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Lossless vs Lossy Compression

❒ If the compression and decompression processes 
induce no information loss, then the compression 
scheme is lossless; otherwise, it is lossy.

❒ Why is lossy compression possible ?

Compression Ratio: 12.3Compression Ratio: 7.7 Compression Ratio: 33.9

Original
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Outline

❒ Quantization
❍ Uniform
❍ Non-uniform

❒ Transform coding
❍ DCT
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Quantization
❒ The process of representing a large (possibly infinite) 

set of values with a much smaller set.
❍ Example: A/D conversion

❒ An efficient tool for lossy compression
❒ Review …

Entropy
codingQuantizationTransform

Encoder

Entropy
decoding

Inverse
Quantization

Inverse
Transform

Decoder
channel
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❒ Quantization is a function that maps an input interval to one integer
❒ Can reduce the bits required to represent the source.
❒ Reconstructed result is generally not the original input
❒ Terminologies:

❍ Decision boundaries bi: bin boundaries
❍ Reconstruction levels yi: output value of each bin by the dequantizer.

index index
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Uniform Quantizer
❒ All bins have the same size except possibly for the two outer intervals:

❍ bi and yi are spaced evenly
❍ The spacing of bi and yi are both ∆ (step size)

∆ 2∆ 3∆ Input
-3∆ -2∆ -∆

Reconstruction
3.5∆
2.5∆
1.5∆

0.5  ∆

-0.5∆
-1.5∆
-2.5∆
-3.5∆

Uniform  Midrise Quantizer

Even number  of  reconstruction  levels
0  is  not a  reconstruction  level

-2.5∆ -1.5∆ -0.5∆

Reconstruction
3∆
2∆
∆

-∆
-2∆
-3∆

Uniform  Midtread Quantizer

0.5∆ 1.5∆ 2.5∆ Input

Odd number  of  reconstruction  levels
0  is  a  reconstruction  level

( )iii bby += -12
1

for  inner  intervals.
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Midtread Quantizer
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❒ Quantization mapping:
Output is an index

D== qqBx )(ˆ

❒ De-quantization mapping:

❒ Example: 
x = -1.8∆, q = -2.

-2.5∆ -1.5∆  -0.5∆

Reconstruction
3∆

2∆

∆

-∆

-2∆
-3∆

0.5∆ 1.5∆ 2.5∆ Input



CMPT365 Multimedia Systems    8

Model of Quantization

❒ Quantization: q = A(x)
❒ Inverse Quantization: )())(()(ˆ xQxABqBx ===

B(x)  is  not  exactly  the  inverse  function  of  A(x),  because xx ¹ˆ
xxxe ˆ)( -=❒ Quantization error:

A
q

x̂x B

Q x̂x

❒ Combining quantizer and de-quantizer:
- e(x)

x̂xor
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Rate-Distortion Tradeoff
❒ Things to be determined:

❍ Number of bins
❍ Bin boundaries
❍ Reconstruction levels

❒ A tradeoff between rate and distortion:
❍ To reduce the size of the encoded bits, we need to reduce 

the number of bins
❍ Less bins è More reconstruction errors

Distortion

Rate

A

B
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Measure of Distortion
❒ Quantization error: 
❒ Mean Squared Error (MSE) for Quantization

❍ Average quantization error of all input values
❍ Need to know the probability distribution of the input

❒ Number of bins: M
❒ Decision boundaries: bi, i = 0, …, M
❒ Reconstruction Levels: yi, i = 1, …, M
❒ Reconstruction: 

iii bxbyx £<= -1 iff   ˆ

❒ MSE: ( ) ( )å òò
=

¥

¥- -

-=-=
M
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b
iq
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i

dxxfyxdxxfxxMSE
1

22

1

)()(ˆ

xxxe ˆ)( -=

❍ Same as the variance of e(x) if µ = E{e(x)} = 0 (zero mean).

❍ Definition of Variance: ( ) deefe ee )(22 ò
¥

¥-

-= µs
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Rate-Distortion Optimization

❒ Two Scenarios:
❍ Given M, find bi and yi that minimize the MSE.
❍ Given a distortion constraint D, find M, bi and yi such that 

the MSE ≤ D.
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Outline

❒ Quantization
❍ Uniform
❍ Non-uniform
❍ Vector quantization

❒ Transform coding
❍ DCT
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Uniform Quantization of a Uniformly Distributed 
Source

❒ Input X: uniformly distributed in [-Xmax, Xmax]: f(x)= 1 / (2Xmax)
❒ Number of bins: M (even for midrise quantizer)
❒ Step size is easy to get: ∆ = 2Xmax / M.
❒ bi = (i – M/2) ∆
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∆
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y4
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❒ è e(x) is uniformly distributed in [-∆/2, ∆/2].

x
0.5  ∆

-0.5  ∆
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Uniform Quantization of a Uniformly Distributed 
Source

❒ MSE ( ) ( )
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❒ M increases, ∆ decreases, MSE decreases

❒ Variance of a random variable uniformly distributed in [- ∆/2, ∆/2]:
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Signal to Noise Ratio (SNR)

❒ Variance is a measure of signal energy
❒ Let M = 2n

❒ Each bin index is represented by n bits

( )

( )
( )
dBn

nM
MX

X

X
EnergyNoise
nergySignaldBSNR

n
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❒ If nàn+1, ∆ is halved, noise variance reduces to 1/4,
and SNR increases by 6 dB.
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Outline

❒ Quantization
❍ Uniform
❍ Non-uniform

❒ Transform coding
❍ DCT
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• Companded quantization is nonlinear.

• As shown above, a compander consists of a compressor 
function G, a uniform quantizer, and an expander function 
G−1.

• The two commonly used companders are the µ-law and A-
law companders.

Non-uniform Quantization
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Non-uniform Quantization
❒ Uniform quantizer is not optimal if source is not uniformly 

distributed
❒ For given M, to reduce MSE, we want narrow bin when f(x) is high 

and wide bin when f(x) is low

x
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Lloyd-Max Quantizer
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❒ Also known as pdf-optimized quantizer

❒ Given M, the optimal bi and yi that minimize MSE, satisfying
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Lloyd-Max Quantizer

❒ If f(x) = c (uniformly distributed source):

)(
2
1)(

2
1

)(

 

)(

)( 
 1

1

2
1

2

1

1

1

1
-

-

-

-

+=
-

-
=

-
==

ò

ò

ò
-

-

-
ii

ii

ii

ii

b

b
b

b

b

b
i bb

bb

bb

bbc

dxxc

dxxf

dxxfx
y

i

i

i

i

i

i

2
    0 1

2
++

=Þ=
¶
¶ ii

i
i

q yyb
b
s

è bi is  the  midpoint of  yi and  yi+1
x

f(x)

0      bi-1 bi                              bi+1
yi yi+1



CMPT365 Multimedia Systems    21

Lloyd-Max Quantizer

❒ How to find optimal bi and yi simultaneously?
❍ A deadlock:

• Reconstruction levels depend on decision levels
• Decision levels depend on reconstruction levels

❍ Solution: iterative method !

ò

ò

-

-=
i

i

i

i

b

b

b

b
i

dxxf

dxxfx
y

1

1

)(

)( 
 

2
 1++
= ii

i
yyb

❒ Given bi, can find the corresponding optimal yi

❒ Given yi, can find the corresponding optimal bi

❒ Summary of conditions for optimal quantizer:
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Lloyd Algorithm (Sayood pp. 267)

1. Start from an initial set of reconstruction values yi.

2. Find all decision levels

3. Computer MSE:

4. Stop if MSE changes little from last time.

5. Otherwise, update yi, 
go to step 2.
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Outline

❒ Quantization
❍ Uniform
❍ Non-uniform
❍ Vector quantization

❒ Transform coding
❍ DCT
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Vector Quantization (VQ)

• According to Shannon’s original work on information 
theory, any compression system performs better if it 
operates on vectors or groups of samples rather than 
individual symbols or samples.

• Form vectors of input samples by simply concatenating 
a number of consecutive samples into a single vector.

• Instead of single reconstruction values as in scalar 
quantization, in VQ code vectors with n components 
are used. A collection of these code vectors form the 
codebook.
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❒ Fig. 8.5: Basic vector quantization procedure.
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Outline

❒ Quantization
❍ Uniform quantization
❍ Non-uniform quantization

❒ Transform coding
❍ Discrete Cosine Transform (DCT)
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Why Transform Coding ?
❒ Transform

❍ From one domain/space to another space
❍ Time -> Frequency
❍ Spatial/Pixel -> Frequency

❒ Purpose of transform
❍ Remove correlation between input samples
❍ Transform most energy of an input block into a few 

coefficients
❍ Small coefficients can be discarded by quantization without too 

much impact to reconstruction quality

Entropy
codingQuantizationTransform

Encoder



CMPT365 Multimedia Systems    28

1-D Example
❒ Fourier Transform
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1-D Example
❒ Application (besides compression)

❍ Boost bass/audio equalizer
❍ Noise cancellation
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1-D Example
❒ http://www.mathdemos.org/mathdemos/trigsounddemo/trigso

unddemo.html
❍ Sine wave/sound/piano

❒ www.sagebrush.com/mousing.htm
❍ An electronic instrument that allows direct control of pitch and 

amplitude 
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1-D Example
❒ Smooth signals have strong DC (direct current, or zero frequency) and low 

frequency components, and weak high frequency components

High  frequency
DC

1 2 3 4 5 6 7 8
0

100

200
Original Input

1 2 3 4 5 6 7 8
0

1000

2000
DFT Magnitudes

1 2 3 4 5 6 7 8
-500

0

500
DCT Coefficients

Sample  Index

High  frequencyDC
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2-D Example
Original Image

2-D DCT Coefficients. Min= -465.37, max= 1789.00

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

-500 0 500 1000 1500 2000
0

1

2

3
x 105

❒ Apply transform to each 8x8 block
❒ Histograms of source and DCT coefficients

❒ Most transform coefficients are around 0.
❒ Desired for compression



CMPT365 Multimedia Systems    33

Rationale behind Transform

❒ If Y is the result of a linear transform T of the 
input vector X in such a way that the components 
of Y are much less correlated, then Y can be 
coded more efficiently than X.

❒ If most information is accurately described by 
the first few components of a transformed 
vector, then the remaining components can be 
coarsely quantized, or even set to zero, with little 
signal distortion.
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Matrix Representation of Transform
❒ Linear transform is an N x N matrix:

11 ´´´ = NNNN xTy TX y

❒ Inverse Transform:

yTx 1-= TX
y

T x-1

❒ Unitary Transform (aka orthonormal):

TTT =-1
TX

y
T xT

❒ For unitary transform: rows/cols have unit norm and are 
orthogonal to each others

î
í
ì

¹
=

==Þ=
ji   ,0
ji   ,1

      ij
T
ji

T dttITT
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Discrete Cosine Transform (DCT)

❒ DCT – close to optimal (known as KL Transform) but much 
simpler and faster

q Given an input function f(i, j) over two integer variables i and j (a piece 
of an image), the 2D DCT transforms it into a new function F(u, v), with 
integer u and v running over the same range as i and j. The general 
definition of the transform is:

❒ (8.15)

❒ where i, u = 0, 1, ... , M − 1; j, v = 0, 1, ... , N − 1; and the constants 
C(u) and C(v) are determined by

1 1

0 0

2 ( ) ( ) (2 1)· (2 1)·( , ) cos ·cos · ( , )2 2

M N

i j

C u C v i u j vF u v f i jM NMN
p p- -

= =

+ += åå

2       0,( ) 2
1    .

ifC
otherwise

xx
ì =ï= í
ïî
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1D Discrete Cosine Transform (1D DCT):

❒ (8.19)

❒where i = 0, 1, . . . , 7, u = 0, 1, . . . , 7.

❒ 1D Inverse Discrete Cosine Transform (1D 
IDCT):

❒ (8.20) 

❒ where i = 0, 1, . . . , 7, u = 0, 1, . . . , 7.

7

0

( ) (2 1)( ) cos ( )2 16i

C u i uF u f ip
=

+= å

!f (i )=
u=0

7

∑ C (u )
2
cos (2i +1)uπ

16
F (u )
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❒ Fig. 8.6: The 1D DCT basis functions.
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❒ Fig. 8.6 (Cont’d): The 1D DCT basis functions.
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❒ Fig. 8.7:  Examples of 1D Discrete Cosine 
Transform: (a) A DC signal f1(i), (b) An AC signal 
f2(i).

(a)

(b)
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❒ Fig. 8.7 (Cont’d):  Examples of 1D Discrete 
Cosine Transform: (c) f3(i) = f1(i)+f2(i), and (d) an 
arbitrary signal f(i).

(c)

(d)
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❒ Fig. 8.8: An example of 1D IDCT.
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❒ Fig. 8.8 (Cont’d): An example of 1D IDCT.

Li, Drew, Liu42
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The DCT is a linear transform:
• In general, a transform T (or function) is linear, 

iff

❒ (8.21)

❒where α and β are constants, p and q are any 
functions, variables or constants.

• From the definition in Eq. 8.17 or 8.19, this 
property can readily be proven for the DCT 
because it uses only simple arithmetic 
operations.

Li, Drew, Liu43



CMPT365 Multimedia Systems    44

The Cosine Basis Functions

❒ Function Bp(i) and Bq(i) are orthogonal, if

❒ (8.22)

❒ Function Bp(i) and Bq(i) are orthonormal, if they are 
orthogonal and

❒ (8.23)

❒ It can be shown that:

❒

[ ( )· ( )] 0   p q
i
B i B i if p q= ¹å

7

0

(2 1)· (2 1)·cos ·cos 0  16 16i

i p i q if p qp p
=

+ +é ù = ¹ê úë û
å
7

0

( ) (2 1)· ( ) (2 1)·cos · cos 12 16 2 16i

C p i p C q i q if p qp p
=

+ +é ù = =ê úë û
å

[ ( )· ( )] 1   p q
i
B i B i if p q= =å
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2D Discrete Cosine Transform (2D DCT):

❒where i, j, u, v = 0, 1, . . . , 7, and the constants C(u) and C(v) are 
determined by Eq. (8.5.16).

2D Inverse Discrete Cosine Transform (2D IDCT):
❒ The inverse function is almost the same, with the roles of f(i, j) and F(u, 
v) reversed, except that now C(u)C(v) must stand inside the sums:

❒ where i, j, u, v = 0, 1, . . . , 7.

7 7

0 0

( ) ( ) (2 1) (2 1)( , ) cos cos ( , )4 16 16i j

C u C v i u j vF u v f i jp p
= =

+ += åå

!f (i , j )=
v=0

7

∑
u=0

7

∑ C (u )C (v )
4

cos (2i +1)uπ
16

cos (2 j +1)vπ
16

F (u ,v )
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2D Basis Functions

• For a particular pair of u and v, the respective 2D 
basis function is:

• The enlarged block shown in Fig. 8.9 is for the 
basis function: 
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❒ Fig. 8.9:  Graphical Illustration of 8 × 8 2D DCT 
basis.



CMPT365 Multimedia Systems    48

2D Separable Basis

❒ The 2D DCT can be separated into a sequence of two, 1D DCT 
steps:

❒ It is straightforward to see that this simple change saves 
many arithmetic steps. The number of iterations required is 
reduced from 8 × 8 to 8+8.

7 7

0 0

( ) ( ) (2 1) (2 1)( , ) cos cos ( , )4 16 16i j

C u C v i u j vF u v f i jp p
= =

+ += åå
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2D DCT Matrix Implementation

• The above factorization of a 2D DCT into two 1D DCTs can 
be implemented by two consecutive matrix multiplications:

❒(8.27)

• We will name T the DCT-matrix.

❒(8.28)

❒

Where i = 0, … , N-1 and j = 0, … , N-1 are the row and column
indices, and the block size is N x N.
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❒ When N = 8, we have:

❒ (8.29)

❒ (8.30)
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2D IDCT Matrix Implementation

❒ The 2D IDCT matrix implementation is 
simply:

❒ (8.31)

• See the textbook for step-by-step derivation of 
the above equation.
- The key point is: the DCT-matrix is orthogonal, 

hence,
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2-D 8-point DCT Example
89   78   76   75   70   82   81   82
122   95   86   80   80   76   74   81
184  153  126  106   85   76   71   75
221  205  180  146   97   71   68   67
225  222  217  194  144   95   78   82
228  225  227  220  193  146  110  108
223  224  225  224  220  197  156  120
217  219  219  224  230  220  197  151

❒ Original Data:

❒ 2-D DCT Coefficients (after rounding to integers):

1155 259  -23    6   11   7   3   0
-377   -50   85  -10   10   4   7  -3
-4  -158  -24   42  -15   1   0   1
-2     3  -34  -19    9  -5   4  -1
1     9    6  -15  -10   6  -5  -1
3    13    3    6   -9   2   0  -3
8    -2    4   -1    3  -1   0  -2
2     0   -3    2   -2   0   0  -1

Most  energy  is  in  the  upper-
left  corner
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Further Exploration

❒ Textbook  8.1-8.5
❒ Other sources

❍ Introduction to Data Compression by Khalid Sayood
❍ Vector Quantization and Signal Compression by Allen Gersho

and Robert M. Gray
❍ Digital Image Processing by Rafael C. Gonzales and Richard 

E.Woods
❍ Probability and Random Processes with Applications to Signal 

Processing by Henry Stark and John W. Woods
❍ A Wavelet Tour of Signal Processing by Stephane G. Mallat


