dynamic schemes that are invoked in their
attempts to deal with the situations, specifically aiming to
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1 identify and describe strategies (rules of action) used as participants encounter problem
situations related to arithmetic sequences,

2. anayze students’ strategies and uncover underlying theorems-in-action,

3. suggest apath for adevelopment of individuals' schemes within the context of presented
situations,

4. analyzethe development of individuals' schemesin terms of bridges among conceptual
fields of multiplicative structures, additive structures, and elementary algebra, and

5. test empirically the (above) refinement of the theory pertaining to scheme devel opment.

Participants

Participants in this study were pre-service elementary school teachers enrolled in a course
entitled Foundations of Mathematics for Teachers, which isacore course in the elementary teacher
education program. Intheearly part of the course, students‘ covered’ thetopic of arithmetic sequence.
They werefluent in recognizing and labelling some sequences as‘ arithmetic’ and also in generating
sequences given thefirst element and the difference. They devel oped and implemented formulasfor
calculating the nth element aswell asthe sum of thefirst n elements of the sequence. They were also
reasonably proficient in modelling phenomena, such asthe constant growth of aplant or the constant
daily charges of abank account, as arithmetic sequences and in solving related word-problems.

Interviewswere conducted by both authorsin the later part of the course, shortly after theideas
of elementary number theory—including divisibility, factors and multiples, and the division
algorithm—werediscussed in class. Twenty out of the 64 students enrolled in the course volunteered
to participatein clinical interviews, which are the main source of our data.

Situations

The following interview questions represent the core of the situations that were presented to
students.

1. Describing and exemplifying. Please give several examples of arithmetic sequences. What
makes these sequences ‘ arithmetic’ ? Can you think of an examplethat isdifferent from others?
2. Testing membership.

Consider the following sequences of numbers.
@ 2,5,8,11,14, ...
Do you know what the next element is? Is it arithmetic? What is the twentieth element? |Is the
number 360 an element in this sequence (assuming it isinfinite)? Why? I sthere another way to verify
this? And how about 4407 Is it an element in this sequence? Why? |s there another way to verify
this?
(b) The same questions with respect to sequence 3, 6, 9, 12, ... and numbers 360 and 440.
() The same questions with respect to sequence 17, 34, 51, ... and number 204.

(d) The same questions with respect to sequence 8, 15, 22, 29, ... and number 704.

3. Generating examples of members. Can you think of a‘large’ number that isan element in
the sequence 2, 5, 8, 11, 14, ... ? (If necessary, ‘large’ was described as a three- or four-digit
number). Can you think of alarge number that is definitely not an element in this sequence?
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The same questions were posed with respect to the sequences listed in 2(b), (c), and (d), above.

The interviewer could vary the sequences and the numbers in question, or suggest additional
sequences and numbers, as they deemed appropriate. The interviewer also asked meta-questions,
such as, ‘inwhat way isthetask 2(a) different from the task 2(b)?

The request to describe and exemplify an arithmetic sequence was considered as a warm-up
question, theintent being to start with something easy in order to establish asupportive atmosphere.
The request to present a different approach to the problem was used to get beyond the formula-
based responses that could be invoked by arecently learned mathematical content. The situation of
testing membership or generating exampl es of members devel oped for the interview can be seen as
‘twist’ or ‘inverse’ questions (Groetsch, 1999; Zazkis& Hazzan, 1998). A standard exerciserelated to
an arithmetic sequence is to find the Nth element. In our interview ‘what is given’ and ‘what is
sought’ in standard questions have been ‘twisted’ or ‘reversed.” This type of questions invites
students to examine the situation rather than automatically follow an established algorithm, and
gives researchers an opportunity to gain a better understanding of students' schemes.

Results and analysis

Mathematical analysis of situations and the interpretive analysis of students' schemes are
often intertwined. Mathematical analysis serves as a lens through which students’ schemes can be
described. On the other hand, analysis of students’ schemes helps in identifying subtleties in
mathematics that could otherwise be overlooked or ‘taken for granted’ by the researcher.

It became apparent from participants' responsesto situation 1 (the request to provide examples
of several arithmetic sequences) that a particular class of arithmetic sequences is preferred by
students. Each participant provided between four and eight examples of arithmetic sequences. Most
of these exampleswere sequences of multiplesof asmall natural number, suchas3, 6,9, 12, ... or 5,
10, 15, 20, ..., with a possible exception of the sequence of odd numbers. When the interviewer
explicitly asked for ‘ something different,” the usual reaction wasto provide sequences of multiples
of ‘large’ numbers, such as 50, 100, 150, 200, ... or 100, 200, 300, ... etc., or to list multiplesin a
descending order. All the participants mentioned ‘ common difference’ asasalient feature of arithmetic
sequences and readily accepted other sequences, suchas?2, 5, 8, 11, ..., as‘arithmetic,” asthey were
in accordance with the‘ common difference’ definition. However, sequencesthat did not list multiples
of anatural number were not apart of their immediate repertoire of examples. Attending to sequences
of multiples versus sequences of non-multiples adds a dimension to our mathematical analysis of
situations.

Mathematical analysis of ‘situations

Arithmetic sequenceis defined by itsfirst element, denoted a or a1, a difference denoted as d, and
arecursiverelationship of an= an-1 + dforn> 1. Informally, itisdescribed asasequencein which
a‘common difference’ exists between each pair of consecutive elements. An arithmetic sequence
hastheforma,a+ d,a+ 2d,a+ 3d,a+ 4d,...,a+ (n-1)d, ...

We limit our considerations hereto infinite arithmetic sequences of whole numbers. Theidea of
common difference isembedded in the definition of arithmetic sequence. Attending to thisadditive
structure gives a possibility of generating lists of elements by successive addition. Another
identifying feature of arithmetic sequencesisthat all elements of a given sequence have the same
remainder in division by the common difference. Thismultiplicativeinvariant is easily observed by
attending to thecommonforma + kd, where kisawhole number of each element. Moreformally we
can state that for all aj in any arithmetic sequence of whole numbers, aj = ¢ mod d, where cisthe
constant remainder and d isthe difference.
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An interesting subset of arithmetic sequences is sequences in which the common remainder c in
division by the common difference d is zero. They can be described as sequences of multiples of d.
In aspecial case where a=d, these sequences are of the form

a,a+a,,a+a+aa+a+a+a ..,or

a, 2a, 33, 4aq, ...
or,inamoregeneral case,
md, (m+ 1)d, (m+ 2)d, ...

Attending to the fact that all elements of these sequences are multiples of d gives a way to
identify whether agiven number isan element of agiven arithmetic sequence, and also gives away
to generate elements bel onging to the sequence in anon-sequential way. In specific, considering the
sequence 17, 34, 51, 68, ..., one can claim that 300 isnot an element in this sequence becauseit isnot
divisibleby 17, while 17,000 isan element becauseitisdivisibleby 17.

Extending this argument to a situation of a general arithmetic sequence should include
consideration of remainder. Considering, for example, the sequence 8, 15, 22, 29, ..., we note the
following multiplicative structure: All theelementsgivearemainder of Lindivisionby 7. A different
way to describe this relationship is to say that the sequence 8, 15, 22, 29, ... is obtained from a
sequence of multiples of 7 by adding 1 to each element. Therefore, 704 is not an element in this
sequence, while 701 is. Realizing that ‘ no remainder’ or ‘being amultiple’ impliesaremainder of zero
enables the use the same approach for both cases.

While areferenceto multiples of didentifies one sequence (or identical sequencesfrom acertain
place on), there are d-1 arithmetic sequences of non-multiples of d. Therefore, for d>2, aproperty of
anumber being ‘non-multiple’ of d does not determineits membership in any given sequence of non-
multiples. A remainder in division by d identifies the specific sequence and sets up a partition of
integers. Therelevance of this observation becomes apparent further on, in the section ‘ Considering
non-multiples.’

Students' schemes

A ‘scheme’ isdefined by Vergnaud (1996, p. 222; 1997, p. 12) asthe invariant organi zation of
behaviour for a certain class of situations. The components of students’ schemes are goals and
expectations, rulesto generate action and pick up information, operational invariants, and inference
possihilities. Operational invariants are concepts-in-action that guide students to grasp and select
relevant information, and theorems-in-action that guide students in treating this information.

Theorems-in-action describe properties and relationships that a student believes are true for a
certain kind of situation. They influence rules for action that can be observed and described as a
student’s strategies in approaching the situations. Theorems-in-action can be stated explicitly in a
student’s explanation or can remain implicit. However, taking the chosen strategy as an indication of
a student’s awareness of the relations involved gives an opportunity to make inferences about an
individual’stheorems-in-action.

In what follows, we describe students' strategies in approaching the situations presented in the
interview. Through these strategies, we analyze students’ explicit and implicit concepts-in-action
and theorems-in-action.
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Listing the elements

Listing the elements in a given arithmetic sequence by adding the common difference will
eventually generate ‘large’ elements and determine whether a given number is an element in the
sequence. For participants in this study, listing the elements was not the preferred choice;
neverthel ess, this strategy was mentioned either asaverifying strategy, or asadefault for not being
able to generate a better strategy.

In the excerpt below, Chris is considering the sequence 3, 6, 9, ... and the number 360. She
realizes that the elements of the sequence are multiples of 3, but thisdoesn’t give her confidencein
validating her conjecture.

Interviewer: You said it isamultiple of 3 and therefore you believeit will bein the sequence and
then you said, ‘I don’t know,” so ...

Chris: Oh, uh, that would be my guess, yes it is, and quite honestly usually when | do these
problems, if | wereto solve, you asked mein this caseto figure thisout, | would go back and | would
check, likel would sit thereand | would write out the entire thing until I cameto 360. That would be
how | checked, unless | had someone to confirm that with.

Chriswould have preferred to have an external confirmation for her conjecture. However, since
‘someoneto confirm with’ isunavailable, ‘write out the entire thing’ servesthe purpose of internal
convincing.

Sue mentionslisting the elements when asked whether it is possible to approach the question of
whether 360 isan element in the sequence 2, 5, 8, ... without relying on formulas.

Interviewer: Okay. Do you think it is possible to figure this out for somebody who doesn’t know
thisformula?

Sue  Um, You could actually use the trial-and-error method and just keep on going until you get
past 360, but that’s going to take a long time.

‘Keepongoing' ishow Sue describes her rule of action. Similarly, for Lily inthe excerpt bel ow,
‘adding 3 each time’ isthe only strategy she can suggest in order to give an example of an element.

Interviewer: Okay, let's try another one. You don't know whether 360 is an element in this
sequence or not, but if | ask you, can you find some number whichisan element in this sequence, can
you find such a number?

Lily: 1 could find anumber that’s an element just by adding 3 each time ...

Interviewer:  Okay, but how about abig number?If | ask you, please give me an example of athree-
digit number which is an element in this sequence. Yes, you can go on and add 3, but can you think
of some other strategy?

Lily:  (pause) Hmm, not really, no.

The strategy of listing the elements or ‘adding on,’ is evidence of students' theorem-in-action,
which indicatesthe additive structure of acommon difference between pairs of consecutive elements.
Eight students mentioned explicit calculation of all the elementsupto acertain placeasan alternative
strategy or as away of checking one's answer, though only two participants suggested listing the
elements astheir primary choice of strategy.
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Applying the formula

The formulaan= aj+(n-1)d is applied in routine questions to find the Nth element when the
first element and the common difference are known. Furthermore, it can be used to cal culate any one
of the four variables when the other three are known.

Using theformulawas apopular choice of strategy in order to approach situations of determining
membership. Inthe next excerpt, Eve explains her way of deciding whether 360 isan elementin2, 5,
8 ...

Eve  Okay, | um, | used thisformulahere, | put the 360 equal to2+ 3 x (N - 1) and | tried to solve
fortheN ...

Interviewer: Okay ...

Eve Now if at the N | reached a conclusion where | cannot find awhole number for N, then that
meansthat um 360 cannot bein this sequence of numbers. Becausein order to have 360 to bein here,
the N must be a perfect, uh no, awhole number ...

Interviewer: And why does N have to be a whole number?
Eve  Oh, well because N represents Nth place in the sequence, right, if we don’t have a whole
number, then it’s not in the sequence.

If 360 were an element in the sequence, solving for N would have determined the place of this
element. Eve realizes that such a solution must be a whole number. However, several of Eve's
classmates who have chosen to use the formula couldn’t explain what N or X represented. Leah,
approaching the same question, set as her equation 360=2+359d, explaining that 359 is ‘the term
before.” Jill, inthe exampl e bel ow, sets an appropriate equation, but she exhibitsan obvious confusion
between the element in an arithmetic sequence and its place.

Interviewer: OK, what | see here, you set an equation 360=2 + 3x, what is your X?

Jll: X isthe element, any element, it's um the number that you multiply the difference by, that’s
just, I don’'t know, | haveto figure that ...

Interviewer: What is this number you multiply the difference by?

Jll: One number less than the element I’ m looking for.

Participantsal so found formulas helpful in generating ‘large’ elements. Inthefollowing excerpt,
Larry chooses 701 asan exampleof a‘large’ elementin8, 15, 22, ... . Thisnumber appearsasageneric
exampleif oneisaware of theform 7k+1 of the elements. However, 701 isgenerated by substituting
into the formula 100 as a choice for N, without attending to the form.

Interviewer: Could you please give me an example of alarge number which is an element of this
sequence.

Larry: Uhh, okay, say (pause) 701 ...
Interviewer: And how did you find 701?
Larry: By using the equation, the formula.

Interviewer: So hereitiswritten A1gg =8 + 99 x 7, so you know that 701 is what?
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Larry: Isthe hundredth, the hundredth number in the sequence.

Application of formulas was suggested as the exclusive strategy by only one of the participants.
However, 17 participants used formulas for situations similar to 2(a) and 2(d), but applied
considerations of form and pattern for sequences similar to 2(b) and 2(c) (situations 2(a)—(d) are
described in the Situations subsection in the M ethodol ogy section, above). Thisfact, taken together
with asignificant amount of prompting and invitation to think of ‘another way’ during theinterview,
suggests that participants preferred formulas when the pattern in the sequence was not obvious to
them—that is, when they weren’t aware of the multiplicativeinvariantsin the structure of the elements.
Every element of an arithmetic sequence satisfiesthe given formula—appearsto be ageneral theorem-
in-action that guides student’s approachesin cases where more specific rel ationshi ps among el ements
are not recognized. In such situations, the participants invoked a scheme previously established to
deal with arithmetic sequence—related questions:. the scheme of plugging numbersinto the formula.

Attending to last digit

A strategy applied by two students consistently involved consideration of the last digit in a
number. As shown below, such aconsideration gave Mike clear guidance in some casesand left him
on unstable ground in some other cases.

Interviewer: Thesequenceisl, 7, 13, 19, 25, and so on. I'll pick anumber, abig number, let’s say
360, and my question is, if | continue this sequence, will the number 360 be one of the elements?

(]

Mike: Well no, it wouldn’t be because, (pause) well | was just looking at these numbers, 1, 7, the
final digitis3 and thefinal digitis9, 5, and, oh wait aminute, yeah, no that would be 31 and there's
the, and 31 and then 37, so the pattern, you' re seeing a period of the pattern there, 1,7, 3,9,5, 1, 7,
43, uh 49, and uh 55, and so on, so 360 wouldn’t be in this sequence.

Interviewer: Hmm, that isinteresting. Let me give you another number, how about 343. (paLise)
What do you think, isthis number in this sequence, isthis number not in this sequence, how can you
work it out?

Mike: Well my first impulse would beto say, well yesit is, because we have a43, but another
strategy that | actually do employ when given problems of thisnature, islack of trust, so like by seeing

that number there, | automatically say oh, there must be some catch to it and I'll have to figure out a
formulato find it. Uh (pause) but | really don’t know how to approach it right now.

(-]
Interviewer:  Can you think of a number that you are sure is here or you are sureisn’t here?

Mike: Okay. 61 would be the next number in this sequence and then um 92 wouldn’'t bein the
sequence because the final digits of those numbers don’t follow the pattern ...

Interviewer: Umhm ...

Mike: Um, (pause) now 343, as| say, my instinct istelling methat it would be part of the sequence
because the final digit is, not only isthefinal digit 3, but it, the second digit is the same aswell ...
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The sequence presented to Mikeis1, 7, 13,19, 25, ... . Herecognizesthe repeating pattern of last
digitsand claims with confidence that 360 is not the element because it doesn’t fit this pattern. He
also givesthe example of 92 assomething heis‘sureisn’t there.” Histheorem-in-action hereisrather
explicit: Thelast digit of a number must fit the pattern of last digits of the known elements in the
sequence. However, this theorem-in-action provides no clear direction when considering numbers
with alast digit that doesfit the pattern of the sequence. With respect to 343, Mike'sdecisionisless
confident; he reports ‘lack of trust’ and a desire ‘to figure out a formula to find it.” He further
considersnot only thelast digit, 3, but also thelast two digits, 43, whichisin thiscaseaninappropriate
extension of apreviously used scheme. As clarified by Vergnaud, theorems-in-action can be either
trueor false. Mike exemplified how the same strategy, attending to last digit, can result inidentifying
true relationships for some situations and in generating false arguments for others.

Considering multiples

Attending to multiples guided students to generate several theorems-in-action. In a sequence
of multiples of agiven number, in our examples of numbers3and 17, divisibility of anumber by 3 or
17 determineswhether or not it isan element in the given sequence and provides animmediate means
to generate large elements.

Interviewer: Okay. How about a number like 94, do you think it is an element of this sequence?
Chris: (pause) No.
Interviewer: And why do you believe it is not?

Chris: Because| would say that 90 would be, becauseit would be amultiple of 3, and so the next one
after that would be 93 and 94, no, because it would be 93 and 96.

Chris concludes that 94 is not an element in the sequence 3, 6, 9, ... . However, her argument
doesn’'t consider divisibility of 94. Her strategy is to generate elements that are close to 94, in this
case 93 and 96, that are multiples of 3.

Interviewer: Okay. | would like you to look at adifferent sequence, anditis 17, 34, 51, 68, and so
on. And | would like to ask you about the number 204. Isit an element of this sequence?

Dave: If it'samultiple of 17, itis.

Interviewer: Andif it isnot amultiple of 17?

Dave: Then it shouldn’t be.

Interviewer:  Sothiswill guide your decision.

Dave: Umhm.

Interviewer: So204isindeed 17x 12 ...

Dave: Thenit'sin.

Interviewer: It'sin. Canyou please give me an example of abig number whichisin this sequence?

Dave: 17,000.
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Interviewer:  Another one.

Dave: 17,051.

Interviewer: Okay. What makes you believe that 17,051 is an element of this sequence?
Dave: (pause) 17,000 is 1,000 x 17, and that’s a multiple of 17 ...

Interviewer: Umhm ...

Dave: | asoknow that 51 isamultipleof 17, and soit'sthe3x 17, so | add 1,003 17’s, I’ ve still got
amultiple of 17, it's till going to be in there.

Daveexemplifieshisbelief that any multipleof 17 isan elementinthesequence 17, 34,51, ... . He
immediately mentions 17,000 asageneric examplefor a‘large’ number divisibleby 17 and also builds
on his previous knowledge of multiplesof 17 in order to produce anew one. Any multipleof 17isin
the sequence, any non-multiple of 17 isnot in the sequence—thisis Dave'stheorem-in-action. Both
parts of thistheorem-in-action are important and can be used as separate arguments. It appears that
Chris's schemeincluded thefirst part of the theorem only. We observe that though Chris's concept-
in-action, multiple, wassimilar to Dave's, theinferencerulesin her schemewererather limited toinfer
the ‘if and only if’ relationship between a number being a multiple of 3 and its membership in a
sequence 3, 6,9, ....

In the next example, Larry describes his scheme as a general decision-making strategy.

Interviewer:  And how about 440, isit in the sequence?

Larry: (pause) No, it's not.

Interviewer: Why not?

Larry: Because 3 doesn’t divide 440.

Interviewer: Okay, so can you describe your general strategy and decision making here please?

Larry: Um, I'm just looking at the constant difference and | found that the constant differenceis 3,
therefore any multiple of 3 will bein this sequence, but then if you have anumber that doesn’t, that
isnot divisible by 3, then it will not be in this sequence.

At first glance, Larry’sdescription appears accurate and comprehensive. However, amoredetailed
examination of his argument suggests that numbers divisible by 3 are elements in the sequence
because 3isacommon difference. Thisisthecase only if thefirst elementisaso amultiple of 3. For
Larry, this could be an incomplete communication of an idea, as he later acknowledged
inappropriateness of applying the same strategy for the sequence 8, 15, 22, ... . However, for several
other participants, the idea that numbers in an arithmetic sequence are multiples of the common
difference manifested as afal se theorem-in-action.

Interviewer: Okay. One more. Would you please consider the following sequence: 8, 15, 22, 29. So
far it's an arithmetic sequence, how would you continue?

Lesh: 36?
Interviewer: And ...

Leah: 43.
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Interviewer: Okay. And how about the number 704?

Lesh: 1'm going to check and seeif 7 isafactor of 704, (pause) no ...

Interviewer: No for what?

Lesh: Um, 704 is not going to be in this sequence because 7 is not a factor of 704.
Interviewer: Okay. How about 700?

Lesh: Yeah, um, 7 isafactor of 700, so | think it's going to be in the sequence. 7 x 100 is 700.

L eah claimsthat the number 700 isan element in asequence 8, 15, 22, ... because 7 isafactor of
700. In the case below, Sueis considering the sequence 2, 5, 8, ... and makesasimilar falseclaim.

Interviewer: Could you please give me an example of anumber, and | would like arelatively big
number, like three-digit number or four-digit number, that you’ re surewill belisted in this sequence
[2,5,8,...]1?

Sue  Mmm, okay, | guessit hasto beamultiple of 3, becauseit’s common difference, so um 333,
maybe?

Interviewer:  Soyou think that 333 will be listed in this sequence?

Sue | think so.

Sue holds that an element in an arithmetic sequence is amultiple of the common difference. In
such cases, the student’s theorem-in-action was challenged by the interviewer by pointing out
contradictory evidence. As a result of these types of challenges, some participants refined their
scheme by limiting it to certain kind of situations, while others, such as Sue below, regressed to
previously successful strategies, such as using the formula.

Sue  Hmm, wait aminute, 360 isamultiple of 3, yet | just said that it didn’t goin, right ...
Interviewer: Youdid ...

Sue  Sothen thismight not goin there, | don’t know, um, (pause) I’m not sure (laugh). | think 1’11
have to guess acouple, I'll have to do trial and error to figureit out.

Interviewer: And what do you mean by trial and error here?

Sue Likeum, I’'m going to start with pick a couple of numbersthat | think would work and then
put it back into this formula ...

Interviewer: Okay ...
Sue  Toseeif | get awhole number ...
Interviewer: For?

Sue  For N.
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Intotal, there were nine participantswho believed, at |east temporarily, that multiples of d would
generate elements in any arithmetic sequence. This strategy was applied in situations of testing
membership aswell asin situations of generating elements. Consideration of multiples of d for any
arithmetic sequence can be seen as students’ attempts to extend a previously established schemeto
a new situation, without realizing the difference between the structure of arithmetic sequence of
multiples and arithmetic sequence of non-multiples. A similar phenomenon, referred to as'* difference
product’ or ‘direct proportion,” was observed by researchers investigating middle school students’
generalization of repeating patterns (Orton & Orton, 1999; Stacey, 1989).

Considering non-multiples

Classifying arithmetic sequences as ‘multiples and ‘non-multiples’ presents a dichotomy that
may be both useful and problematic for students. In the following excerpt, Sally considers the
sequence 8, 15, 22, ... and the number 704.

Interviewer: So 704 isnot divisible by 7, none of these elementsin this sequence you believe will
be divisible by 7, so can you draw conclusions from what you have now?

Sdly: It's, it's um very possibly in this set.
Interviewer: Um hm. What, what will convince you?
Saly:  (laugh) Well just becauseit’s not divisible by 7, doesn’t mean it’sin the set, right?

Interviewer: Can you give me an example of a number that you know for sure that is not in this
arithmetic sequence?

Saly: Umhm, um 700 ...

Interviewer:  Another one ...

Saly: Um, 77.

Interviewer: Okay. And how about 787

Sdly: It may bein the set, but it’s not divisibleby 7 ...
Interviewer: (laugh) So 77 you're sureis not, 78 you're not sure.
Sdly: Right.

Interviewer: 79?

Sdly: Could be ...

Interviewer: Could be. 80?

Sdly: Could be ...
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Sally is confident that multiples of 7 are not elements in the given sequence, but she believes
that any number that is not amultiple of 7 ‘could be’ in the sequence. Similarly, for Leah apossible
element in the given sequence is arandomly picked number that is not divisible by 7.

Interviewer: Okay, so can you give me an example of a number that you believe is not in the
sequence and an example of a number that you believeis, or could be in the sequence?

Lesh: Um, | don’t think 714 would bein the sequence, um, anumber that could be, | would just pick
anumber that hasn't a factor of 7, so like 511 possibly, or something.

Interviewer: And you are saying possibly because ...

Lesh: Just, | just picked a number that wasn't, didn’t have 7 as a factor.

Thisimplicit theorem-in-action—* Every element in an arithmetic sequenceisamultiple of d'—
has been discussed in aprevious section. Thistheorem-in-action holdstrue for asituationsin which
an arithmetic sequence under consideration isasequence of multiples[see Dave, above]. However,
it isfalse when extended and applied to a sequence of non-multiples [see Sue, above].

Attention to multiples and non-multiples restricts the previously used theorem-in-action to a
specific class of situations. At this stage, students are able to differentiate and note that previously
generated theorems-in-action are not fruitful in anew situation. However, they have not yet revised
their theorems-in-action to generate rules of action for the new class of situation. Whereasanumber’s
property of ‘being amultiple’ givesaclear indication of itsbelonging to asequence of multiplesand
non-belonging to a sequence of non-multiples, the property of ‘ being anon-multiple’ identifiesthat
anumber doesn’t belong to a sequence of multiples, but gives no explicit hint with respect to the
number’s membership in agiven sequence of non-multiples. Therefore, Leah and Sally in the excerpts
above clearly claim that any given multiple of 7 isnot an element in a sequence of ‘ non-multiples.’
Nevertheless, they are not able to draw a definite conclusion when testing a membership of the
number that isnot amultiple of 7. Their expressions‘ quite possible’ or ‘could be' suggest that they
have identified the dichotomy between multiples and non-multiples. They are aware of the
multiplicative structurein the sequence of multiples; however, they are not attending to the inherent
multiplicative structure of the arithmetic sequence of non-multiples.

The main problem here—and thisis the place to return to our mathematical analysis—is that
thereis one sequence of multiplesof d (or, in amore formal way, identical sequencesfrom acertain
place on) while there are d-1 sequences of non-multiples of d. Therefore, for d>2, the property of a
number of being non-multiple of d doesn’t give aclear indication to which of the d-1 sequencesthe
element belongs.

A note on multiples and non-multiples as concepts-in-action

We interpret Vergnaud's use of ‘ concepts’ as established conventional mathematical concepts,
whereas ‘ concepts-in-action’ are mathematical concepts as they are constructed in an individual
student’s mind. Though concepts and concepts-in-action may have the same lexical reference, a
student’s concepts-in-action are dynamic and represent his or her understanding, at times erratic or
incomplete, of agiven mathematical concept. The concept of multipleisour natural examplein this
discussion. Inthefollowing example, Eve claimsthat all the numbersin the given arithmetic sequence
17,34,51, 68, ... aremultiples of 17; however, sheisunableto generate afour-digit element in this
sequence.

Interviewer: How would you decide whether 204 is an element in this sequence?
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Eve Okay, (pause) okay | guess | would use 204 and divide by the first number in here,
because it 1ooks like, when 1I'm looking at this sequence it looks like um all these numbers are
multiples of 17, soif 204 isamultiple of 17 which meansthat it will also occur in this sequence, so
in order to be a multiple of 17, 204 divided by 17 must give us a result of a whole number and no
decimal places.

Interviewer: Okay ...

Eve So 204 divided by 17, that gives us 12, okay it's 12, this whole number, so it's a
number in this sequence.

Interviewer: Okay. Can you please give me an example of any four-digit number in this sequence?
Eve | could just randomly pick any, okay ...
Interviewer: Yes, please pick any, but convince methat it isin the sequence.

Eve Okay. 17, um, (pause) | just keep on adding 17 to get um this sequence up 85, 102,
119, 136 and 153 ...

Interviewer: Yeah, thisis a pretty hard work ...

Eve Yeah ...

Interviewer: If | want afour-digit number, it will take you quite awhile to get that ...
Eve Oh, you want a four-digit number ...

Interviewer: Yeah...

Eve Umm, (pause) | don’t know how to do this.

We suggest that Eve's perception of amultipleisentirely additive. Multiplesfor her arelists of
numbers created by adding on and no connection is made between repeated adding on and
multiplication. In this case, an appropriate concept-in-action was clearly identified, but a related
theorem-in-action relied solely on listing the elements.

Hazzan and Zazkis (1999) report asimilar phenomenon, where an explicitly stated property of
divisibility didn’t direct students to the inherent multiplicative relationship. In their research,
participantswere asked to give an example of afive-digit number divisibleby 17. A frequent strategy
wasto pick anumber at random and check itsdivisibility with acalculator. It was al so observed that
the degree of freedom—that is, a possibility of many correct answers, presented an obstacle for
some students as they were looking for ‘the right one.’

Furthermore, when L eah identified acommon property of numbersinthe sequence8, 15, 22, ...
as ‘none of these numbers on the list have 7 as a factor,” the interviewer decided to question this
claimfor numbersnot currently listed.

Leah: Because none of these numbers on the list have 7 as afactor.

Interviewer: Isn’t there a chance that as we go on and add on 7’s to the numbers and continue this
sequence, we eventually will hit some number which isamultiple of 7?

Lesh: If you keep adding 7's?
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Interviewer: Umhm ...

Lesh: (pause) You might. Um, well 7’s, you know, it generally endsin, if something isamultiple of
7 it canend 7, 14, (pause) well it could end in amost anything. (pause) 28, so |, yeah you could, |
think.

Leah believes that eventually amultiple of 7 could appear in the given sequence. Her belief is
based on observing the last digits of numbers in the sequence. We suggest that though appropriate
concepts-in-action were identified, the inherent relationships were not a part of her scheme. The
inherent relationship in this case can be described as‘ every seventh number isamultipleof 7. This
relationship was also overlooked by several participantsin Zazkis and Campbell’s (1996) study. In
their investigation, one of the questions posed to participants was to determine whether there was
a number divisible by 7 between 12,358 and 12,368. Rather than considering the frequency of
appearance of multiples of 7, a preferred strategy of 14 out of 21 participants was to find such a
number by performing division.

Considering multiples and adjusting

Any arithmetic sequence of whole numbers can be considered as atranslation along the number
line of a corresponding sequence of multiples. (For a sequence of multiples, this can be seen as
translation by zero units). Thisview providesamethod to deal with theinterview situationsthrough
means other than listing the elements and applying formulas.

Interviewer: Number 360, do you believeit isan element in this sequence?[2,5,8 ...]

Dave: No, | don't think so.

Interviewer: Could you please explain why?

Dave: The (pause), any number in this sequenceis going to be, in this case the difference between
all the sequencesis 3, any number in this sequence is going to be some multiple of 3 plus the first
element in the sequence, so some multiple of 3 plus2; 360 isamultiple of 3, but every element inthe

sequence must be amultiple of 3 plus?2 ...

Interviewer: Oh, so can you please give me an example of anumber that you think isan element in
this sequence. Of abig number.

Dave: A large number then. Uh, (pause) sure, 3,000,002.
Interviewer: 3,000,002. (Laugh) Another one.

Dave: Bigger than that, or should, canwe go alittle smaller?
Interviewer: Wecangoalittlesmaller.

Dave: 335.

Interviewer: 335. And how do you get 3357

Dave: | know that 333 isamultiple of 3 and 2 + 333 is 335.
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I dentifying the invariant among the elementsas‘ multiples of 3 plus2’ appearsat first glance as
amature theorem-in-action. Though the choice of numbers 3 and 2 asdifference and first element is
explicitly stated, their specific rolesareimplicit. They emergein the next stage of theinterview:

Interviewer: Okay. Let me give you another sequence please, and itis 8, 15, 22, 29, and so on. 704
isthe number

Dave: No.
Interviewer: Why not?

Dave: TheNth member of the sequenceisgoingtobe (N - 1) x 7 + thefirst member of the sequence,
whichis 8.

Interviewer: Umhm ...

Dave: Sol can (pause), and any number in the sequenceisgoing to, you' re going to be ableto name
it that way, that terminology. 700 is a multiple of 7, 704 is not a multiple, any multiple of 7 plus 8

Interviewer: Umhm ...

Dave: It'sonly 4 morethan 7, so no matter how you sliceit, it’snot going to turn out to be amultiple
of 7 plus 8.

In considering the sequence 8, 15, 22, ... Dave describes the general form of each element as
‘multiple of 7 plus8." Heisconsistently attending to thisform in claiming that 704 is not an element
and in constructing several ‘large’ elements of the sequence. It could be the case that rather than
attending to theinvariant structure of the elements, ‘multiplesof 7 plus8’ isDave'sinterpretation of
the formula for the Nth element. We have exemplified earlier participants’ routine application of
formulas that didn’t include interpretation of the meaning of the formula. Dave seemsto be able to
capture and describe the essence of what the formula provides. However, seeing the structure
through the formula presented an obstacle for Dave, as described below:

Interviewer: | haveanother onefor you here, let’slook at the following: 15, 28, 41, 54, and | would
like to ask you about the number 1,302 .

Dave: (pause) No.
Interviewer: Why not?

Dave: The constant differencein the sequenceis 13, and any number of the sequenceisgoing to be
amultiple of 13 plus 15, which is the first element.

(]

Dave: (pause) I’m making an assumption based on, based on knowing that 1,300 is, isamultiple of
13 and that 1,302 is, is only 2 away from that, it just doesn’t, it just doesn’t seem likely now ...

(]

Interviewer: Can you please give me an example of a number that would be an element in this
sequence?
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Dave: 1,315.

Interviewer: 1,315. Okay. Another one please?

Dave: (pause) 106.

Interviewer: 106. Would you please explain how you got each one of those?
Dave: | did the math right, uh, | took 7 x 13 and added 15 to that ...
Interviewer: Okay, and here?

Dave: Thisis100x 13 and add 15 ...

In this final interview excerpt, Dave makes a wrong claim that 1,302 is not an element in the
sequence 15, 28, 41, ... . Hisschemeis unchanged—the sequenceisdescribed as‘ multiples of d plus
thefirst element,” inthiscase, ‘multiplesof 13 plus15.” However, with thisstructureinmind, 1,315is
clearly fitting Dave's pattern, where 1,302 is not. Therefore the next important step in developing
individual schemeis recognizing the invariant multiplicative structure of elementsin an arithmetic
sequence of non-multiples, referred to as‘ multiples adjusted,” where the adjustment isnot necessarily
thefirst element.

Interviewer:  Canyou give mean example of abigger number, likelet's say afour-digit number that
isan element in this sequence?

Lily: S0, 2,999 ...
Interviewer: Thank you. Can you give me another one please?

Lily: Okay, um, (pause) 1,002, one behind 1,001.

Interviewer: Could you please describe your strategy, how did you find the numbers?

Lily: The first, I'm making sure that the number is divisible by 3, by um the sum of the
digitsin the number are divisible by 3 and the sum of these digitsis 3, so 1,002 isdivisible by 3, but

in this particular sequence the number will be one less than a multiple of 3, therefore one less than
1,002 is1,001.

(-]

Interviewer: Let'stake one more. 8, 15, 22, 29 another sequence.
Lily: Okay, so thisisadifferenceof 7 ...

Interviewer: How about the number 704?

Lily: (pause) 704, so (pause) thisis, these numbers are plus 1 of multiples of 7, multiples
of 7plusl...

Consideration of multiplesand ‘ adjustment’ where necessary clearly equipsLily with apowerful
scheme. Such an ‘adjustment’ is expressed by Megan in amore mathematical way as she considers
division with remainder.

Interviewer: And what about 704?
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Megan: No, because that’s got aremainder of (pause) 4, not 1 ... it needsto have aremainder
of 1.

Interviewer: So can you please describe for me your general strategy? How would you decide
whether a number | give you does belong to this sequence or doesn’t belong to it?

Megan: Um, if it'sdivisible by 7, with the remainder of 1, then it does belong to the set.

Megan's reference to a division with reminder is alogical extension of her previous scheme.
Considering 3,6, 9, ... and 17, 34,51, ..., Micheledescribed the rel ationship of divisibility, rather than
all elements being multiples of the same number. On the other hand, Lily referred to these sequences
as‘multiples;” therefore the adjustment of multiplesisaconsistent extension of her scheme.

Among the 20 participants in this study, only 2 explicitly mentioned division with remainder,
whereas six participants eventually succeeded in suggesting some adjustment of either multiples or
numbersdivisible by d.

Development of schemes

Development of students' schemesisguided by identifying invariants aswell as by identifying
differences between classes of situations. In what follows, we exemplify both cases. Further, we
describe apossible path through which an individual may proceed in developing his or her scheme.

Identifying differences

Lack of attention to differences between two classes of situations causes students to apply the
same theorem-in-action for both classes. Several examples are discussed above in which students
consider an arithmetic sequence with acommon difference of d, without noting that consideration of
multiples of dis applicable only to a specific type of arithmetic sequences.

Identifying differences between two types of sequences (or two classes of situations) resultsin
the realization that the same theorem-in-action cannot be used for both. At this stage, students
restrict their theorem-in-action to one specific class of situations and seek extension of their schemes
in order to accommodate a new class of situation in a different way. In the excerpt below, Connie
explains the difference between the two classes of situations.

Interviewer: Good. So here [pointing to sequence 6, 9, 12, ... ] you said immediately, yes, or
immediately no, over here [pointing to sequence 2, 5, 8, ...] you had to do morework. Can you please
explain to me what is the difference? Because, both tasks appear very similar.

Connie: Right. So in both of these sequences the common differenceis3 ...
Interviewer: Umhm ...

Connie: However, in the first sequence there is no other common relationship between the
elements, other than they have adifference of 3. However, in this sequence they have adifference of
3 and they’re also multiples of 3, beginning at 3 x 2, that’s the first element ...

Conni€'s observation of ‘ no other common relati onship between the elements’ in addition to the
common differenceistypical inthisgroup of students. I n the sequence of multiples, Connieidentified
twoinvariants: additiveinvariant of * common difference of 3' and multiplicativeinvariant of ‘multiples
of 3." However, in the sequence of non-multiples, sheisaware of only the additive invariant.
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Identifying similarities

By identifying invariant structure in acertain class of situations, students develop theorems-in-
actionthat guidetheir strategies. Most participantswere aware of the multiplicativeinvariant structure
of elementsin arithmetic sequences of multiplesasthey cameto theinterview. During theinterview,
several participants identified the invariants (1) in the structure of elementsin a sequence of ‘non-

multiples and (2) in the structure of two classes of sequences.

1

Multiplicative invariants in the sequence of ‘non-multiples

At the beginning of theinterview, Sally believed that 704 ‘ could be' inthe sequence8, 15, 22, ...
because it was not divisible by 7. She clearly classified the sequence in the discussion as non-
multiples of 7, but this information was not sufficient to deal with the situation. Observing the
relative easein which Sally discussed sequences of multiples, theinterviewer returned to previously

unanswered questions.
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Interviewer: 8, 15, 22, 29, and so on

Sdly: Umhm ...

Interviewer: Canyou give mean example of abig number, like athree-digit number, that you would
believe is an element of this sequence, if it's possible to find such an example without going and
counting up.

Sdly: Um, it'smore difficult ...

Interviewer: | agree with you. (pause) What makes it more difficult?

Sdly: Because you don’t know what, what the common divisor is, the common factor ...

Interviewer: Maybe thereisn’t any ...

Sdly: Maybethereisn't, no, soin my thinking what you could dois, isfind all, athree or four-digit
number that wasn't ...

Interviewer: Umhm ...

Saly:  (pause) Oh wait asecond here, that wasn't divisible by 7 and that would have, (pause) ohhh,
every element isone more or oneless, every element isone morethan amultipleof 7, | just saw that
now ...

Interviewer: Therewasthisexclamation, ‘ohhh.’

Saa  (laugh) | don’t know why | didn’'t seeit before. 8 isone morethan 1 x 7, 15 isone more than
2X7 ...

Interviewer: Okay, O ...

Saly: Um, (pause) well you could just go 7 x any number you like plus 1, and that would give you
anumber that wasin there.

Interviewer: Okay. Uh, if we go back to our question about 704 ...
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Sdly: Umhm ...

Interviewer: Does your new insight, new finding, help you with the previous question, whether
704 isamember of this sequence?

Saly:  Um, (pause) um hm, because 704 is 4 more than amultiple of 7, so you know it’snot in there
because everything has to be one more than amultiple of 7...

Identifying invariant structure of the elementsas‘ onemore than amultipleof 7' enables Sally to
approach with arelative ease a situation that was problematic for her just afew minutes earlier.

Inthefollowing excerpt, Alice makes aconnection between the structure of sequence of multiples
3,6,9, ... and the sequence of non-multiples2,5,8, ... .

Interviewer: Can you please describe for me why the second one was much easier for you than the
first one?

Alice: Becausethey’ renumbersthat you play with all thetime, | suppose, and they’ rejust multiples
of 3 and this one, these ones are actually ... , oh these onesarejust ... , ooh, these ones are just uh,
these are multiples of 3 minus 1, which | didn’t really notice before for some reason...

Aliceidentifiesarelationship between the two sequences by referring to them as‘just multiples
of 3" and ‘multiplesof 3minus1,” arelationship that guides her in dealing with the posed problems.
Alice achieves amuch clearer formulation of thisrelationship in the next question, considering the
sequence 8, 15, 22, ... and the number 704.

Alice: Soall of these numberswould be divisible, or aredivisible by 7 with aremainder of 1, okay,
so that means that this number [704] has to be divisible by 7 with a remainder of 1, okay, so that
would mean that if wetake 1 from 704, if wetake theremainder, so 703, it meansthat 7 hasto divide
that evenly. 7 does not divide 703, so no, it’s not an element, not an element of the sequence.

In considering the sequence 8, 15, 22, ... Sally generates a sequence of numbersdivisibleby 7,
asequencethat was not discussed previously in her interview, and makes areferenceto this sequence
in her solution. Similarly for Alice, connecting ‘numbers you play with all the time' with the new
sequence of numbersisaclear asset. Alicea so makesatransition in her deliberation from consideration
of ‘multiples-adjusted’ to consideration of division with remainder. She may bejust astep away from
identifying the remainder of zero in the sequence of multiples and, with that, unifying the structure
of the two classes of situations.

2. Multiplicative invariants in the structure of two different types of sequences

Considering theinvariant of ‘ multiples’ in the sequences of multiplesandinvariant of ‘ multiples
adjusted’ in the sequences of ‘non-multiples’ provides sufficient tools to deal efficiently with the
interview situations. Identifying similarities, other than lexical, between the two classes, can be a
next step in scheme development. In the next excerpt, Lily describesageneral strategy applicablefor
both types of sequences.

Interviewer: Sointerms of general strategy, if | give you a number, how would you decide if my
number isan element in asequence?

Lily: First determine what isthe constant difference. And then look to see where we're starting in
the um, in the sequence, to see the, how to adjust. Soif thisisthefirst multiple, thisistimes 1, sowe
can start with this, we don’t have to adjust the number, ... understand what | say?

Using Lily’s approach, one should first determine the common difference between the pairs of
consecutive elementsand then, based on thefirst element of the sequence, determine the adjustment,
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if necessary. Thisschemetreats‘ multiples and ‘non-multiples’ as* multiplesadjusted,’” allowing the
adjustment to be zero. Identifying invariant structure in two previously-treated-as-different
multiplicativeinvariants supportsthe devel opment of this scheme. However, theinterview situations
provided little opportunity for participantsto extend their schemein away that it could accommodate
both classes.

An individual’s scheme and its possible evolution

‘Thetheoretical importance of schemes comesfrom the fact that operational invariantsare more
or lessadequate: the relevance of conceptsin action and the truth of theorems-in-action are essential
conditionsof theefficiency of schemes' (Vergnaud, 1997, p. 27). Individua’s schemeisdynamic, and
itsevolutionisguided by theidentification of invariantsaswell asdifferencesin problem situations.
In what follows, we outline a possible progression in the development of an individual’s scheme
(Figure 1). Although there was no single participant in our study that proceeded through all the
stages, every sequential subset in the outlined scheme development was displayed by students.

Class of Situations: Arithmetic Sequences )
Additive Invariant: Common difference between elements »
Strategy: Adding on, listing the elements
. 7 J
4 Class of Situations: Arithmetic Sequences \
< Algebraic Invariant: Elements satisfy formula >
Strategy: Using the formula
Class of Situations:
Arithmetic Sequences of Multiples
Invariant:
Arithmetic or Algebraic
Strategy:
Listing elements or Using the formula
"Class of Situations: Arithmetic Sequences }
Multiplicative invariant: Elements are multiples of d
. Strategy: Considering multiples of d as elements
'
Class of Situations: /C'Iass of Situations: )
Arithmetic Sequences of Multiples Arithmetic Sequences of Non-Multiples
Multiplicative invariant: Multiplicative invariant:
Elements are multiples of d Elements are NOT multiples of d
Strategy: Strategy:
Considering multiples of d as elements Considering multiples of d as non-elements
\_ Using formula for non-multiples, adding on
> y
Class of Situations: )
Arithmetic Sequences of Non-Multiples
Multiplicative invariant:
Elements are multiples of d with adjustment
Strategy:
Considering “adjusted” multiples of d as
\_ elements

Class of Situations: Arithmetic Sequences

Multiplicative invariant:
Elements are multiples of d with possible adjustment or
Elements have a common remainder in division by d

Strategy:
Considering multiples of d, with adjustement where necessary
Considering remainder in division by d

Figure 1: A possible evolution of a scheme
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Confronting situations of testing membership and providing examples of large elements in
arithmetic sequences, thelearner initially identifiesthe additiveinvariant of common difference and
buildson thisinvariant in approaching the problems. Then, depending on the learner’s prior exposure
and experience, he or she may also identify the algebraic invariant—that is, all elements satisfy the
formula aj=a1+(n-1)d. This stage, though helpful in dealing with the presented situations, is not
essential, since the problems can be solved successfully without relying on any algebraic formalism.

Anindividua’sschemeisfunctiona—that is, aimed at achieving agoal. Therefore, anindividual
will seek more efficient strategiesthat could be achieved by further identification of invariants. Inthe
next step of the devel opment of the scheme, anindividual may identify asubset of arithmetic sequences
as sequences of multiples (theleft side of Figure 1). Thisleavesthe complement of other arithmetic
sequences, denoted in this study by sequences of non-multiples(theright side of Figure 1). However,
areference to multiples does not necessarily imply identification of amultiplicative invariant. Eve
(above, in section ‘A note on multiples and non-multiples as concepts-in-action) identified the
sequence 17, 34, 51, ... asmultiples of 17; however, her strategy for generating multiplesrelied on
additiveinvariant.

I dentification of the multiplicativeinvariant—every elementisamultipleof d, that is, of theform
md for some whole number m—in the sequences of multiples leads to more efficient strategiesin
testing membership and generating elements. This multiplicative invariant could be temporarily
overgeneralized to any arithmetic sequence. Alternatively, thismultiplicativeinvariant could first be
incorrectly identified for any arithmetic sequence and then restricted to hold only for sequences of
multiples. (This stage of incorrect identification or overgeneralization is distinguished in Figure 1
with agrey background). Inany case, thelearner may find herself/himself in aposition where aclear
distinction exists between two classes of situations—sequences of multiples and sequences of non-
multiples; however, invariant multiplicative structureisidentified for one class only. Thisequipsthe
|earner with toolsto deal with situationsin the class of multiples; however, thesetoolsareinsufficient
when applied to non-multiples. As shown above, Leah (in section ‘ Considering non-multiples’)
claims that multiples of 7 are not elementsin 8, 15, 22, ... , but has no tools, other than formula or
‘adding on,’ to test membership of numbers that are not divisible by 7.

Further, theinvariant structurein the sequences of non-multiplesisidentified—every elementis
amultiple of d with ‘adjustment,’ that is, of the form md + ¢, where ¢ is the common reminder in
division of elementsby d. At thisstage, the learner sees multiples and non-multiples astwo separate
classes that each has a different invariant structure, and different schemes are therefore invoked in
dealing with situations. However, identifying amultiplicative invariant within non-multiplesis essential
for the development of a unified scheme. It is a further sophistication to consider multiples with
adjustment (that can be zero) or common remainder (that can be zero) indivision by d astheinvariant
that unifies both classes of situations and allows an individual to invoke the same scheme for any
arithmetic sequence.

Discussion

In this study, Vergnaud's theory of conceptual fields provided auseful language to describe and
analyze the students’ attempts to deal with arithmetic sequence-related problems. The growth in
students' understanding has been outlined as a development of their schemes related to a particular
class of situations. Our data show that scheme development is guided by identifying invariants as
well as identifying differences in classes of situations. Thus, the data appear consistent with the
refinement of the theory suggested earlier. Further research should provide additional empirical
examination of the proposed theoretical considerations.

The findings of this study suggest that students distinguish between two separate classes of
infinite arithmetic sequences of whole numbers. One, the sequences of multiples, are perceived as
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amicable and orderly, while the other, sequences of non-multiples, are perceived as unfriendly and at
times* sporadic.” The participantsin our study were much more successful in testing membership and
generating elementsin the sequences of multiplesthan in performing the sametasks on the sequences
of non-multiples. Asanindication of success, wetakenot only the ability to generate correct answers,
but also the relative ease with which students approached the situation and the efficiency of the
strategies they chose. Moreover, the students had difficulty identifying the unifying multiplicative
property inherent in any arithmetic sequence, thereby integrating the two classes. Out of the 20
interviewees, only one was able to make thisconnection. How the problem is situated, the problematics
associated with thelink between additive and multiplicative structures, and the limitations of aclinical
interview could be among the factors responsible for these difficulties.

From a pedagogical perspective, arithmetic sequences are often introduced using their inherent
additive property and therefore are temporarily situated within the conceptual field of additive
structures. However, the emphasisis eventually shifted to the formula-based procedural component.
This focus on the formula situates the problem in the conceptual field of elementary algebra (see
Vergnaud, 1996, for elaboration on conceptual fields of elementary algebra, multiplicative structures
and additive structures). Thus, when students are presented with an arithmetic sequence, they default
to the tools found within this conceptual field. Aslong as these tools are adequate for the treatment
of the problems, students have no motivation to invoke the schemes situated in other conceptual
fields. Our datafurther support the finding of ‘ apparent rel ationship between students’ use of solution
strategies and certain contextual features of the problem situation’ (Baranes, Perry, & Stigler, 1989)
and the ‘ rel ationship between situati on-based sense making and mathematical problem solving' (Silver,
Shapiro, & Deutsch, 1993, p.132).

In order to bridge to other conceptual fields, the students need to identify additional invariant
structuresthat are not inherent within the conceptual fieldsinwhich the problemisinitially situated.
Thesituations of exploring arithmetic sequences served asan appropriate tool for examining students
ability to makethese constructs. Asalready stated, arithmetic sequences may betreated solely within
the conceptual field of additive structures, or solely within the conceptual field of elementary algebra.
Within our study, 17 out of the 20 students chose to use the formula as their initial strategy and two
initially choseto focus on the additive property. All but two studentswere ableto identify ‘ multiples
and to move to a conceptual field of multiplicative structures. However, only eight out of the 20
participants, when prompted for alternative strategies, settled on a strategy involving treatment of
non-multiples as either a sequence of multiples with an additive adjustment or as a sequence of
elements having acommon remainder in division by d. These strategiesinvolve a coordinated use of
both the multiplicative and the additive structures. The rules of action and the theorems-in-action
cued by this bridging of conceptual fields may be too underdeveloped for the students to invoke
effectively. Thisis consistent with findings of Campbell and Zazkis (1994), who, when studying pre-
serviceteachers understanding of thedistributive property, ‘ found evidenceto suggest that significant
obstacles to conceptual understanding of divisibility involved a lack of understanding of the
relationship between additive and multiplicative structure’ (p. 268). Thislack of understanding also
manifested as a recurring error in considering, at least temporarily, any sequence with a common
difference of d as a sequence of multiples of d.

Thestudents' strategiesevolved during theinterview. Theinterview excerpt with Sally (in section
‘Multiplicative invariants in the sequence of ‘non-multiples’) clearly shows this student’s ‘Ahal’
experience as sheidentifiesthe structurein the sequence 8, 15, 22, ... . Probing for alternatetreatments
of the problem, aswell as pointing out conflictsor inconsistenciesin one's claims, invited studentsto
reconsider their strategies and, therefore, seemed to aid the development of students schemes.
Although the clinical interview process was helpful for students in extending and clarifying their
ideas, the time limitations may not have presented students with a sufficient variety of situations to
identify the unifying invariant structure of arithmetic sequences.
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We suggest that atraditional instructional treatment of arithmetic sequencesis missing an aspect.
This missing aspect is the lack of attention to common structure of elements in any sequence.
Pedagogical attention to structure and pattern recognition is crucia for any learner of mathematics.
Moreover, such focus could be especially beneficial for pre-service elementary school teachers, who
aremorelikely to engageinthe activity of pattern recognition than in algebraic manipulationsduring
their teaching careers.

Cai and Silver (1993), studying students’ inability to deal with division-with-remainder problems
in a contextualized setting, found that these problems ‘provide an interesting context in which to
consider students’ mathematical thinking and reasoning’ (p. 491). We add to thisclaim that division-
with-remainder embedded in the arithmetic sequence of whole numbersis an interesting context not
only in acontextualized but also in a decontextualized setting.

The use of arithmetic sequence as atool to study students’ abilities to bridge conceptual fields
has not been exhausted. Possible extensions of this study may involve students' notions of the last
digit patterns as a means of justifying inclusion or exclusion of elements within a given sequence.
Another possible extension is an exploration of students' robust treatment of sequences of multiples
as being easier. Would they feel the same if, in the presented situations, the first element were not
equal to thecommon difference(e.g., 36, 42, 48, ...)?Would studentstreat multipleswith relative ease
when considering multiplesof ‘large’ numbers(e.g., 157, 314, 471, ...)?Isthereapreferred sequence
of situations to promote the development of students’ schemes?

Greer (1992) proposed that the analysis of the relationship between the conceptual fields of
additive and multiplicative structures is along-term objective on the agenda for further research in
mathematics education. Our research is a step in this direction. We have shown that arithmetic
sequences can serve a dua purpose: first as a research tool to investigate students' connections
between multiplicative and additive structures, and second, as a pedagogical tool, or the core of a
didactical situation, in helping studentslink their additive and their multiplicative schemes.
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