CMPT 365 Multimedia Systems

Lossy Compression

Spring 2017

Edited from slides by Dr. Jiangchuan Liu

Lossless vs Lossy Compression

\square If the compression and decompression processes induce no information loss, then the compression scheme is lossless; otherwise, it is lossy.
\square Why is lossy compression possible?

Original

Compression Ratio: 12.3

Compression Ratio: 33.9
CMPT365 Multimedia Systems

Outline

- Quantization
o Uniform
- Non-uniform
\square Transform coding
- DCT

Quantization

\square The process of representing a large (possibly infinite) set of values with a much smaller set.

- Example: A/D conversion
\square An efficient tool for lossy compression
- Review ...

Review: Basic Idea

Uniform Quantizer

- All bins have the same size except possibly for the two outer intervals:
o bi and yi are spaced evenly
- The spacing of bi and yi are both Δ (step size)

$$
y_{i}=\frac{1}{2}\left(b_{i-1}+b_{i}\right) \text { for inner intervals. }
$$

Uniform Midrise Quantizer

Uniform Midtread Quantizer

Midtread Quantizer

- Quantization mapping:
 Output is an index

$$
q=A(x)=\operatorname{sign}(x)\left\lfloor\frac{|x|}{\Delta}+0.5\right\rfloor
$$

- Example: $x=-1.8 \Delta, q=-2$.
\square De-quantization mapping:

$$
\hat{x}=B(q)=q \Delta
$$

Model of Quantization

\square Quantization: $q=A(x)$
\square Inverse Quantization: $\hat{x}=B(q)=B(A(x))=Q(x)$
$\mathrm{B}(\mathrm{x})$ is not exactly the inverse function of $\mathrm{A}(\mathrm{x})$, because $\hat{x} \neq x$

- Quantization error:

$$
e(x)=x-\hat{x}
$$

\square Combining quantizer and de-quantizer:

Rate-Distortion Tradeoff

\square Things to be determined:

- Number of bins
- Bin boundaries
- Reconstruction levels

Distortior

- A tradeoff between rate and distortion:
- To reduce the size of the encoded bits, we need to reduce the number of bins
- Less bins \rightarrow More reconstruction errors

Measure of Distortion

ㅁ Quantization error: $\quad e(x)=x-\hat{x}$

- Mean Squared Error (MSE) for Quantization
- Average quantization error of all input values
- Need to know the probability distribution of the input
- Number of bins: M
\square Decision boundaries: $b_{i}, i=0, \ldots, M$
ㅁ Reconstruction Levels: $y_{i}, i=1, \ldots, M$
- Reconstruction:

$$
\hat{x}=y_{i} \quad \text { iff } b_{i-1}<x \leq b_{i}
$$

\square MSE:

$$
M S E_{q}=\int_{-\infty}^{\infty}(x-\hat{x})^{2} f(x) d x=\sum_{i=1}^{M} \int_{b_{i-1}}^{b_{i}}\left(x-y_{i}\right)^{2} f(x) d x
$$

- Same as the variance of $e(x)$ if $\mu=E\{e(x)\}=0$ (zero mean).
- Definition of Variance:

$$
\sigma_{e}^{2}=\int_{-\infty}^{\infty}\left(e-\mu_{e}\right)^{2} f(e) d e
$$

Rate-Distortion Optimization

\square Two Scenarios:

- Given M, find b_{i} and y_{i} that minimize the MSE.
- Given a distortion constraint D, find M, b_{i} and y_{i} such that the $M S E \leq D$.

Outline

- Quantization
o Uniform
- Non-uniform
o Vector quantization
\square Transform coding
- DCT

Uniform Quantization of a Uniformly Distributed Source

\square Input X : uniformly distributed in $\left[-X_{\max }, X_{\max }\right]$: $f(x)=1 /\left(2 X_{\max }\right)$
\square Number of bins: M (even for midrise quantizer)
\square Step size is easy to get: $\Delta=2 X_{\max } / M$.
$\square b_{i}=(i-M / 2) \Delta$

$\square \rightarrow e(x)$ is uniformly distributed in $[-\Delta / 2, \Delta / 2]$.

Uniform Quantization of a Uniformly Distributed Source

- MSE

$$
\begin{aligned}
& M S E_{q}=\int_{-\infty}^{\infty}(x-\hat{x})^{2} f(x) d x=\sum_{i=1}^{M} \int_{b_{i-1}}^{b_{1}}\left(x-y_{i}\right)^{2} f(x) d x \\
& =M \frac{1}{2 X_{\max }} \int_{0}^{\Delta}\left(x-\frac{\Delta}{2}\right)^{2} d x=\frac{M}{2 X_{\text {max }}} \frac{1}{12} \Delta^{3}=\frac{1}{12} \Delta^{2}
\end{aligned}
$$

口 M increases, Δ decreases, MSE decreases

- Variance of a random variable uniformly distributed in $[-\Delta / 2, \Delta / 2]$:

$$
\sigma_{q}^{2}=\int_{-\Delta / 2}^{\Delta / 2}(x-0)^{2} \frac{1}{\Delta} d x=\frac{1}{12} \Delta^{2}
$$

- Optimization: Find M such that $M S E \leq D$

$$
\frac{1}{12} \Delta^{2} \leq D \Rightarrow \frac{1}{12}\left(\frac{2 X_{\max }}{M}\right)^{2} \leq D \Rightarrow M \geq X_{\max } \sqrt{\frac{1}{3 D}}
$$

Signal to Noise Ratio (SNR)

ㅁ Variance is a measure of signal energy
\square Let $M=2^{n}$
\square Each bin index is represented by n bits

$$
\begin{aligned}
& \operatorname{SNR}(d B)=10 \log _{10} \frac{\text { Signal Energy }}{\text { Noise Energy }}=10 \log _{10} \frac{1 / 12\left(2 X_{\max }\right)^{2}}{1 / 12 \Delta^{2}} \\
& =10 \log _{10} \frac{\left(2 X_{\max }\right)^{2}}{\left(2 X_{\max } / M\right)^{2}}=10 \log _{10} M^{2}=10 \log _{10} 2^{2 n}=\left(20 \log _{10} 2\right) n \\
& \approx 6.02 n d B
\end{aligned}
$$

I If $n \rightarrow n+1, \Delta$ is halved, noise variance reduces to $1 / 4$, and SNR increases by 6 dB .

Outline

- Quantization
- Uniform
- Non-uniform
- Transform coding
- DCT

Non-uniform Quantization

- Companded quantization is nonlinear.
- As shown above, a compander consists of a compressor function G, a uniform quantizer, and an expander function G^{-1}.
- The two commonly used companders are the μ-law and A law companders.

Non-uniform Quantization

- Uniform quantizer is not optimal if source is not uniformly distributed
a For given M, to reduce MSE, we want narrow bin when $f(x)$ is high and wide bin when $f(x)$ is low

$$
\sigma_{q}^{2}=\int_{-\infty}^{\infty}(x-\hat{x})^{2} f(x) d x=\sum_{k=1}^{M} \int_{b_{k-1}}^{b_{k}}\left(x-y_{k}\right)^{2} f(x) d x
$$

Lloyd-Max Quantizer

- Also known as pdf-optimized quantizer

$$
\sigma_{q}^{2}=\int_{-\infty}^{\infty}(x-\hat{x})^{2} f(x) d x=\sum_{k=1}^{M} \int_{b_{k-1}}^{b_{k}}\left(x-y_{k}\right)^{2} f(x) d x
$$

- Given M, the optimal b_{i} and y_{i} that minimize MSE, satisfying

Lagrangian condition : $\frac{\partial \sigma_{q}^{2}}{\partial y_{i}}=0, \frac{\partial \sigma_{q}^{2}}{\partial b_{i}}=0$.

$$
\frac{\partial \sigma_{q}^{2}}{\partial y_{i}}=0 \Rightarrow y_{i}=\frac{\int_{b_{i-1}}^{b_{i}} x f(x) d x}{\int_{b_{i-1}}^{b_{i}} f(x) d x}
$$

y_{i} is the centroid of interval $\left[b_{i-1}, b_{i}\right]$.

Lloyd-Max Quantizer

\square If $f(x)=c$ (uniformly distributed source):

$$
y_{i}=\frac{\int_{b_{i-1}}^{b_{i}} x f(x) d x}{\int_{b_{i-1}}^{b_{i}} f(x) d x}=\frac{c \int_{b_{i-1}}^{b_{i}} x d x}{c\left(b_{i}-b_{i-1}\right)}=\frac{\frac{1}{2}\left(b_{i}^{2}-b_{i-1}^{2}\right)}{b_{i}-b_{i-1}}=\frac{1}{2}\left(b_{i}+b_{i-1}\right)
$$

$$
\frac{\partial \sigma_{q}^{2}}{\partial b_{i}}=0 \Rightarrow b_{i}=\frac{y_{i}+y_{i+1}}{2}
$$

$\rightarrow b_{i}$ is the midpoint of y_{i} and y_{i+1}

Lloyd-Max Quantizer

\square Summary of conditions for optimal quantizer:

$$
y_{i}=\frac{\int_{b_{i-1}}^{b_{i}} x f(x) d x}{\int_{b_{i-1}}^{b_{i}} f(x) d x} \quad b_{i}=\frac{y_{i}+y_{i+1}}{2}
$$

\square Given b_{i}, can find the corresponding optimal y_{i}
\square Given y_{i}, can find the corresponding optimal b_{i}
\square How to find optimal bi and yi simultaneously?

- A deadlock:
- Reconstruction levels depend on decision levels
- Decision levels depend on reconstruction levels
o Solution: iterative method!

Lloyd Algorithm (Sayood pp. 267)

1. Start from an initial set of reconstruction values y_{i}.
2. Find all decision levels $\quad b_{i}=\frac{y_{i}+y_{i+1}}{2}$
3. Computer MSE:

$$
\sigma_{q}^{2}=\sum_{k=1}^{M} \int_{b_{k-1}}^{b_{k}}\left(x-y_{k}\right)^{2} f(x) d x
$$

4. Stop if MSE changes little from las ${ }^{k-1}$ time.
5. Otherwise, update y_{i}, go to step 2.

$$
y_{i}=\frac{\int_{b_{i-1}}^{b_{i}} x f(x) d x}{\int_{b_{i-1}}^{b_{i}} f(x) d x}
$$

Outline

\author{

- Quantization
 - Uniform
 - Non-uniform
 - Vector quantization
 - Transform coding
 - DCT
}

Vector Quantization (VQ)

- According to Shannon's original work on information theory, any compression system performs better if it operates on vectors or groups of samples rather than individual symbols or samples.
- Form vectors of input samples by simply concatenating a number of consecutive samples into a single vector.
- Instead of single reconstruction values as in scalar quantization, in VQ code vectors with n components are used. A collection of these code vectors form the codebook.

\square Fig. 8.5: Basic vector quantization procedure.

Outline

\square Quantization

- Uniform quantization
- Non-uniform quantization
- Transform coding
- Discrete Cosine Transform (DCT)

Why Transform Coding?

a Transform

- From one domain/space to another space
- Time -> Frequency
- Spatial/Pixel -> Frequency
\square Purpose of transform
- Remove correlation between input samples
- Transform most energy of an input block into a few coefficients
- Small coefficients can be discarded by quantization without too much impact to reconstruction quality

1-D Example

ㅁ Fourier Transform

1－D Example

ㄱ Application（besides compression）

－Boost bass／audio equalizer
－Noise cancellation

	JVC Noise Cancelling Headphones（HA－NC260） HA－NC260 WebID： 10177514 Available Online Available In Store	－ 249^{99}
0	Jabra BIZ 2400 Duo Noise－Cancelling Headset（2499－829－105） 2499－829－105 WebID： 10186403 Available Online Not Available In Store	（172 ${ }^{99}$
ϕp_{i}	Sennheiser In－Ear Noise－Cancelling Headphones（CXC 700） CXC 700 WebID： 10174772 Customer Rating：WWH） $4.0 / 5$ （Based on 2 votes） Available Online Available In Store	－299
\％	Bowers \＆Wilkins C5 Noise Isolating In－Ear Headphones（FP30325）－ Black FP30325 WebID： 10175741 Customer Rating： $\boldsymbol{\omega} \boldsymbol{\omega} \boldsymbol{\omega}$ ゆ $4.2 / 5$ （Based on 12 votes） Available Online Available In Store	（－179
	i－Mego Walker On－Ear Noise Cancelling Headphones（IMEG－INC－018）－ Black IMEG－INC－018 WebID： 10179886 Customer Rating： いいがわい 5．0／5 （Based on 1 votes） Available Online \square Not Available In Store	－138
$\cdots)_{1}$	Hip Street In－Ear Noise Isolating Headphones－Pink HS－MSBUN1 WebID： 10180526 Available Online Not Available In Store	＋34
$\int \infty$	Sony Noise－Cancelling Earbuds Headphones（MDRNC13） MDRNC13 WebID： 10168746 Customer Rating： $4.2 / 5$ （Based on 27 votes） Available Online Available In Store	＋6999

1-D Example

a http://www.mathdemos.org/mathdemos/trigsounddemo/trigso unddemo.html

- Sine wave/sound/piano
- www.sagebrush.com/mousing.htm
- An electronic instrument that allows direct control of pitch and amplitude

Nocturne Opus 9 No. 1

1-D Example

\square Smooth signals have strong DC (direct current, or zero frequency) and low frequency components, and weak high frequency components

2-D Example

Original Image

2-D DCT Coefficients. $\operatorname{Min}=-465.37, \max =1789.00$

- Apply transform to each 8×8 block
\square Histograms of source and DCT coefficients

ㅁ Most transform coefficients are around 0 .
\square Desired for compression

Rationale behind Transform

a If Y is the result of a linear transform T of the input vector X in such a way that the components of Y are much less correlated, then Y can be coded more efficiently than X.

- If most information is accurately described by the first few components of a transformed vector, then the remaining components can be coarsely quantized, or even set to zero, with little signal distortion.

Matrix Representation of Transform

- Linear transform is an $N \times N$ matrix:

$$
\mathbf{y}_{N \times 1}=\mathbf{T}_{N \times N} \mathbf{x}_{N \times 1}
$$

ㅁ Inverse Transform:

$$
\mathbf{x}=\mathbf{T}^{-1} \mathbf{y} \quad \mathrm{x} \not \mathrm{~T}^{\mathrm{y}} \stackrel{\mathrm{y}}{\Longrightarrow \mathrm{~T}^{-1}} \overrightarrow{ } \mathrm{x}
$$

- Unitary Transform (aka orthonormal):

$$
\mathbf{T}^{-1}=\mathbf{T}^{T} \quad \mathrm{X} \not \overrightarrow{\mathrm{~T}} \stackrel{\mathrm{y}}{ } \mathrm{~T}^{\mathrm{T}} \Longrightarrow \mathrm{x}
$$

\square For unitary transform: rows/cols have unit norm and are orthogonal to each others

$$
\mathbf{T T}^{T}=\mathbf{I} \Rightarrow \mathbf{t}_{i} \mathbf{t}_{j}^{T}=\delta_{i j}= \begin{cases}1, & \mathrm{i}=\mathrm{j} \\ 0, & \mathrm{i} \neq \mathrm{j}\end{cases}
$$

Discrete Cosine Transform (DCT)

- DCT - close to optimal (known as KL Transform) but much simpler and faster
- Given an input function $f(i, j)$ over two integer variables i and j (a piece of an image), the 2D DCT transforms it into a new function $F(u, v)$, with integer u and v running over the same range as i and j. The general definition of the transform is:

$$
\begin{equation*}
F(u, v)=\frac{2 C(u) C(v)}{\sqrt{M N}} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \cos \frac{(2 i+1) \cdot u \pi}{2 M} \cdot \cos \frac{(2 j+1) \cdot v \pi}{2 N} \cdot f(i, j)^{\square} \tag{8.15}
\end{equation*}
$$

ㅁ where $i, u=0,1, \ldots, M-1 ; j, v=0,1, \ldots, N-1$; and the constants $C(u)$ and $C(v)$ are determined by

$$
C(\xi)= \begin{cases}\frac{\sqrt{2}}{2} & \text { if } \xi=0 \\ 1 & \text { otherwise }\end{cases}
$$

1D Discrete Cosine Transform (1D DCT):

$$
\begin{equation*}
F(u)=\frac{C(u)}{2} \sum_{i=0}^{7} \cos \frac{(2 i+1) u \pi}{16} f(i) \tag{8.19}
\end{equation*}
$$

- where $i=0,1, \ldots, 7, u=0,1, \ldots, 7$.

ㄱ 1D Inverse Discrete Cosine Transform (1D IDCT):

$$
\begin{equation*}
\tilde{f}(i)=\sum_{u=0}^{7} \frac{C(u)}{2} \cos \frac{(2 i+1) u \pi}{16} F(u) \tag{8.20}
\end{equation*}
$$

\square where $i=0,1, \ldots, 7, u=0,1, \ldots, 7$.

The 2 nd basis function ($u=2$)

The 1st basis function ($u=1$)

The 3rd basis function ($u=3$)

\square Fig. 8.6: The $1 D D C T$ basis functions.

The 4th basis function ($u=4$)

The 6th basis function $(u=6)$

The 5th basis function ($u=5$)

The 7th basis function ($u=7$)

\square Fig. 8.6 (Cont'd): The 1D DCT basis functions.

a Fig. 8.7: Examples of 1D Discrete Cosine Transform: (a) A DC signal $f_{l}(i)$, (b) An AC signal $f_{2}(i)$.

\square Fig. 8.7 (Cont'd): Examples of 1D Discrete Cosine Transform: (c) $f_{3}(i)=f_{1}(i)+f_{2}(i)$, and (d) an arbitrary signal $f(i)$.

\square Fig. 8.8: An example of 1D IDCT.

\square Fig. 8.8 (Cont'd): An example of 1D IDCT.

The DCT is a linear transform:

- In general, a transform T (or function) is linear, iff

$$
\begin{equation*}
\mathcal{T}(\alpha p+\beta q)=\alpha \mathcal{T}(p)+\beta \mathcal{T}(q) \tag{8.21}
\end{equation*}
$$

\square where α and β are constants, p and q are any functions, variables or constants.

- From the definition in Eq. 8.17 or 8.19, this property can readily be proven for the DCT because it uses only simple arithmetic operations.

The Cosine Basis Functions

- Function $B_{p}(i)$ and $B_{q}(i)$ are orthogonal, if

$$
\sum\left[B_{p}(i) \cdot B_{q}(i)\right]=0 \quad \text { if } p \neq q \quad \square \text { (8.22) }
$$

\square Function $B_{p}(i)$ and $B_{q}(i)$ are orthonormal, if they are orthogonal and

$$
\begin{equation*}
\sum_{i}\left[B_{p}(i) \cdot B_{q}(i)\right]=1 \quad \text { if } p=q \tag{8.23}
\end{equation*}
$$

- It can be shown that:
\square

$$
\begin{aligned}
& \sum_{i=0}^{7}\left[\cos \frac{(2 i+1) \cdot p \pi}{16} \cdot \cos \frac{(2 i+1) \cdot q \pi}{16}\right]=0 \quad \text { if } p \neq q \\
& \sum_{i=0}^{7}\left[\frac{C(p)}{2} \cos \frac{(2 i+1) \cdot p \pi}{16} \cdot \frac{C(q)}{2} \cos \frac{(2 i+1) \cdot q \pi}{16}\right]_{\text {CMPT365 Multimedia Systems }}=1 \quad \text { if } p=q
\end{aligned}
$$

2D Discrete Cosine Transform (2D DCT):

$$
F(u, v)=\frac{C(u) C(v)}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} \cos \frac{(2 i+1) u \pi}{16} \cos \frac{(2 j+1) v \pi}{16} f(i, j)
$$

awhere $i, j, u, v=0,1, \ldots, 7$, and the constants $C(u)$ and $C(v)$ are determined by Eq. (8.5.16).

2D Inverse Discrete Cosine Transform (2D IDCT):

- The inverse function is almost the same, with the roles of $f(i, j)$ and $F(u$, v) reversed, except that now $C(u) C(v)$ must stand inside the sums:

$$
\tilde{f}(i, j)=\sum_{u=0}^{7} \sum_{v=0}^{7} \frac{C(u) C(v)}{4} \cos \frac{(2 i+1) u \pi}{16} \cos \frac{(2 j+1) \nu \pi}{16} F(u, v)
$$

व where $i, j, u, v=0,1, \ldots, 7$.

2D Basis Functions

- For a particular pair of u and v, the respective 2D basis function is:

$$
\cos \frac{(2 i+1) \cdot u \pi}{16} \cdot \cos \frac{(2 j+1) \cdot v \pi}{16}
$$

- The enlarged block shown in Fig. 8.9 is for the basis function:

$$
\cos \frac{(2 i+1) \cdot 1 \pi}{16} \cdot \cos \frac{(2 j+1) \cdot 2 \pi}{16}
$$

v
口 Fig. 8.9: Graphical Illustration of $8 \times 82 \mathrm{DDCT}$ basis.

2D Separable Basis

$$
F(u, v)=\frac{C(u) C(v)}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} \cos \frac{(2 i+1) u \pi}{16} \cos \frac{(2 j+1) v \pi}{16} f(i, j)
$$

\square The 2D DCT can be separated into a sequence of two, 1D DCT steps:

$$
\begin{aligned}
& G(u, j)=\frac{1}{2} C(u) \sum_{i=0}^{7} \cos \frac{(2 i+1) u \pi}{16} f(i, j) . \\
& F(u, v)=\frac{1}{2} C(v) \sum_{j=0}^{7} \cos \frac{(2 j+1) v \pi}{16} G(u, j) .
\end{aligned}
$$

- It is straightforward to see that this simple change saves many arithmetic steps. The number of iterations required is reduced from 8×8 to $8+8$.

2D DCT Matrix Implementation

- The above factorization of a 2D DCT into two 1D DCTs can be implemented by two consecutive matrix multiplications:

$$
\begin{equation*}
F(u, v)=\mathbf{T} \cdot f(i, j) \cdot \mathbf{T}^{T} \tag{8.27}
\end{equation*}
$$

- We will name T the DCT-matrix.

$$
\mathbf{T}[i, j]= \begin{cases}\frac{1}{\sqrt{N}}, & \text { if } i=0 \tag{8.28}\\ \sqrt{\frac{2}{N}} \cdot \cos \frac{(2 j+1) \cdot i \pi}{2 N}, & \text { if } i>0\end{cases}
$$

Where $i=0, \ldots, N-1$ and $j=0, \ldots, N-1$ are the row and column indices, and the block size is $N \times N$.
\square When $N=8$, we have:

$$
\begin{gather*}
\mathbf{T}_{\mathbf{8}}[i, j]=\left\{\begin{array}{lll}
\frac{1}{2 \sqrt{2}}, & \text { if } i=0 \\
\frac{1}{2} \cdot \cos \frac{(2 j+1) \cdot i \pi}{16}, & \text { if } i>0 .
\end{array} \quad\right. \text { (8.29) } \tag{8.29}\\
\mathbf{T}_{\mathbf{8}}=\left[\begin{array}{ccccc}
\frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} & \cdots & \frac{1}{2 \sqrt{2}} \\
\frac{1}{2} \cdot \cos \frac{\pi}{16} & \frac{1}{2} \cdot \cos \frac{3 \pi}{16} & \frac{1}{2} \cdot \cos \frac{5 \pi}{16} & \cdots & \frac{1}{2} \cdot \cos \frac{15 \pi}{16} \\
\frac{1}{2} \cdot \cos \frac{\pi}{8} & \frac{1}{2} \cdot \cos \frac{3 \pi}{8} & \frac{1}{2} \cdot \cos \frac{5 \pi}{8} & \cdots & \frac{1}{2} \cdot \cos \frac{15 \pi}{8} \\
\frac{1}{2} \cdot \cos \frac{3 \pi}{16} & \frac{1}{2} \cdot \cos \frac{9 \pi}{16} & \frac{1}{2} \cdot \cos \frac{15 \pi}{16} \cdots & \frac{1}{2} \cdot \cos \frac{45 \pi}{16} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{2} \cdot \cos \frac{7 \pi}{16} & \frac{1}{2} \cdot \cos \frac{21 \pi}{16} & \frac{1}{2} \cdot \cos \frac{35 \pi}{16} \cdots \frac{1}{2} \cdot \cos \frac{105 \pi}{16}
\end{array}\right] . \text { (8.30) }
\end{gather*}
$$

2D IDCT Matrix Implementation

\square The 2D IDCT matrix implementation is simply:

$$
\begin{equation*}
f(i, j)=\mathbf{T}^{T} \cdot F(u, v) \cdot \mathbf{T} \tag{8.31}
\end{equation*}
$$

- See the textbook for step-by-step derivation of the above equation.
- The key point is: the DCT-matrix is orthogonal, hence,

$$
\mathbf{T}^{T}=\mathbf{T}^{-1}
$$

2-D 8-point DCT Example

\square Original Data:

89	78	76	75	70	82	81	82
122	95	86	80	80	76	74	81
184	153	126	106	85	76	71	75
221	205	180	146	97	71	68	67
225	222	217	194	144	95	78	82
228	225	227	220	193	146	110	108
223	224	225	224	220	197	156	120
217	219	219	224	230	220	197	151

\square 2-D DCT Coefficients (after rounding to integers):

1155	259	-23	6	11	7	3	0
-377	-50	85	-10	10	4	7	-3
-4	-158	-24	42	-15	1	0	1
-2	3	-34	-19	9	-5	4	-1
1	9	6	-15	-10	6	-5	-1
3	13	3	6	-9	2	0	-3
8	-2	4	-1	3	-1	0	-2
2	0	-3	2	-2	0	0	-1

Further Exploration

व Textbook 8.1-8.5
\square Other sources

- Introduction to Data Compression by Khalid Sayood
- Vector Quantization and Signal Compression by Allen Gersho and Robert M. Gray
- Digital Image Processing by Rafael C. Gonzales and Richard E.Woods
- Probability and Random Processes with Applications to Signal Processing by Henry Stark and John W. Woods
- A Wavelet Tour of Signal Processing by Stephane G. Mallat

