CMPT 365 Multimedia Systems

Introduction

Xiaochuan Chen Spring 2017

Edited from slides by Dr. Jiangchuan Liu

CMPT365 Multimedia Systems 1

Outline

- Course information
- What is multimedia? A brief introduction
- Popular multimedia tools
- Summary

Course Information

Instructor:

- Xiaochuan CHEN
 School of Computing Science
 Office: TASC I 8002
- E-mail: xca64@sfu.ca
- Office Hours: Wed 10:45-11:45am
- E-mail is the best way to communicate with me
 - or send me email for special appointment

TA 🗖

- O Saeedeh Afshari (safshari@sfu.ca)
- Office Hours: TBA

Course Information

□ Time & Venue

○ M/W/F 2:30PM - 3:20PM AQ 3149

Multimedia is cool

- O Media -> Multimedia
- Everywhere
- Requires broad knowledge in mathematics, signal processing, communications, networking, software, hardware,

Job opportunities

- Multimedia is a booming industry
 - in the metro Vancouver area
- Tons of opportunities created by next-generation standards and emerging applications:
 - JPEG/JPEG 2000
 - MPEG-1/2/4 H.264/265/HEVC 4K UHD 3D/freeview
 - 3G/4G/5G mobile communications
 - Multimedia-enabled smartphone, tablets
 - Social media, Cloud media, Crowd media
 - Online gaming

- Old: NTT DoCoMo 3G Mobile Phone:
 - o launch in 2001
 - 99% coverage in Japan as of March 2004
 - Up to 384 kbps video downloading
 - 40 times faster than 2G network (comparable to ADSL)
- New: 4G LTE Mobile Phone:
 - 100 Mbps for high mobility communication
 - 1 Gbps for low mobility communication
 - allow 3D virtual reality and interactive video / hologram images
 - Commercial service since in 2010
 - o 97% of the population in Canada now

Killer Internet Applications

Web2.0/Media streaming (Internet TV)

- o YouTube, Netflix
- HD/UHD video ?
- 3D video ?
- E-commerce
 - Ebay, Amazon, Craigslist, Groupon
- Online game
 - PS3, XBOX 360, Wii

□ ...

Social networking (2004-)

Facebook, Twitter, WhatsApp ...

- Mobile Internet
 - o iPads, tablets ...
 - End of PC? ...

<u>Multimedia Companies</u>

- Microsoft
- Intel
- AMD
- Adobe
- RealNetworks
- Apple
- □ Google
- Facebook
- Twitter
- Nokia
- NEC
- Sony
- □ Sharp
- Philips
- Panasonic
- JouTube
- Netflix

...

What are the objectives of this course?

Understand what's behind the interface

- Behind VCD, DVD, BluRay, HDTV, mp3, flac, raw, jpeg? ...
 3D, 4K TV ?
- Process multimedia data by yourself (programming projects)

- Have fun!
 - What a life without multimedia ?!
 - A PC with black-white monitor only ...

Apricot Generic MS-DOS 2.11 RAM BIOS Version R1.6, 19/06/05
Microsoft MS-DOS version 2.11 Copyright 1981,82,83 Microsoft Corp.
Command v. 2.11sc
a) A)dir *.com
Volume in drive A is 3F1F2U05P Directory of A:\
COMMAND COM 16453 1-22-85 2:37p ASYNC COM 2560 3-18-85 8:43a CHKDSK COM 6784 1-14-85 12:32p MORE COM 44800 2-16-84 2:24p 4 File(s) 204800 bytes free
a>

More details

To understand the methods for multimedia representation and compression

- Representation (audio/video)
- Digitization
- Quantization
- Compression (audio/video)
- Transform
- Entropy Coding
- Coding Standards
- Communication*

□ To help you survive a job interview in multimedia

- Programming assignments
- C, C++, Java, Python, Matlab could be involved

Books and References

Textbook

- Fundamentals of Multimedia, 2nd Edition, by Z.-N. Li, M.S. Drew, and J. Liu, Springer 2014.
- Others
 - A reference book on C/C++/Java
- Resource
 - Home page
 - www.sfu.ca/~xca64/cmpt365
 - Pls check your email

What Do You Need To Do?

□ Your prerequisites

- Data structure, algorithms
- Math (calculus, linear algebra, probability)
- programming: C/C++, Java
- basic concepts of operating systems/GUI

Your workload

- Homework assignments
 - 2 assignments [written and coding]
 - 1 final programming project
- One in-class midterm exams, and one final exam

Grading (tentative)

Assignment x 2	20%
Programming work	28%
In-class midterm	20%
Final exam	32%

- Class participation
- More important is what you learn than the grades

What Do You Need To Do?

□ Your prerequisites

- Data structure, algorithms
- Math (calculus, linear algebra, probability...)
- Programming: C/C++, Java
- Basic concepts of operating systems/GUI

Remember: It's a computer science course

Hard math example (1)

Suppose:

- a data source generates output sequence from a set $\{A_1, A_2, \dots, A_N\}$
- P(Ai): (Independent) probability of Ai

□ First-Order Entropy:

• the average self-information of the data set

$$H = \sum_{i} -P(A_i)\log_2 P(A_i)$$

The first-order entropy represents the minimal number of bits needed to losslessly represent one output of the source.

Hard math example (2)

- Quantization error: $e(x) = x \hat{x}$
- Mean Squared Error (MSE) for Quantization
 - Average quantization error of all input values
 - Need to know the probability distribution of the input
- Number of bins: M
- Decision boundaries: b_i , i = 0, ..., M
- Reconstruction Levels: y_i , i = 1, ..., M
- **Reconstruction:**

$$\hat{x} = y_i \quad \text{iff } b_{i-1} < x \le b_i$$

$$MSE_q = \int_{-\infty}^{\infty} (x - \hat{x})^2 f(x) dx = \sum_{i=1}^{M} \int_{b_{i-1}}^{b_i} (x - y_i)^2 f(x) dx$$

- Same as the variance of e(x) if $\mu = E\{e(x)\} = 0$ (zero mean).
- O Definition of Variance:

$$\sigma_e^2 = \int_{-\infty}^{\infty} (e - \mu_e)^2 f(e) de$$

Hard math example (3)

$$\square MSE \qquad MSE_{q} = \int_{-\infty}^{\infty} (x - \hat{x})^{2} f(x) dx = \sum_{i=1}^{M} \int_{b_{i-1}}^{b_{i}} (x - y_{i})^{2} f(x) dx$$
$$= M \frac{1}{2X_{\max}} \int_{0}^{\Delta} \left(x - \frac{\Delta}{2} \right)^{2} dx = \frac{M}{2X_{\max}} \frac{1}{12} \Delta^{3} = \frac{1}{12} \Delta^{2}$$

 \Box M increases, Δ decreases, MSE decreases

□ Variance of a random variable uniformly distributed in [- $\Delta/2$, $\Delta/2$]: $\sigma_q^2 = \int_{-\Delta/2}^{\Delta/2} (x-0)^2 \frac{1}{\Delta} dx = \frac{1}{12} \Delta^2$

Optimization: Find M such that MSE < D</p>

$$\frac{1}{12}\Delta^2 \le D \implies \frac{1}{12} \left(\frac{2X_{\max}}{M}\right)^2 \le D \implies M \ge X_{\max} \sqrt{\frac{1}{3D}}$$

CMPT365 Multimedia Systems 17

Hard math example (4) $C_{i,j} = a \cos\left(\frac{(2j+1)i\pi}{2N}\right), \quad i, j = 0, ..., N-1.$

Definition:

n:

$$a = \sqrt{1/N}$$
 for i = 0,
 $a = \sqrt{2/N}$ for i = 1, ..., N-1.

N = 2 (Haar Transform): $C_2 = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$

$$\begin{bmatrix} y_0 \\ y_1 \end{bmatrix} = \mathbf{C}_2 \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} x_0 + x_1 \\ x_1 - x_1 \end{bmatrix}$$

 \Box y₀ captures the mean of x₀ and x₁ (low-pass)

>
$$x_0 = x_1 = 1$$
 → $y_0 = sqrt(2)$ (DC), $y_1 = 0$

- □ y1 captures the difference of x0 and x1 (high-pass)
 - $x_0 = 1$, $x_1 = -1 \rightarrow y_0 = 0$ (DC), $y_1 = sqrt(2)$.

Hard math example (5)

Forward transform y = Tx (x is N x 1 vector)

- \bigcirc Let t_i be the i-th row of T
- → $y_i = t_i \times = \langle t_i^T, \times \rangle$ (Inner product)
- \circ y_i measures the similarity between x and t_i
- \bigcirc Higher similarity \rightarrow larger transform coefficient

Inverse transform:

$$\mathbf{x} = \mathbf{T}^T \mathbf{y} = \begin{bmatrix} \mathbf{t}_0^T & \mathbf{t}_1^T & \dots & \mathbf{t}_{N-1}^T \end{bmatrix} \mathbf{y} = \sum_{i=0}^{N-1} \mathbf{t}_i^T y_i$$

x is the weighted combination of t_i.
 O Rows of T are called basis vectors.

What Do You Need To Do?

□ Your prerequisites

• Math (calculus, linear algebra, probability...)

- Never heard of them? -- you'd better drop the course
- Forget ? -- you'd better drop unless you're confident you can pick them up

Hard programming example

Interfaces

• Read data byte-by-byte from an input file

- E.g., read en.wikipedia.org/wiki/BMP_file_format
- Write a program to read a BMP file
- Output an image to screen pixel by pixel

Algorithms

Do this as fast as possible !

What Do You Need To Do?

□ Your prerequisites

- Data structure, algorithms
- Programming: C/C++, Java
- Basic concepts of operating systems/GUI

Can't do them by yourself?

- Better drop this course
- project is NOT group-based!

(The course is NOT about *using* YouTube, Photoshop; rather, it's about *write your own* YouTube, Photoshop ...)

Questions?

Outline

- Course information
- What is multimedia? A brief introduction
 - O Concepts
 - Representation
 - Compression
 - Communication
- Popular multimedia tools
- **J** Summary

<u>What is "media" ?</u>

Information represented in different formats/media

Analog vs Digital

- analog format: the time-varying feature (variable) of the signal is a continuous representation of the input, i.e., analogous to the input audio, image, or video signal
- Physical world is analog !

Hyper Text, Hypermedia

- A hypertext system: meant to be read nonlinearly, by following links that point to other parts of the document, or to other documents
- HTLM/XML

Normal Text

Hypertext

Nonlinear

"Cranky

Hyper Text, Hypermedia

A hypertext system: meant to be read nonlinearly, by following links that point to other parts of the document, or to other documents

Linear

Nonlinear

Hypertext

- HyperMedia: not constrained to be text-based, can include other media, e.g., graphics, images, and especially the con tinuous media | sound and video.
 - World Wide Web (WWW) --- the best example

Multimedia System

- Multimedia: information represented through audio, graphics, images, video, and animation in an integrated and interactive manner (as contrast to traditional single-modality media, i.e., text and graphics drawing).
- Multimedia system: the generation, manipulation, storage, presentation, and communication of multimedia information

Digital Media

Multimedia digitized

- Captured, stored, transmitted, processing in digital (discrete) domain
- By general purpose computers or dedicated embedded computers
 - Today's digital cameras' have a number of CPUs inside, many of which are more powerful than a PC of 1990's or even 2000's.
- What do you mean by digitized?
 Why digitized?

(Digital/Computer) Multimedia Systems

Using computers to present and process multimedia information, in an integrated and interactive manner

Examples of Multimedia Systems:

- Digital camera/camcord
- O World Wide Web
- Video conferencing
- Video-on-demand
- O Interactive TV
- Online games
- O Virtual reality
- Digital video editing and production systems
- O Multimedia Database systems
- o Social media

Different Views

Different views from different people

- A PC vendor: a PC that has sound capability, a DVD/BluRay drive, and perhaps the superiority of multimedia-enabled CPU/GPU (Graphical Processing Unit) that understand additional multimedia instructions.
- A consumer entertainment vendor: interactive cable TV with hundreds of digital channels available, or a cable TV-like service delivered over a high-speed Internet/wireless connection.
- A Computer Science (CS) student: applications that use multiple modalities, including text, images, drawings (graphics), animation, video, sound including speech; integration and interactivity.
- Multimedia and Computer Science:
 - Data representation compression
 - Graphics, visualization, computer vision
 - Networking, database systems

<u>Multimedia Research Topics and Projects</u>

- To the computer science researcher, multimedia consists of a wide variety of topics:
 - 1. **Multimedia processing and coding**: multimedia content analysis, content-based multimedia retrieval, multimedia security, audio/image/video processing, compression, etc.
 - 2. Multimedia system support and networking: network protocols, Internet, operating systems, servers and clients, quality of service (QoS), and databases.
 - 3. Multimedia tools, end-systems and applications: hypermedia systems, user interfaces, authoring systems.
 - 4. **Multi-modal interaction and integration**: web-everywhere devices, multimedia education including Computer Supported Collaborative Learning, and design and applications of virtual environments.

5...

History of Multimedia

- 1. Newspaper: perhaps the *first* mass communication medium, uses text, graphics, and images.
- 2. Motion pictures: conceived of in the 1830's in order to observe motion too rapid for perception by the human eye.
- 3. Wireless radio transmission: Gugliemo Marconi, at Pontecchio, Italy, in 1895.
- 4. **Television**: the new medium for the 20th century, established video as a commonly available medium and has since changed the world of mass communications.
- The connection between computers and ideas about multimedia covers what is actually only a short period: 1945
 Vannevar Bush wrote a landmark article describing what amounts to a hypermedia system called Memex.

History of Multimedia cont'd

- 1960 Ted Nelson coined the term hypertext.
- 1967 Nicholas Negroponte formed the Architecture Machine Group.
- 1968 Douglas Engelbart demonstrated the **On-Line System** (NLS), another very early hypertext program.
- 1969 Nelson and van Dam at Brown University created an early hypertext editor called **FRESS**.
- 1976 The MIT Architecture Machine Group proposed a project entitled **Multiple Media** | resulted in the Aspen Movie Map, the first hypermedia videodisk, in 1978.
- 1985 Negroponte and Wiesner co-founded the MIT Media Lab.
- 1989 Tim Berners-Lee proposed the World Wide Web
- 1990 Kristina Hooper Woolsey headed the Apple Multimedia Lab.
- 1991 MPEG-1 was approved as an international standard for digital video | led to the newer standards, MPEG-2, MPEG-4, and further MPEGs in the 1990s.
- 1991 The introduction of **PDAs** in 1991 began a new period in the use of computers in multimedia.
- 1992 **JPEG** was accepted as the international standard for digital image compression | led to the new JPEG2000 standard.

History of Multimedia cont'd

- 1992 The first **MBone** audio multicast on the Net was made.
- 1993 The University of Illinois National Center for
 Supercomputing Applications produced NCSA Mosaic
 -the first full fledged browser.
- 1994 Jim Clark and Marc Andreessen created the Netscape
- 1995 The **JAVA** language was created for platformindependent application development.
- 1996 **DVD video** was introduced; high quality full-length movies were distributed on a single disk.
- 1998 XML 1.0 was announced as a W3C Recommendation.
- 1998 Hand-held MP3 devices first made inroads into consumerist tastes in the fall of 1998, with the introduction of devices holding 32MB of flash memory.
- 2000 WWW size was estimated at over 1 billion pages.

In the New Millennium

- Jear 2000-, your time ...
- Image/Audio
 - Huge/cheap flash memory
 - No worry anymore ?
 - 4K UHD 48 Gbps uncompressed
In the New Millennium

- 2001 The first peer-to-peer file sharing system, Napster, was shut down by court order. First commercial 3G wireless network.
- 2003 Skype: free peer-to-peer voice over the Internet.
- 2004 Web 2.0 promotes user collaboration and interaction. Examples include social networking, blogs, wikis.

Facebook founded.

Flickr founded.

- 2005 YouTube created.
 Google launched online maps
- 2006 Twitter created: 500 million users in 2012, 340 million tweets/day. Amazon launched its cloud computing platform.

Nintendo introduced the Wii home video game console -- can detect movement in three dimensions.

• 2007 Apple launched iPhone, running the iOS mobile operating system. . Goolge launched Android mobile operating system.

In the New Millennium

•2009 The first LTE (Long Term Evolution) network was set, an important step toward 4G wireless networking.

James Cameron's film, Avatar, a surge on the interest in 3D video.

• 2010 Netflix migrated its infrastructure to the Amazon's cloud computing platform.

Microsoft introduced Kinect, a horizontal bar with full-body 3D motion capture, facial recognition and voice recognition capabilities, for its game console Xbox 360.

- 2012 HTML5 subsumes the previous version, HTML4. Able to run on low powered devices such as smartphones and tablets.
- 2013 Twitter offered Vine, a mobile app that enables its users to create and post short video clips.

Sony released its PlayStation 4 a video game console, which is to be integrated with Gaikai, a cloud-based gaming service that offers streaming video game content.

4K resolution TV started to be available in the consumer market.

Outline

- Course information
- What is multimedia? A brief introduction
 - Concepts
 - Representation
 - Compression
 - Communication
- Popular multimedia tools
- **J** Summary

Audio Digitization (PCM)

Representation ? > Digitization for computers

Digital Media

- □ What do you mean by **digitized**?
 - Audio/visual signals from the natural world is Analog
 - Continuous in time and space
 - Conventional storage/playback: LP (audio record), tape, CRT TV (old TV), film
 - Can't be handled by computer
 - A/D conversion
 - to 1/0 discrete signals
- □ Why digitized ?
 - Bulky storage (space, cost, lifetime)
 - Poor quality
 - O Poor/no compression
 - Poor portability/mobility/editibility
 MP3 player, iPod, YouTube ? No way
 Film -> Polaroid -> Digital camera

Sampling Rate

Sampling theory - Nyquist theorem

Image/Video Digitization

- Digital image is a 2-D array of pixels
- Each pixel represented by bits

• R:G:B

• Y:U:V

- Y = 0.299R + 0.587G + 0.114B (Luminance or Brightness)
 U = B Y (Chrominance 1, color difference)
 V = R Y (Chrominance 2, color difference)
- Video is sequence of images (frames) displayed at constant frame rate

○ e.g. 24 images/sec

Outline

- Course information
- What is multimedia? A brief introduction
 - Concepts
 - Representation
 - Compression
 - Communication
- Popular multimedia tools
- **J** Summary

Multimedia data are too big

• "A picture is worth a thousand words ! "

File Sizes for a One-minute Audio CD Clip

Sampling Rate	Resolution	Channels	Bit-rate (bps)	File Size (Bytes)
44,100Hz	16 bits	2	1,411,200	10,584,000

File Sizes for a One-minute QCIF Video Clip

Frame Rate	Frame Size	Bits / pixel	Bit-rate (bps)	File Size (Bytes)
30 frames/sec	176 x 144 pixels	12	9,123,840	68,428,800

Data Compression

- Lossless Compression: X'=X
 - Example: Computer file compression
 - Low compression ratio
- □ Lossy Compression: X' ≠ X
 - Many applications do not require lossless compression
 - Our eyes and ears cannot identify some details
 - High compression ratio

Essential of Compression

- Remove redundant information:
 - Spatial redundancy:
 - Neighboring samples have similar values
 - Temporal redundancy:
 - Neighboring frames in a video sequence are similar

Compressed bitstream

Compression Standards

- Why standards
 - A standard allows products from multiple vendors to communicate
 - Yet, users have flexibility in selecting equipment or software
 - Assures a large market for a particular piece of equipment or software
 - encourages mass production, VLSI technologies etc
 - lower costs.
 - Patent war !
- Standard does not prevent innovation (?)
 - Only decoder is specified by the standard.
 - Encoder can still be improved.
 - MPEG-2:

Bit rate has been reduced from 8Mbps in 1994 to 2Mbps now, offering the same quality.

Standardization Bodies

- **ITU:** International Telecommunications Union
 - ITU-T: ITU Telecommunication Standardization Sector (CCITT)
- ISO: International Standards Organization
- **IEC:** International Electro-technical Commission
- **SMPTE**: Society of Motion Picture and Television Engineers
- **JPEG** (ISO/IEC Joint Photographic Experts Group)
- **JBIG** (ISO Joint Bi-level Image Experts Group)
- MPEG (ISO Motion Picture Experts Group)
- VCEG (ITU-T Video Coding Experts Group)

Image Coding Standards

- □ JPEG:1993 (JPG file format)
 - O DCT-based block transform
- **JPEG2000:** Dec. 2000
 - Wavelet-based
 - Much more complicated than JPEG
- JBIG: Joint Bi-level Image Experts Group (1993)
 - o for lossless bi-level image compression (fax)
 - can also be used for grayscale images
- **JBIG2: 1999**
 - Supports both lossless and lossy compression

Video Coding Standards

Figure 1. Progression of the ITU-T Recommendations and MPEG standards.

H.264/AVC: ITU-T H.264 / MPEG-4 (Part 10) Advanced Video Coding (AVC)

- Finalized in May 2003 (for general purpose)
- Fidelity Range Extensions (FRExt): 2003-2004 (for professional)

Video Coding Standards

H.265/HEVC (High Efficiency)

50% goal (bitrate reduction) Start from 2010

February 2012: Committee Draft (complete draft of standard)

July 2012: Draft International Standard

January 2013: Final Draft International Standard (ready to be ratified as a Standard)

April 2013: Standard released

Coding Rate and Standards

<u>Audio coding standards</u>

Range of human' hearing: 20Hz - 20kHz ➔ Minimal sampling rate: 40 kHz (Nyquist frequency)

Format	Bit Depth	Sampling Rate	Bit Rate (2 channels)
CD Audio	16 bits	44.1 kHz	1,411,200 bps
DVD Audio	24 bits	96 kHz	4,608,000 bps

- MPEG-1 audio layer 3 (MP3)

 CD quality at 10 : 1 compression ratio.

 MPEG-2 AAC (advanced audio coding):

 used by XM Radio (satellite radio in US)

 MPEG-4 AAC :

 Up to 48 channels, 96KHz

 ATSC AC-3: 1994

 Dolby Digital (5.1 channel)
 ATSC: Advanced Television Systems Committee
 For DTV, DVD
 - AAC
 - AIFF (Audio Interchange File Format

Outline

- Course information
- What is multimedia? A brief introduction
 - Concepts
 - Representation
 - Compression
 - Communication
- Popular multimedia tools
- **Summary**

<u>Multimedia communications</u>

Examples of Multimedia Communication Systems:

- O World Wide Web
- Video conferencing
- O Video-on-demand
- Interactive TV
- Online games

Fundamental Characteristics

- Typically delay sensitive
- But can tolerate occasional loss:
 - infrequent losses cause minor glitches
- Cf. data transmission: (e.g. FTP)
 - loss intolerant but delay tolerant

Challenges in Multimedia Communications

Transmission of Compressed Multimedia:

- Real-time communications
 - Delay < 0.4 sec in video conference
- Sequencing within the media
- Synchronization (e.g., between video & audio)
- Robustness to transmission error

- We will learn how to
 - Transmit multimedia over Internet and wireless network

<u>Recall: Challenges in Multimedia</u> <u>Communications</u>

- Real-time communications
 - Delay < 0.4 sec in video conference
- Sequencing within the media
- Synchronization (e.g., between video & audio)
- Robustness to transmission error

Internet

- Packet-switched network
- Network resources are shared
- Each packet is handled by a series of routers before being received
- Packets can be discarded if the buffer of a router is full
- All packets are treated the same way in congestion

Internet Protocol Stack

- □ IP: Internet Protocol
 - Best effort (unreliable)!
- **TCP:** Transmission Control Protocol
 - Provides reliable (but slow) service
- UDP: User Datagram Protocol
 - Provides unreliable (but fast) service
 - Suitable for real-time application
- RTP: Real-time Transport Protocol
 - packet format for multimedia streams
- RTCP: RTP control protocol
 - Monitor/report service quality
- RTSP: Real-time streaming protocol
 - "Internet VCR remote control"

Quality of Service (QoS) Parameters

End-to-end Delay

- time required for the end-to-end transmission of a single data element
- Jitter
 - variation in delay
- Packet loss rate
 - the proportion of data elements that are dropped
- Bandwidth: bits / second (bps)
 - rate of flow of multimedia data

QoS Control

- Algorithms to improve the QoS of Multimedia applications
 Policing
 - Control the input rate to network (leak bucket model)

Scheduling

- Divide buffers into logic queue
- Decide which queue to service next

Error Resilience

Improve the decoded quality in the presence of lost data

- often occurs in wireless networks (and also Internet)
- Add redundancy at encoder:
 - Error correction code
 - Layered coding
 - Multiple description coding
- Post-processing at decoder to hide the error
 - Error concealment

Outline

- Course information
- What is multimedia? A brief introduction
 - Concepts
 - Representation
 - Compression
 - Communication
- Popular multimedia tools
- **J** Summary

Popular Multimedia Software Tools

- The categories of software tools briefly examined here are:
 - 1. Music Sequencing and Notation
 - 2. Digital Audio
 - 3. Graphics and Image Editing
 - 4. Video Editing
 - 5. Animation
 - 6. Multimedia Authoring

- Digital Audio tools deal with accessing and editing the actual sampled sounds that make up audio:
- Cakewalk Pro Audio/Adobe Audition (formerly Cool Edit Pro)
 - Powerful and popular digital audio toolkits; emulates a professional audio studio --- multitrack productions and sound editing including digital signal processing effects.

Pro Tools

- A high-end integrated audio production and editing environment | MIDI creation and manipulation powerful audio mixing, recording, and editing software.
- **Anvil Studio**: free, for MIDI

Graphics and Image/Photo Editing

Adobe Illustrator

- A powerful publishing tool from Adobe.
- Uses vector graphics; graphics can be exported to Web.

Adobe Photoshop

- "Standard" image processing and manipulation tool.
- Allows layers of images, graphics, and text that can be separately manipulated for maximum flexibility.
- GIMP: GNU Image Manipulation Program (free)

Non Linear Video Editing

Adobe Premiere

- An intuitive, simple video editing tool for nonlinear editing, i.e., putting video clips into any order: Video and audio are arranged in \tracks".
- Provides a large number of video and audio tracks, superimpositions and virtual clips.
- A large library of built-in transitions, filters and motions for clips) effective multimedia productions with little effort.
- Adobe After Effects
- Final Cut Pro
 - A video editing tool by Apple; Mac only.

Power Director

• popular and cheaper

Rendering and Animation

Autodesk 3ds Max

 Rendering tool that includes a number of very high-end professional tools for character animation, game development, and visual effects production.

Autodesk Maya

 End-to-end creative workflow with comprehensive tools for animation, modeling, simulation, visual effects, rendering, match moving, and compositing on a highly extensible production platform.

Multimedia Authoring

Adobe Flash

 Allows users to create interactive movies by using the score metaphor, i.e., a timeline arranged in parallel event sequences.

Adobe Director

- Uses a movie metaphor to create interactive presentations
- Very powerful and includes a built-in scripting language, Lingo, that allows creation of complex interactive movies
- Authorware (used to be popular; but discontinued from 2003)
 - A mature, well-supported authoring product based on the **Iconic/Flow-control** metaphor

<u>Multimedia API</u>

DirectX

 Windows API that supports video, images, audio and 3-D animation

OpenGL

• A highly portable, most popular 3-D API in use today.

🗆 Java3D

- API used by Java to construct and render 3D graphics, similar to the way in which the Java Media Framework is used for handling media files.
- An abstraction layer built on top of OpenGL or DirectX (the user can select which).
- Provides a basic set of object primitives (cube, splines, etc.) for building scenes.
- Android multimedia API/iOS multimedia API

Behind the Tools ...

- Is this course about the use of these tools ?
 No!
- What will we learn ?
 - We will learn what's behind the tools
 - That is, how to design these tools
 - (using them is then trivial)
- Computer Science vs. Computer Applications vs. Art

Grand Challenge Problems

- Social Event Detection for Social Multimedia: discovering social events planned and attended by people.
- Search and Hyperlinking of Television Content: finding relevant video segments for a particular subject and generating useful hyperlinks for each of these segments.
- Geo-coordinate Prediction for Social Multimedia: estimating the GPS coordinates of images and videos.
- Violent Scenes Detection in Film: automatic detecting.
- Preserving Privacy in Surveillance Videos: methods obscuring private information (such as faces on Google Earth).
- Spoken Term Web Search: searching for audio content within audio content by using an audio query.
- Question Answering for the Spoken Web: a variant on the above, specifically for matching spoken questions with a collection of spoken answers.
- Soundtrack Selection for Commercials: choosing the most suitable music soundtrack from a list of candidates.

Summary

Topics to be covered:

- Media representation
 - Audio/Image/Video
- Media Compression:
 - Digital media signals
 - Entropy coding: Huffman, arithmetic, etc.
 - Quantization
 - Transform: KLT, DCT, Wavelet*
 - Coding standards: JPEG, MPEG, MP3, H.264
- O Multimedia Transmission*

