CMPT 365 Multimedia Systems

Lossless Compression

Spring 2017

Edited from slides by Dr. Jiangchuan Liu

CMPT365 Multimedia Systems 1

Outline

3 Why compression ?
3 Entropy
7 Variable Length Coding

O Shannon-Fano Coding
O Huffman Coding

O LZW Coding

O Arithmetic Coding

CMPT365 Multimedia Systems 2

Compression

7 Compression: the process of coding that will
effectively reduce the total number of bits
needed to represent certain information.

Input Encoder Storage or Decoder Output

(compression) networks (decompression)

data

data

CMPT365 Multimedia Systems 3

3 Multimedia data are too big

Why Compression ?

O "A picture is worth a thousand words

I\\

File Sizes for a One-minute QCIF Video Clip

Frame Rate (bps) (Bytes)
30 176 x 144
frames/sec pixels 12 9,123,840 | 68,428,800

CMPT365 Multimedia Systems 4

Approximate file sizes for 1 sec audio

Channels Resolution Fs File Size
Mono 8bit 8Khz 64Kb
Stereo 8bit 8Khz 128Kb
Mono 16bit 8Khz 128Kb
Stereo 16bit 16Khz 512Kb
Stereo 16bit 44 1Khz | 1441Kb*
Stereo 24bit 44 1Khz | 2116Kb

1D 700M 70-80 mins

CMPT365 Multimedia Systems 5

Lossless vs Lossy Compression

7 If the compression and decompression processes
induce no information loss, then the compression
scheme is lossless; otherwise, it is lossy.

7 Compression ratio:

. . _ bBo
compression ratio = N
1

Bo — number of bits before compression
B1 — number [of bits after compression

CMPT365 Multimedia Systems 6

Why is Compression possible ?

7 Information Redundancy

7 Question: How is "information” measured ?

CMPT365 Multimedia Systems 7

Outline

3 Why compression ?
3 Entropy
7 Variable Length Coding

O Shannon-Fano Coding
O Huffman Coding

O LZW Coding

O Arithmetic Coding

CMPT365 Multimedia Systems 8

Self-Information

Information is related to probability
Information is a measure of uncertainty (or “surprise")

3 Intuition 1
O T've heard this story many times vs This is the first time I hear about this story
O Information of an event is a function of its probability:
i(A) = f (P(A)). Can we find the expression of f()?

3 Intuition 2:
O Rare events have high information content
+ Water found on Marsl!|
O Common events have low information content
+ It’s raining in Vancouver.
—~Information should be a decreasing function of the probability:
Still numerous choices of f().
3 Intuition 3:
o Information of two independent events = sum of individual information:
If P(AB)=P(A)P(B) = i(AB) =i(A) +i(B).
- Only the logarithmic function satisfies these conditions.

CMPT365 Multimedia Systems 9

Self-information

3 Shannon’s Definition [1948]:
O Self-information of an event:

i(4)=log, ﬁ =—log, P(A)

If b = 2, unit of information is bits

—log, P(A)
A

P(A)

CMPT365 Multimedia Systems 10

Entropy

7 Suppose:
O adata source generates output sequence from a set {A1, Az, ..., AN}
O P(Ai): Probability of Ai

3 First-Order Entropy (or simply Entropy):
O the average self-information of the data set

H =Y = P(4)log, P(4)

7 The first-order entropy represents the minimal number of bits
needed to losslessly represent one output of the source.

CMPT365 Multimedia Systems 11

Example 1

3 X is sampled from {a, b, c, d}
3 Prob: {1/2,1/4,1/8, 1/8}
7 Find entropy.

CMPT365 Multimedia Systems 12

Example 1

7 The entropy n represents the average amount of
information contained per symbol in the source S

7 nspecifies the lower bound for the average number of
bits to code each symbol in S, i.e.,

n<l
- the average length (measured in bits) of the codewords
produced by the encoder.

CMPT365 Multimedia Systems 13

Example 2

I A binary source: only two possible outputs: O, 1
O Source output example: 000101000101110101......

O P(X=0) = p, P(X=1)=1-p.
I First order entropy:

O H=p (-log:(p)) + (1-p) (-logz(1-p))

O H=0whenp=0orp-=1

- Fixed output, no information Bl
O His largest whenp =1/2

* Largest uncertainty

* H=1bit in this case

0.8}

0.6

Entropy

0.4}

0.2}

00 O.r1 O.r2 0.r3 0.r4 0.r5 O.r6 O.r7 0.r8 0.r9 1
P
CMPT365 Multimedia Systems 14

Example 3

LN J 137

255 255

(a)

(a) histogram of an image with uniform distribution of gray-level
intensities, i.e., p;= 1/256. Entropy = log,256=8
(b) histogram of an image with two possible values. Entropy=0.92.

CMPT365 Multimedia Systems 15

Outline

3 Why compression ?
3 Entropy
3 Variable Length Coding

O Shannon-Fano Coding
O Huffman Coding

O LZW Coding

O Arithmetic Coding

CMPT365 Multimedia Systems 16

Runlength Coding

7 Memoryless Source:
O an information source that is independently distributed.
O i.e., the value of the current symbol does not depend on
the values of the previously appeared symbols.
7 Instead of assuming memoryless source, Run-
Length Coding (RLC) exploits memory present in
the information source.

7 Rationale for RLC:

O if the information source has the property that symbols
tend to form continuous groups, then such symbol and
the length of the group can be coded.

CMPT365 Multimedia Systems 17

Entropy Coding

7 Desigh the mapping from source symbols to codewords

I Goal: minimizing the average codeword length
O Approach the entropy of the source

Input

data

Encoder
(compression)

}_

Storage or
networks

{

Decoder Output
(decompression)
data

CMPT365 Multimedia Systems 18

Example: Morse Code

7 Represent English characters and numbers by different
combinations of dot and dash (codewords)

3 Examples:
E e [oo A © ==
T_ O _— - S... Z - == Q O
3 Problem:
Q00 mm mmmm 00O Not uniquely decodable! ‘_p

O Letters have to be separated by space,

Or paused when transmitting over radio.
SOS:

CMPT365 Multimedia Systems 19

Entropy Coding: Prefix-free Code

No codeword is a prefix of another one.
Can be uniquely decoded.

Also called prefix code

Example: 0, 10, 110, 111

Binary Code Tree

9 a a ad

K////// Root node

leaf node 110 111

7 Prefix-free code contains leaves only.
7 How to state it mathematically?

CMPT365 Multimedia Systems 20

Outline

3 Why compression ?
3 Entropy
7 Variable Length Coding

O Shannon-Fano Coding
O Huffman Coding

O LZW Coding

O Arithmetic Coding

CMPT365 Multimedia Systems 21

Shannon-Fano Coding

7 Shannon-Fano Algorithm - a top-down approach

O Sort the symbols according to the frequency count of
their occurrences.

O Recursively divide the symbols into two parts, each with
approximately the same number of counts, until all parts
contain only one symbol.

7 Example: coding of "HELLO"

‘Symbol H E L O
Count |1 1 2 1

Frequency count of the symbols in "HELLO"

CMPT365 Multimedia Systems 22

Coding Tree

(5) (5)
0 1 0 1
/\ 3)
L:(2) H.E.0:(3) L:(2) 0 !
H:(1) E.O:(2)
(a) (b)

CMPT365 Multimedia Systems 23

Result of Shannon-Fano Coding

Symbol | Count |092]% Code | # of bits used
L 2 1.32 0 2
H 1 2.32 10 2
E 1 2.32 | 110 3
O 1 2.32 | 111 3
TOTAL number of bits: 10

CMPT365 Multimedia Systems 24

Another Coding Tree

5)

Symbol | Count |092pl. Code | # of bits used

L 2 1.32 00 4

H 1 2.32 01 2

Symbol | Count Ioggé Code # of bits used E 1 2.32 10 2

L 2 |12 0 2 @) 1 2.32 11 2

H 1 232 | 10 2 _

e 1 232 | 110 3 TOTAL number of bits: 10
o} 1 232 | 111 3
TOTAL number of bits: 10

CMPT365 Multimedia Systems 25

Outline

3 Why compression ?
3 Entropy
7 Variable Length Coding

O Shannon-Fano Coding
O Huffman Coding

O LZW Coding

O Arithmetic Coding

CMPT365 Multimedia Systems 26

0
m

Huffman Coding

A procedure to construct optimal prefix-free code

Result of David Huffman’s term paper in 1952 when he was a
PhD student at MIT

Shannon - Fano > Huffman
Observations:
O Frequent symbols have short codes.

O Inanoptimum prefix-free code, the two codewords that occur
least frequently will have the same length.

o/

Can be
truncated

CMPT365 Multimedia Systems 27

Huffman Coding

7 Human Coding - a bottom-up approach

O Initialization: Put all symbols on a list sorted
according to their frequency counts.
- This might not be available !

O Repeat until the list has only one symbol left:

(1) From the list pick Two symbols with the lowest
frequency counts. Form a Huffman subtree that has these
two symbols as child nodes and create a parent node.

(2) Assign the sum of the children's frequency counts to
the parent and insert it into the list such that the order is
maintained.

(3) Delete the children from the list.

O Assign a codeword for each leaf based on the
path from the root.

CMPT365 Multimedia Systems 28

(a)

Coding for "HELLO"

P2:(3)

0 1 0 1
/\ P1:(2)
0:(1) H:(1) 0 1

E:(1) O:(1)
(b)

CMPT365 Multimedia Systems 29

More Example

7 Source alphabet A = {al, a2, a3, a4, a5}
3 Probability distribution: {0.2,0.4,0.2,0.1, 0.1}

Sort combine Sort combine Sort combine Sort combine
1 1 04 1 06 0
1 a2 (0.4) 0.4
01 0.2 0.4
01 a1(0.2) 01 00
000 0.2 000 0.2
000 83(0.2) 0.4
0010 01
0010 a4(0-1)—| 02 0.2

0011 615(0-1)J 001

0011 Assign code

7 Note: Huffman codes are not unique!
O Labels of two branches can be arbitrary.
O Multiple sorting orders for tied probabilities

CMPT365 Multimedia Systems 30

Properties of Huffman Coding

3 Unique Prefix Property:
© No Human code is a prefix of any other Human code -
precludes any ambiguity in decoding.
7 Optimality:
O minimum redundancy code - proved optimal for a given

data model (i.e., a given, accurate, probability
distribution) under certain conditions.

O The two least frequent symbols will have the same length
for their Human codes, differing only at the last bit.

O Symbols that occur more frequently will have shorter
Huffman codes than symbols that occur less frequently.
7 Average Huffman code length for an information
source S is strictly less than entropy+ 1

I <n+l1

CMPT365 Multimedia Systems 31

Example

7 Source alphabet A ={a, b, c, d, e}
3 Probability distribution: {0.2, 0.4, 0.2, 0.1, 0.1}
7 Code: {01, 1, 000, 0010, 0011}

3 Entropy:
H(S) = - (0.2*%l0g2(0.2)*2 + 0.4*l0g2(0.4)+0.1*log2(0.1)*2)
= 2.122 bits / symbol

7 Average Huffman codeword length:
L = 0.2%2+0.4*1+0.2*3+0.1*4+0.1%4 = 2.2 bits / symbol

3 Ingeneral: H(S)<L<H(S)+1

CMPT365 Multimedia Systems 32

Huffman Decoding

3 Direct Approach:
O Read one bit, compare with all codewords...
O Slow

7 Binary tree approach:
O Embed the Huffman table into a binary tree data structure

O Read one bit:

- if it’s 0, go to left child.

+ If it’'s 1, go to right child.

- Decode a symbol when a leaf is reached.
O Still a bit-by-bit approach

CMPT365 Multimedia Systems 33

Huffman Decoding /{

| LA S
3 Table Look-up Method 6 010 011 b

O N: # of codewords i L1

O L: max codeword length ' R,

000 010 011 100
O Expand to a full tree:

» Each Level-L node belongs to the subtree of a codeword.
» Equivalent to dividing the range [0, 2°L] into N intervals,
each corresponding to one codeword.

3 bar[5]: {000, 010, 011, 100, 1000}
7 Read L bits, and find which internal it belongs to.
7 How to do it fast?

CMPT365 Multimedia Systems 34

Table Look-up Method

a: 00
b: 010
c: 011
d: 1
char HuffDec[8][2] =
{‘a’', 2},
{‘a’', 2},
{'b’, 3},
{‘'c’, 3},
{‘d", 1},
{‘d”, 1},
{‘d”, 1},
{‘d", 1}
}i

d'o/ 0o d b
b c
l L1 1 I
| | | 1 |
000 010 011 100
{ .
X = ReadBits(3);
k = 0; //# of symbols decoded

While (not EOF) {
symbol[k++] = HuffDec[x][0];
length = HuffDec[x][1];
X << length;
ReadBits(length);
X | newbits;
x & 111B;

X=
newbits =
X:

X=

CMPT365 Multimedia Systems 35

Limitations of Huffman Code

7 Need a probability distribution
O Usually estimated from a training set
O But the practical data could be quite different

7 Hard to adapt to changing statistics
O Must design new codes on the fly
O Context-adaptive method still need predefined table

3 Minimum codeword length is 1 bit
O Serious penalty for high-probability symbols

O Example: Binary source, P(0)=0.9
- Entropy: -0.9%10g2(0.9)-0.1%l0og2(0.1) = 0.469 bit
* Huffman code: O, 1 =& Avg. code length: 1 bit
* More than 100% redundancy !!!
- Joint coding is not practical for large alphabet.

CMPT365 Multimedia Systems 36

Extended Huffman Code

7 Code multiple symbols jointly
O Composite symbol: (X1, X2, ..., Xk)

O Alphabet increased exponentioally: N"k

7 Code symbols of different meanings jointly
O JPEG: Run-level coding

O H.264 CAVLC: context-adaptive variable length coding
* # of non-zero coefficients and # of trailing ones

O Studied later

CMPT365 Multimedia Systems 37

Example

9 P(Xi=0)=P(Xi=1)=1/2

9 Q Qa Q

O Entropy H(Xi) = 1 bit / symbol

Joint probability: P(Xi-1, Xi)

5 P(0,0) = 3/8, P(0,1) = 1/8
5 P(1,0)=1/8, P(1,1) = 3/8
Second order entropy:

Joint Prob P(Xi-1, Xi)

3/8

1/8 3/8

H(X,_,X,)=1.8113 bits/ 2 symbols, or 0.9056 bits / symbol

Huffman code for Xi 0,1

Average code length 1 bit / symbol
Huffman code for (Xi-1, Xi) 1,00, 010, 011
Average code length 0.9375 bit /symbol

Consider 1000010000 111111 -- every two; non-overlapped

CMPT365 Multimedia Systems 38

Outline

3 Why compression ?
3 Entropy
7 Variable Length Coding

O Shannon-Fano Coding
O Huffman Coding

O LZW Coding

O Arithmetic Coding

CMPT365 Multimedia Systems 39

LZW: Dictionary-based Coding

3 LZW: Lempel-Ziv-Welch (Lz 1977, +w 1984)

O Patent owned by Unisys http://www.unisys.com/about__unisys/lzw/
+ Expired on June 20, 2003 (Canada: July 7, 2004)
o ARJ, PKZIP, WinZip, WinRar, Gif,
7 Uses fixed-length codewords to represent variable-length
strings of symbols/characters that commonly occur together
O e.g., words in English text.

O Encoder and decoder build up the same dictionary dynamically
while receiving the data.

O Places longer and longer repeated entries into a dictionary, and
then emits the code for an element, rather than the string
itself, if the element has already been placed in the dictionary.

CMPT365 Multimedia Systems 40

LZW: Dictionary-based Coding

OF IO,QOQ CYPHER WORDS. ¢

| 4
{Roota, i!i Raots, 3]] Roots. !!! Roots. l]; Raots, ili Roots, ;g Termlas. }1 i
~ L : L)

insm {616 {lion | 603 | obdur | 770} phyl | 847 | resi 034 | sy 00 | aba: 50 '

inaqn | 617 { liqu 684 o\nﬂn 771 | pleit 843 mm!:n 7| 036 lnp(nw 01, :bi;in 51 3};\

incav { O18 | litur 686 | obeeh | 973 | pige 849 | rotog 996 | gurd 02 | abo 549 | oris

incit 619 | livid 686 | obgit | 773 | pinct | 850 | revet | 927 | sukur O3 | above 63 | oscnm

incox {690 | loo 87 abﬁ; 774 | pipil | 851 | rovin | 983 | mymm Of | abunt | 54 | escit

incub | 081 m 698 | ob 776 | plae | 858 | rein | 999 | tabal 05 | nein 55 | escor

indag | 629 | €99 | obiot 776 | plank | 853 | rigi:l 800 | tacit 06 | acium 50 | esma

indio | 693 |'lucid | 700 | oby 777 |plond {854 frim. |981|tamin | 07 | wlam BT | atur

e |638 [lemin | 708 | by |Too | e |Gae |, |3l | @ik | B e

b in v plum 5 hor tax 02 | amen 592 | iby
el i A AR o B e R > Struciur e
roaty 4 ndi i issi
Rt R R N R o T —
ol ral i
ER e EAE A AR A el B Ed Bl 71 Structure Alarm —Float
ymp! myx mf - 9 | tepi 16 ¢ 66 -Di

infut 632 | macer | 709 | obn 786 | pod | B3 | runo 940 uq’::r 16 ::::1‘1 ag imm 72 Structure Alarm Discrete

ingel | 633 | macal | 710 | obnot [787 | pme [864 | ruap | 941 therm | 17 | matin | 67 | ilioc 73 Structure Event-Update

Inhal 634 | madid | 711 | obong | 788 | proa B65 | paliv o2 I 18 | prent a8 | il

inhum | 635 | magm | 712 | oboce | THO | press | 866 mazn | 940 | tinid B 19 | nrove G0 | inia 74 Structure Alal’m*summary

;: : SHEIRER Cypher Code (1908) LU inosn 75 Structure Alert-Analo

innat Latin Conbination Telegrash Code of 10,000 Gypher Words e - 9

inneg SHBE ERoot L TerninationO A HYEO [55VE] LERTS isum 76 Structure Alert-Discrete

Lo Hain 77 Structure Alert-Update
78 Structure Trend-Float
79 Structure Trend-Discrete
80 Structure Trend-BitString
81 Structure FB Link
82 Structure Simulate-Float
83 Structure Simulate-Discrete
84 Structure Simulate-BitString
85 Structure Test
86 Structure Action-Instantiate/Delete

CMPT365 Multimedia Systems 41

LZW Algorithm

BEGIN

s = next input character;
while not EOF

{

c = next input character;

if s + ¢ exists in the dictionary
s = s + c;
else

{

output the code for s;

add string s + ¢ to the dictionary with a new code;

s = c;
}
}

output the code for s;
END

CMPT365 Multimedia Systems

42

Example

7 LZW compression for string "ABABBABCABABBA™

3 Start with a very simple dictionary (also referred to as a "string
table"), initially containing only 3 characters, with codes as
follows:

code string
1 A
2 B
C

3 Input stringis "ABABBABCABABBA"

CMPT365 Multimedia Systems 43

S c output code string

BEGIN

1 A
s = next input character; 5 B
while not EOF 3 C
e
c = next input character; A B 1 4 AB
B A 2 5 BA
if s + ¢ exists 1n the dictionary A B
s = s + c; AB B 1 6 ABB
else B A
{ BA B 5 7 BAB
output the code for s; B C 2 8 BC
add string s + ¢ to the C A 3 9 CA
dictionary with a new code; A B
s = ¢; AB A 4 10 ABA
) A B
} AB B
fout th de £) ABB A 6 11 ABBA
outpu e code for s; A EOF 1

END

7 Input ABABBABCABABBA

7 Output codes: 12452 346 1. Instead of sending 14 characters, only 9

codes need to be sent (compression ratio = 14/9 = 1.56).
CMPT365 Multimedia Systems 44

LZW Decompression (simple version)

BEGIN
s = NIL;
while not EOF
{

k = next input code;

entry = dictionary entry for k;
output entry;
if (s != NIL)

{add string s + entry[0] to dictionary with a new code;}

s = entry;
}
END

JExample 7.3: LZW decompression for string "ABABBABCABABBA".
IInput codes to the decoderare12452346 1.
IThe initial string table is identical to what is used by the encoder.

CMPT365 Multimedia Systems 45

 The LZW decompression algorithm then works as follows:

* Input: 124523461

S K Entry/output Code String

BEGIN
s = NIL; 1 A
while not EOF 2 B

{

k = next input code; 3 C
ontry for kg oY NIL 1 A

output entry; A yi B 4 AB

1 £ != NIL)

’ adsd string s + B 4 AB 5 BA
entry[0] to dictionary AB 5 BA 6 ABB
with a new code; BA 2 B 7 BAB
, ST ey B 3 C 8 BC

END C 4 AB 9 CA
AB 6 ABB 10 ABA
ABB 1 A 11 ABBA

A EOF

3 Apparently, the output string is *

ABABBABCABABBA", a truly lossless result!

CMPT365 Multimedia Systems 46

AB
ABB
ABBA

Exceptions

C

NP W W OW W W W

output

10

7 Input ABABBABCABBABBAX....
7 Output codes: 12452 3610

code

0

10

11

ABB

BAB
BC
CA

ABBA

ABBAX

CMPT365 Multimedia Systems 47

7 Input ABABBABCABBABBAX....
7 Output codes: 124523610

S k entry/output code string
1 A
2 B
3 C
NIL 1 A
A 2 B 4 AB
B 4 AB 5 BA
AB 5 BA 6 ABB
BA 2 B 7 BAB
B 3 C 8 BC
C 6 ABB 9 CA
AEBB 10 27?77

7 Code 10 was most recently created at the encoder side, formed by a
concatenation of Character, String, Character.

7 Whenever the sequence of symbols to be coded is Character, String,
Character, String, Character, and so on

I the encoder will create a new code to represent Character + String +

Character and use it right away, before the decoder has had a chance to
create it! CMPT365 Multimedia Systems 48

= c output code string

1 A
2 B
3 C
_________________________________ z kK entry/output code string
A B 1 4 AB T T m oo s—— s
B A 2 3 BA 1 A
A B 2 B
AB B 4 4 ABB 3 C
B A eeeeeeeecccccccececc e e e ———————
BA B 5 7 BAB NIL 1 A
B C 2 8 BC A 2 B 4 AR
C A 3 9 CA B 4 AB 5 BA
A B AB 5 BA £ ABB
AB D BA 2 B 7 BAB
ABB A 6 10 ABBA B 3 o 8 BC
A‘;‘ : C 6 ABB 3 CA
ABB 10 277?
ABB A
ABBA X 10 11 ABBAX

7 Code 10 was most recently created at the encoder side, formed by a
concatenation of Character, String, Character.

7 Whenever the sequence of symbols to be coded is Character, String,
Character, String, Character, and so on

I the encoder will create a new code to represent Character + String +

Character and use it right away, before the decoder has had a chance to
create it! CMPT365 Multimedia Systems 49

LZW Decompression (modified) o

BEGIN 1 A
s = NIL; § 2
while not EOF e
{ NIL 1 A

. A 2 B 4 AB

k = next 1nput code; B 4 AB 5 BA

entry = dictionary entry for k; 2B 5 BA 6 ABB

BA 2 B 7 BAB

B 3 C 8 BC

/* exception handler */ C : ABB 9 ca
if (entry == NULL) AEE 10 772

entry = s + s[0];

output entry;

if (s != NIL)

add string s +entry[0] to dictionary with a new
code;

s = entry;

END

CMPT365 Multimedia Systems 50

LZW Coding (Cont'd)

- Inreal applications, the code length / is kept in the

- When!

.). The dictionary initially has a size of
20, When it is filled up, the code length will be
increased by 1; this is allowed to repeat until /= 1,,.

range of [/,,

1 1S reached and the dictionary is filled up, it
needs to be flushed (as in Unix compress, or to have
the LRU (least recently used) entries removed.

CMPT365 Multimedia Systems 51

Outline

3 Why compression ?
3 Entropy
7 Variable Length Coding

O Shannon-Fano Coding
O Huffman Coding

O LZW Coding

O Arithmetic Coding

CMPT365 Multimedia Systems 52

Recall: Limitations of Huffman Code
3 Need a probability distribution

7 Hard to adapt to changing statistics

7 Minimum codeword length is 1 bit
O Serious penalty for high-probability symbols

O Example: Binary source, P(0)=0.9
- Entropy: -0.9%l0g2(0.9)-0.1*log2(0.1) = 0.469 bit
- Huffman code: 0, 1 = Avg. code length: 1 bit
+ Joint coding is not practical for large alphabet.

7 Arithmetic coding:
O Can resolve all of these problems.

O Code a sequence of symbols without having to generate codes for all
sequences of that length.

CMPT365 Multimedia Systems 53

Basic Idea

7 Recall table look-up decoding of Huffman code
O N: alphabet size

O L: Max codeword length K

O Divide [0, 2"L]into Nintervals a0 ./ \0
5 :

O

One interval for one symbol

Interval size is roughly J 0010 0110 kS O O

proportional to symbol prob. | Loy

[1 1
000 010 011 100

I Arithmetic coding applies this idea recursively
O Normalizes the range [0, 27L] to [O, 1].
O Map a sequence 1o a unique tag in [0, 1).

~
abcd...”. \
I 1
I I
dcba..... — 0 m/ 1
365 Multimedia Systems 54

0 1
Arithmetic Coding | H—

3 Disjoint and complete partition of the range [0, 1)
[0, 0.8),[0.8,0.82),[0.82,1)

3 Each interval corresponds to one symbol

3 Interval size is proportional fo symbol probability

3 The first symbol restricts the tag
position to be in one of the intervals

7 The reduced interval is partitioned
recursively as more symbols are
processed.

o 1
3 Observation: once the tag falls into an interval, it never gets out
of it

CMPT365 Multimedia Systems 55

Some Questions to think about:

3 Why compression is achieved this way?
7 How to implement it efficiently?

7 How to decode the sequence?

3 Why is it better than Huffman code?

CMPT365 Multimedia Systems 56

Example:

1 2 3
SYIT\bOl Prob. | 1] I

| 1 |
1 0.8

0 08 082 1.0
2 0.02 3 Map to real line range [0, 1)
3 0.18 3 Order does not matter

O Decoder need to use the same order

73 Disjoint but complete partition:

o 1: [0, 0.8): 0, 0.799999...9
o 2:[0.8, 0.82): 0.8, 0.819999...9
o 3:[0.82, 1) 0.82,0.999999...9

O (Think about the impact to integer
implementation)

CMPT365 Multimedia Systems 57

E“COd'ng 3 Input sequence: “1321”

1 2 3
Range 1 ! } :
0 0.8 0:82 1.0
v 1 2 3 4
Range 08 f———————————————————————= g E—
O ------------------------ 064 0656 c§)8
e 1 2 3 v
Range 0.144 -
0656 e @:7712 0.77408 0.8
....................... 1 2 3
Range 0.00288 — }
0.7712 0.773504 0.7735616 0.77408

Final range: [0.7712, 0.773504): Encode 0.7712

Difficulties: 1. Shrinking of interval requires high precision for long sequence.

2. No output is generated until the entire sequence has been processed.
CMPT365 Multimedia Systems 58

Encoder Pseudo Code

7 Keep track of LOW,
HIGH, RANGE

O Any two are sufficient,
e.g., LOW and RANGE.

BEGIN

low = 0.0; high = 1.0; range = 1.0;
while (symbol != terminator)

{

get (symbol);
low = low + range * Range_ low(symbol);
high = low + range *

Range_ high(symbol);

range = high - low;
}

output a code so that low <= code < high;
END

Initial | 1.0 0.0 1.0
1 0.0+1.0*0.8=0.8 0.0+1.0*0=0.0 0.8
3 0.0 +0.8*1=0.8 0.0 + 0.8*0.82=0.656 0.144
2 0.656+0.144*0.82=0.77408 0.656+0.144*0.8=0.7712 0.00288
1 0.7712+0.00288*0.8=0.773504 0.7712+0.00288*0=0.7712 0.002304
CMRT365 Multinedia Susteme 5Ol

Generating Codeword for Encoder

BEGIN
code = 0;
k = 1;
while (value(code) < low)
{

assign 1 to the kth binary fraction bit
if (value(code) >= high)

replace the kth bit by 0
k =k + 1;

END

*The final step in Arithmetic encoding calls for the generation of a
number that falls within the range [low, high). The above algorithm will

ensure that the shortest binary codeword is found.

CMPT365 Multimedia Systems 60

Decoding Receive 0.7712
1 —\2| -

Decode 1 H |
0 0.8 0:82 1.0
i 1 2 3 |
Decode3 f————————————————= g E—
O ------------------------ 064 0656 c:)8
‘ lllllllllllllllllll 1 ﬂ 3 v
Decode 2 h[
0656 e @7712 0.77408 0.8
[1 o
Decode 1 — }
0.7712 0.773504 0.7735616 0.77408

Drawback: need to recalculate all thresholds each time.

CMPT365 Multimedia Systems 61

Simplified Decoding

. . x—low
7 Normalize RANGE to [0, 1) each time X <€
7 No need to recalculate the thresholds. range
Receive 0.7712 7 2 3
Decode 1 X
| A
x =(0.7712-0) / 0.8i0 08 082 1.0
= 0.964 —
Decode 3 1 1 AT
e R
O ------------------ 08 082 1 éo
x =(0.964-0.82) / 0.18 —————ormss
=0.8 e : Y 5
Decode 2 | hl I
I ------ . I
x=(0.8-0.8)/0.029 e 6B G2 1.0
S0 m——— T .

Decode 1 \ ’.."‘
---------- 1 2 3 £y

0 08 082 1.0

CMPT365 Multimedia Systems 62

Decoder Pseudo Code

BEGIN
get binary code and convert to
decimal value = value(code);
DO
{
find a symbol s so that
Range low(s) <= value < Range high(s);
output s;
low = Rang _low(s);
high = Range high(s);
range = high - low;
value = [value - low] / range;
}
UNTIL symbol s is a terminator

END
CMPT365 Multimedia Systems 63

Scaling and Incremental Coding

7 Problems of Previous examples:
O Need high precision
O No output is generated until the entire sequence is encoded

7 Key Observation:
O As the RANGE reduces, many MSB’s of LOW and HIGH become identical:
- Example: Binary form of 0.7712 and 0.773504:
0.1100010.., 0.1100011..,

O We can output identical MSB’s and re-scale the rest:
+ = Incremental encoding

O This also allows us to achieve infinite precision with finite-precision integers.

CMPT365 Multimedia Systems 64

El and E2 Scaling

7 ELl: [LOW HIGH) in [0, 0.5) 0 0.5 1.0
O LOW: 0.0xxxxxxx (binary), | |
0 HIGH: 0.0xxxxxxXx. I |

| |
: : 0 . 1.0
3 Output O, then shift left by 1 bit ! \

5 [0,05)>[0,1): FEi(x)= 2 x

7 E2: [LOW HIGH) in[0.5,1)
O LOW: 0.IxxxxxxXx,
O HIGH: 0.1xxxxxxX.

I
| I
3 Output 1, subtract 0.5, M.S / 1.0

shift left by 1 bit |_—
o [0.5,1)>[0, 1)

E2(x) = 2(x - 0.5)

CMPT365 Multimedia Systems 65

Input 1

Encoding with E1 and E2 e

. | 2 | 002

v0 08 1 .0 3 0.18

- 0656 108 Eo output 1

2(x—0.9)

312 0.5424 0.54846 0.6 E2: Output 1
'0.0848 0.09632‘} E1: 2x, Output 0
0.1696 019264} E1: Output O

10.3392 0.38528 | E1: Output O
0.6784 ,0.77056 | E2: Output 1

~~I Encode any value

0358 e Q...54112 in the tag, e.g., 0.5

| -] Output 1
0.3568 0.504256 All outputs: 1100011

CMPT365 Multimedia Systems 66

To verify

7 LOW =0.5424 (0.10001010... in binary),
HIGH = 0.54816 (0.10001100... in binary).

7 So we can send out 10001 (0.53125)
O Equivalent to E22>E1>E1>E1I>E2

7 After left shift by 5 bits:
O LOW = (0.5424 - 0.53125) x 32 = 0.3568
O HIGH = (0.54816 — 0.53125) x 32 = 0.54112
O Same as the result in the last page.

CMPT365 Multimedia Systems 67

7 Note: Complete all possible scaling before Symbol | Prob.
encoding the next symbol 1 0.8

2 0.02

3 0.18

Comparison with Huffman

7 Input Symbol 1 does not cause any output
3 Input Symbol 3 generates 1 bit
3 Input Symbol 2 generates 5 bits

3 Symbols with larger probabilities generates less number of bits.
O Sometimes no bit is generated at all
- Advantage over Huffman coding
7 Large probabilities are desired in arithmetic coding
O Can use context-adaptive method to create larger probability
and to improve compression ratio.

CMPT365 Multimedia Systems 68

