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Lossless vs Lossy Compression

3 If the compression and decompression processes
induce no information loss, then the compression
scheme is lossless; otherwise, it is lossy.

3 Why is lossy compression possible ?

Compression Ratio: 7.7 Compression Ratio: 12.3 Compression Ratio: 33.9
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Outline

7 Quantization
o Uniform
o Non-uniform

3 Transform coding
o DCT
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Quantization

I The process of representing a large (possibly infinite)
set of values with a much smaller set.
O Example: A/D conversion

3 An efficient tool for lossy compression
7 Review ...

Encoder
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channel

Decoder

|

- Inverse
Quantization

CMPT365 Multimedia Systems 4



Review: Basic Idea
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Terminologies:

ﬁDDD

Entropy
Decoding

O Decision boundaries b;: bin boundaries
O Reconstruction levels y;: output value of each bin by the dequantizer.

Bin1 |——>
Bin O

/

Dequantizer
(Inverse Quantizer)

Quantization is a function that maps an input interval to one integer
Can reduce the bits required to represent the source.
Reconstructed result is generally not the original input
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Uniform Quantizer

3 All bins have the same size except possibly for the two outer intervals:
O biand yi are spaced evenly
O The spacing of bi and yi are both A (step size)

y, = %(bl._1 +bl.) for inner intervals.

Uniform Midrise Quantizer

4 Reconstruction

3.5A 1
2.5A1
1.5A 1
3a-2a-A pRB
"-050 A 2A 3A Input
- 1-1.5A
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Uniform Midtread Quantizer

4 Reconstruction
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Midtread Quantizer

7 Quantization mapping:

4 Reconstruction Output is an index
3A 1
X
A1 q = A(x) = sign(x) ¥+ 0.5
A — —

7 Example:

-2.5A -1.5A -0.5A

: | | >
05A15A0 254 Input X = -1.84,q=-2.
I

T -2A

3n 7 De-quantization mapping:

x=B(q)=gA
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Model of Quantization

v A [ -

7 Quantization: g = A(x)
3 Inverse Quantization: x = B(q)= B(A(x))=0(x)

B(x) is not exactly the inverse function of A(x), because X#X

N

73 Quantization error: e(x) = x—X
3 Combining quantizer and de-quantizer:
- e(x)

X—’|Q|——>)Ac or XAé—>x
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Rate-Distortion Tradeoff

3 Things to be determined: || Rate
o Number of bins A
O Bin boundaries
O Reconstruction levels B
>

Distortior
7 A tradeoff between rate and distortion:

O To reduce the size of the encoded bits, we need to reduce
the number of bins

O Less bins = More reconstruction errors
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4

Q9 a a4

4

Measure of Distortion

Quantization error:  e(Xx) =X — X
Mean Squared Error (MSE) for Quantization
O Average quantization error of all input values
O Need to know the probability distribution of the input

Number of bins: M
Decision boundaries: b;,i =0, ..., M
Reconstruction Levels:y;, i=1, ..., M

Reconstruction: A — yi lff b < % < b
MSE: MSE, = j x— %V f(x)dx = Z j x— . F f(x)dx
i= 1b »

O Same as the variance of e(x) if y = E{e(x)} = O (zero mean).

O Definition of Variance: o’ = T(e—,ue )2f(e)de

—00
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Rate-Distortion Optimization

7 Two Scenarios:
O Given M, find b; and y; that minimize the MSE.

O Given a distortion constraint D, find M, b; and y; such that
the MSE < D.
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Outline

7 Quantization
o Uniform
O Non-uniform
O Vector quantization
3 Transform coding
o DCT
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Uniform Quantization of a Uniformly Distributed
Source

Input X: uniformly distributed in [-X, o, Xmax]: T(X)= 17 (2X10x)
Number of bins: M (even for midrise quantizer)

Step size is easy to get: A=2X, ../ M.

b,=(i—-M/2) A

I I R

y1 y2 y3 y4 y5 y6 y7 y8
354 254 -15A -0.5A 0.5A 1.5A 2.5A  3.5A X
—+ 4+ -+ + +— -
b0 b1 b2 b3 b4 b5 b6 b7 b8
4N -3A -2A -A 0 A 2A 3A  4A
'Xmax Xmax
I => e(x) is uniformly distributed in [-A/2, A/2].
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Uniform Quantization of a Uniformly Distributed
Source

o0

7 MSE MSE , = j(x—i)zf(x)dx = Z j(x—yi)zf(x)dx

—0 i=1 b, ,
A 2
_ # (x_éj dx = M 1A3ZLA2
2x . 0 2 2X. 12 12

7 M increases, A decreases, MSE decreases

7 Variance of a random variable uniformly distributed in [- A/2, A/2]:

A/2 1 1
o’y = j(x—O)z—dx=—A2
B A 12

3 Optimization: Find M such that MSE < D

2
1 1 (2Xx [ 1
— AN <D = x| <D =S M2X,_ L —
12 12\ M 3D
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Signal o Noise Ratio (SNR)

7 Variance is a measure of signal energy
7 Let M=2n
3 Each bin index is represented by n bits

1 2
SNR(dB) = 101og,, Signal Energy 1010g, 1/12(2Xrgax)
Noise Energy 1/12A
2X, .. )
=101o ( max —101o M2:1010 22n: 2010 21
210 (2)(mX /M)2 210 g0 ( 2102)
~ 6.02n dB

3 If n=>n+1, Ais halved, noise variance reduces to 1/4,
and SNR increases by 6 dB.
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Outline

7 Quantization
o Uniform
o Non-uniform

3 Transform coding
o DCT
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Non-uniform Quantization

X > /‘\/ > Uniform quantizer /|\/

G G

<>

Y

Y

Companded quantization is nonlinear.

As shown above, a compander consists of a compressor
function G, a uniform quantizer, and an expander function
G

The two commonly used companders are the p-law and A-
law companders.
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Non-uniform Quantization

3 Uniform quantizer is not optimal if source is not uniformly
distributed

3 For given M, to reduce MSE, we want narrow bin when f(x) is high
and wide bin when f(x) is low

M b

05 = j(x—&)zf(x)dx = Z j(x—yk)zf(x)dx
h fx)
| d >
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Lloyd-Max Quantizer

3 Also known as pdf-optimized quantizer

0 M bk
o, = j (x=2Y f()ae = [(x=3,F f(x)ax
fe=1 by
3 Given M, ’rhe op‘rumal b, and y; that minimize MSE, satisfying
.8% _o, GGq o
v, ob,
b,
: [x f(x)dx f(x) A
do, b_1
S
Vi j £(x)dx
y; is the centroid of interval [b, 4, b]]. ol 'T bi__'x
Yi
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Lloyd-Max Quantizer

A If f(x) = ¢ (uniformly distributed source):

jxf(x)dx cjxdx %(biz_biz_l) |

b. b.
= i—1 — i—1 — —_ b + b
7 f c(b;, —b, ;) b, —b, 2 Gib)

A

f(x)

2
804 :O — b.:yi+yi+1

ob, 2

=> b, is the midpoint of y; and y,,4
—f-— 00—

0 me bi T bi+1
Yi Yi+1
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Lloyd-Max Quantizer

3 Summary of conditions for optimal quantizer:
b;

Ix f(x)dx
y, =t b Vit Vi

T F(x)dx | 2

7 Given b;, can find the corresponding optimal y;
7 Giveny;, can find the corresponding optimal b;

7 How to find optimal bi and yi simultaneously?

O A deadlock:

* Reconstruction levels depend on decision levels
* Decision levels depend on reconstruction levels
O Solution: iterative method !
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Lloyd Algorithm (Sayood pp. 267)

Start from an initial set of reconstruction values y..

.+ V.
Find all decision levels b, =2 2y i+l
Computer MSE: L :
. 2
P O'QZZJ.(X—yk) S (x)dx

by
Stop if MSE changes little from last time.

Otherwise, update y;,
go to step 2.

b,

[ x f(x)ax

by

_f f(x)dx

CMPT365 Multimedia Systems 22

Vi =



Outline

7 Quantization
o Uniform
o Non-uniform
O Vector quantization
3 Transform coding
o DCT
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Vector Quantization (VQ)

According to Shannon's original work on information
theory, any compression system performs better if it
operates on vectors or groups of samples rather than
individual symbols or samples.

Form vectors of input samples by simply concatenating
a humber of consecutive samples into a single vector.

Instead of single reconstruction values as in scalar
quantization, in VQ code vectors with n components
are used. A collection of these code vectors form the
codebook.
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Decoder

Find closest
code vector

7 Fig. 8.5: Basic vector quantization procedure.
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Outline

7 Quantization
O Uniform quantization
O Non-uniform quantization

3 Transform coding
O Discrete Cosine Transform (DCT)
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Why Transform Coding ?

3 Transform

O From one domain/space to another space
O Time -> Frequency

O Spatial/Pixel -> Frequency
3 Purpose of transform

O Remove correlation between input samples

O Transform most energy of an input block into a few

coefficients

o Small coefficients can be discarded by quantization without too

much impact to reconstruction quality

—|  Transform

Encoder

Quantization

Entropy
coding
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1-D Example

7 Fourier Transform
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1-D Example

3 Application (besides compression)
O Boost bass/audio equalizer
O Noise cancellation

JVC Noise Cancelling Headphones (HA-NC260)
HA-NC260 WebID: 10177514

» 249 )
Available Online Available In Store

- Jabra BIZ 2400 Duo Noise-Cancelling Headset (2499-829-105)
\ 2499-829-105 WebID: 10186403

[

»172*

4

Available Online Ed Not Available In Store

Sennheiser In-Ear Noise-Cancelling Headphones (CXC 700)
CXC 700 WebID: 10174772

Customer Rating: MMM 4.0/5

(Based on 2 votes)

»299%

-

Available Online Available In Store

Bowers & Wilkins C5 Noise Isolating In-Ear Headphones (FP30325) -

Black
T FP30325 WebID: 10175741
(q Customer Rating: MMMk 4.2/5 »179%

(Based on 12 votes)

Available Online Available In Store

i-Mego Walker On-Ear Noise Cancelling Headphones (IMEG-INC-018) -

Black
IMEG-INC-018 WebID: 10179886
Customer Rating: MWW 5.0/5 »138% )

(Based on 1 votes)

Available Online E3 Not Available In Store

Hip Street In-Ear Noise Isolating Headphones - Pink
J HS-MSBUN1 WebID: 10180526
!

l '

»34% )
Available Online Ed Not Available In Store

Sony Noise-Cancelling Earbuds Headphones (MDRNC13)
MDRNC13 WebID: 10168746

TT Customer Rating: MMMk 4.2 /5 » 69

(Based on 27 votes) > CMPT365 Multimedia SYSTCmS 29
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1-D Example

O Sine wave/sound/piano

O An electronic instrument that allows direct control of pitch and

ampl itude Nocturne Opus 9 No. 1

-

Larghetio (¢ « 116)
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1-D Example

7 Smooth signals have strong DC (direct current, or zero frequency) and low
frequency components, and weak high frequency components

Original Input
200 T T T T L L
M D
100q .
0 [ [ [ [ [ [
1 2 3 4 5 6 7 8 Sample Index

DFT Magnitudes

L L L L L L

2000

10004 |
Tt € 7 5 Highf
igh frequenc
DCT Coeficients ghireq y
o o o o )
* ° ° ! ® High frequency
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2-D Example

Original Image 3 Apply transform to each 8x8 block
s 3 Histograms of source and DCT coefficients

10000 :

|8 |8 |

8000

6000

4000

2000

0

2-D DCT Coefficients. Min= -465.37, max= 1789.00 105

r

0 L L L
-500 0 500 1000 1500 2000

7 Most transform coefficients are around O.
3 Desired for compression
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Rationale behind Transform

3 IfY is the result of a linear transform T of the
input vector X in such a way that the components
of Y are much less correlated, thenY can be
coded more efficiently than X.

7 If most information is accurately described by
the first few components of a transformed
vector, then the remaining components can be
coarsely quantized, or even set to zero, with little

signal distortion.

CMPT365 Multimedia Systems 33



Matrix Representation of Transform

7 Linear transform is an N x N matrix:

Y na = LyevXav X T Y
3 Inverse Transform:
el y P
x=T y X > T > T E> x
3 Unitary Transform (aka orthonormal):
-1 T y T
T =T X — T > T > «x

3 For unitary transform: rows/cols have unit norm and are
orthogonal to each others

I, 1=
TT =1 = tt' =5, = , J,
T 0, 1# ]
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Discrete Cosine Transform (DCT)

7 DCT - close to optimal (known as KL Transform) but much
simpler and faster

QO Given an input function f(i, /) over two integer variables i and ; (a piece
of an image), the 2D DCT transforms it into a new function F(u, v), with
integer u and v running over the same range as i and . The general
definition of the transform is:

F(u,v)ZZC(u)C(v)M e (21+1) UL (2j+1).V7z-‘f(l.,j)D (8.15)

CoS
VMN 55 2N
m wherei,u=0,1,... M-1,7,v=0,1,...,N-1; and the constants
C(u) and C(v) are determined by
f\/z .
N< -0
co={2 Vb
1 otherwise.
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1D Discrete Cosine Transform (1D DCT):

F(u)= C(u) Z cos (2l+1)u7z 76) 7 (8.19)

“wherei=0,1, . 7u—01 7.

7 1D Inverse Discrete Cosine Transform (1D
IDCT):

f(z =i C(”)COS(zl"ll'é)”ﬂ:F(Z/) 4 (8.20)

J wherei=0,1,...,7,u=0,1,...,7.
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The Oth basis function (1 = 0)

1.0 F :
st Q00U UL
o b
—05 } .
-1.0 b .
0 1 2 3 4 5 6 7
i
The 2nd basis function (1« = 2)
0.5 D D
i o 0 U]
N T
-1.0 t
0 1 2 3 4 5 6 7

The 1st basis function (1« = 1)

1.0
0.5 U D
o b4 D ....... [ S O T T
10
-1.0 £ . . . —_
0 1 2 3 4 5 6 7
i
The 3rd basis function (uz = 3)
1.0 T T T
0.5 D H
[0 N A — R T S |:| ,,,,,,,,,,,,,,, |
] I
-1.0

7 Fig. 8.6: The 1D DCT basis functions.
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The 4th basis function (1« = 4) The 5th basis function (z = 5)

10 000 % I U
ot o L] 0 D ,,,,,,,,,,,,,,,, o
ST 10 | ws] T I 7]
-1.0 t : —-1.0 t :
0 1 2 3 4 5 6 17 0 1 2 3 4 5 6 17
i i
The 6th basis function (z = 6) The 7th basis function (1 = 7)

dogloalpel 3000

-1.0 t : -1.0

7 Fig. 8.6 (Cont'd): The 1D DCT basis functions.
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Signal f|(7) that does not change DCT output F (1)

200 : . . . . . 400 - - - -
150 | ] 300
100 ¢} ] 200
o LLL L1 [0 [0 1 [ [ 1 0

0O 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
i u
(a)
A changing signal f5(i)
that has an AC component
DCT output F>(u)
100 400 —

Vo s 0 H; 3 H

e 0
i (b) ’
7 Fig. 8.7: Examples of 1D Discrete Cosine
Transform: (a) A DC signal 7,(i), (b) An AC signal
/(0).
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200
150
100

50

100
50

-100

Signal f(i) = f,(i) + f>(i)

Ot
p—
w
=~

An arbitrary signal f(7)

I

0 -0 ol

-50 |

0 1 2 3 4 5 6

7

400
300
200
100

200

DCT output F5(u)

DCT output F(u)

100

—100
—200

0 0 o = D o

|

(d)

7 Fig. 8.7 (Cont'd): Examples of 1D Discrete
Cosine Transform: (c) /5(i) = /1(i)+/5(i), and (d) an

arbitrary signal f(i).

CMPT365 Multimedia Systems 40



After 1st iteration (DC + AC1)

[ e N i 0 o D

0 1 2 3 4 5 6 7

After 3rd iteration (DC + AC1 + AC2 + AC3)

After 2nd iteration (DC + AC1 + AC2)

After Oth iteration (DC)

50 S S N I A

7 Fig. 8.8: An example of 1D IDCT.

CMPT365 Multimedia Systems
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After 4th iteration (DC + AC1 +. ..+ AC4)

After 6th iteration (DC + AC1 + ... + ACO6)

N 2 il

0 1 2 3 4 5 6 1

7 Fig. 8.8 (Cont'd):

42

After 5th iteration (DC + AC1 +. .. + AC)S)

100 D U
50 }

o o o L L]
ol 0 i

After 7th iteration (DC + AC1 +. ..+ AC7)

An example of 1D IDCT.

Li, Dremwsskdbuinedia Systems 42



The DCT is a linear transform:

In general, a transform T (or function) is linear,
iff

T(ap+ Bg) =aT(p)+ BT (q), 5 (8.21)

Iwhere o and S are constants, p and ¢ are any
functions, variables or constants.

From the definition in Eq. 8.17 or 8.19, this
property can readily be proven for the DCT
because it uses only simple arithmetic
operations.
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The Cosine Basis Functions

3 Function B,(i) and B (i) are orthogonal, if

7 (8.22)

> [B,(i)yB,()]=0 if p#q

l
3 Function B,(i) and B,(i) are orthonormal, if they are
orthogonal and

2. [B,()B,)]=1  if p=¢q

7 (8.23)
3 Tt can be shown that:
1270: :cos (2i+ll6)‘p7[-cos—(2iil6).qﬂ}=0 if p#q
e > e e in O G Dn ]y
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2D Discrete Cosine Transform (2D DCT):

16 16

wherei,j,u,v=0,1,..., 7 and the constants C(x) and C(v) are
determined by Eq. (8.5.16).

Fu,v)= C(u) C(v)zz cos (2i+Durx cos 2j+Dvr £, )

2D Inverse Discrete Cosine Transform (2D IDCT):

7 The inverse function is almost the same, with the roles of £{i, ;) and F(u,
v) reversed, except that now C(u)C(v) must stand inside the sums:

T ))= EE C(Z/)C(V) (21’ -;—é)wt cos 2/ ;'61)VJ'L’ F ()

=0 rv=0

7 wherei,j,u,v=0,1,...,7.
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2D Basis Functions

For a particular pair of uvand v, the respective 2D
basis function is:

21+ 1) -um 2j+1) - -vm
S + COS

CO
16 16

9

The enlarged block shown in Fig. 8.9 is for the
basis function:
Qi+1)-1n o 2j+1) 27

COS - C
16 16
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U ALY

L r !Il (W EHTFRTRTRITT
I B0 TR TN

Lmae Al

") ||' W00 o oo

(e dlE sl el

LA nm

I IIIII '
III Ill illH ‘
BB

nen LEoE s s n a ¥
iiee Aml I9l BN LN

IRl LRI B
WA maa L amos
bk e w bk w

=

e

SeN) iNNl TR IEY W
faen awme LR B
R —
e LN W [ n
| B iR RS | '8 n ]
" X

Ol OO Y

7 Fig. 8.9: Graphical Tllustration of 8 x 8 2D DCT
basis.
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2D Separable Basis

Fluy) = C (u)4C (v) ii o 2 41—é)u7r o5 2J ik61)v7z £ 7)

7 The 2D DCT can be separated into a sequence of two, 1D DCT
steps:

7 .
, 1 21 + 1 o
G(u,j) = EC(M)ZCOS( : 16)WT f@a,j).
=0
7 .
F(u,v) = %C(v) Zcos 2/ 41_61)an(”’ j).

j=0
3 It is straightforward to see that this simple change saves

many arithmetic steps. The number of iterations required is
reduced from 8 x 8 To 8+8.
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2D DCT Matrix Implementation

The above factorization of a 2D DCT into two 1D DCTs can
be implemented by two consecutive matrix multiplications:

Fu,v)=T- @, ) -T!. 7(8.27)

We will name T the DCT-matrix.

T, j1 =1

m

L if i=0

VN’ (8.28)

/2 Qj+D-imr .o
VN COSToy , 11 >0

Wherei=0,..,N-1Tandj=0, ..., N-1 are the row and column
indices, and the block size is N x N.
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7 When N = 8, we have:

1 R
— if i =
o 22’ =0
Tsli, j1 = - 7 (8.29)
1 2j+1)im cp -
| 5 - cos—=——, 1if i > 0.
B | | | | ]
22 22 22 22
| T 1 37 1 57 | 157
5 COSI_6 5 COSI_6 5 COSI_6 T COSI_6
| T 1 37 1 S5 | 157
5 COSg 5 COS? 7 COS? 5 COST
Ts=| 1 37 1 o7 1 157 1 457 | . (8.30)
5 COSI_6 5 COSI_6 5 COSI— 5 COSI_6
| T 1 217 1 35 | 1057
E'COSEE'COSI—6§'COSI—6"'7'COSI—6
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2D IDCT Matrix Implementation

3 The 2D IDCT matrix implementation is
simply:

fG, j)=T"-Fu,v)- T 7 (8.31)

- See the textbook for step-by-step derivation of
the above equation.

- The key point is: the DCT-matrix is orthogonal,
hence, TT — T_l.
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2-D 8-point DCT Example

3 Original Data:

89 78 76 75 70 82 81 82
122 95 86 80 80 76 74 81
184 153 126 106 85 76 71 75
221 205 180 146 97 71 68 67
225 222 217 194 144 95 78 82
228 225 227 220 193 146 110 108
223 224 225 224 220 197 156 120
217 219 219 224 230 220 197 151

7 2-D DCT Coefficients (after rounding to integers):

1155 259 =23 6 11 7 3 0

-377 -50 85 =10 10 4 7 =3

-4 -158 =24 42 =15 1 0 1

-2 3 =34 =19 9 -5 4 -1

1 9 6 -15 =10 6 -5 -1

3 13 3 6 -9 2 0O -3

P 8 -2 4 -1 3 -1 0 =2

Most energy is in the upper , . _3 5 5 ) 0 1

left corner
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Further Exploration

7 Textbook 8.1-8.5

7 Other sources
O Introduction to Data Compression by Khalid Sayood

O Vector Quantization and Signal Compression by Allen Gersho
and Robert M. Gray

O Digital Image Processing by Rafael C. Gonzales and Richard
E.Woods

O Probability and Random Processes with Applications to Signal
Processing by Henry Stark and John W. Woods

O A Wavelet Tour of Signal Processing by Stephane G. Mallat
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