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Chapter 2: Basics of Algorithm Analysis

Suppose f and T are positive functions.

O(f(n)) = {T (n)|∃c > 0 and n0 > 0; ∀n ≥ n0 T (n) ≤ c.f(n)}
Ω(f(n)) = {T (n)|∃c > 0 and n0 > 0; ∀n ≥ n0 T (n) ≥ c.f(n)}
o(f(n)) = {T (n)|∀c > 0 ∃n0 > 0; ∀n ≥ n0 T (n) ≤ c.f(n)}
ω(f(n)) = {T (n)|∀c > 0 ∃n0 > 0; ∀n ≥ n0 T (n) ≥ c.f(n)}
θ(f(n)) = {T (n)|T (n) ∈ O(f(n)) and T (n) ∈ Ω(f(n))}

limn→∞
f(n)
g(n) = c

c = 0 ⇒ f ∈ o(g)
c =∞ ⇒ f ∈ w(g)

0 < c <∞ ⇒ f ∈ θ(g)

loga n =
logb n

logb a
ln(n!) ≈ n lnn− n+O(lnn)

Examples:
O(log(n)): Binary Search
O(n): Merging two sorted list
O(nlogn): Sorting a list
O(n2) :

(
n
2

)
O(2n): NP-Complete, it is the number of subsets of an n-element set.
O(n!): It is the number of ways to match up n items with n other items.

Chapter 3: Graphs

A binary tree is a tree in which each node has at most two children.
A binary search tree is a binary tree in which for each node, its left descendants are less than or
equal to the current node, which is less than the right descendants.
A balanced tree is “balanced” enough to ensure O(log(n)) times for insert and find, but it’s
not necessarily as balanced as it could be.
A complete binary tree is a binary tree which is totally filled, other than possibly the rightmost
elements on the last level.
A full binary tree is a binary tree in which every node has either zero or two children.
A perfect binary tree is one that is both full and complete.
A min-heap is a complete binary tree where each node is smaller than its children (so the root is
the minimum of the tree).

BFS and DFS algorithms run in time O(m+n) if the graph is given by the adjacency list represen-
tation.

A topological ordering of G is an ordering of its nodes as v1, . . . , vn so that for every edge (vi, vj),
we have i < j. In other words, all edges point “forward” in the ordering.

Theorem 1 G has a topological ordering iff it is a DAG.
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3.1 Tree Decomposition

A tree decomposition (TD) of G = (V,E) consists of

• A tree T (different node set)

• A set Bt ⊆ V for each t ∈ T (called “bag”) that satisfy the following 3 conditions:

1. Node Coverage: Every node of G belongs to at least one bag Bt.

2. Edge Coverage: ∀e ∈ E,∃Bt containing both ends of e.

3. Coherence: Let t1, t2, t3 be 3 nodes of T s.t. t2 lies on the path from t1 to t3. Then if a
node v of G belongs to both Bt1 and Bt3 , it also belongs to Bt2 .

Let T be a TD of G. Width of T is defined as (maxt∈T |Bt|) − 1. Tree-width of G is defined as
minimum width of any TD of G.
A TD is nonredundant iff there is no edge (x, y) in the tree s.t. Bx ⊆ By. We can always turn a
redundant TD to a nonredundant one without changing the tree-width.

Theorem 2 Any nonredundant TD of an n-node graph has at most n bags.

Theorem 3 Every graph with tree-width k has a node of degree at most k.

Theorem 4 An n-node graph has tree-width n-1 iff it is a clique1 .

Chapter 4: Greedy Algorithms

Greedy algorithms make the locally optimal choice at each stage with the hope of finding a global
optimum.

Using the heap-based priority queue Dijkstra’s Algorithm for finding the shortest path in a weighted
graph runs in O(mlogn).

Using the heap-based priority queue Prim’s Algorithm for finding the minimum spanning tree runs
in O(mlogn).

Chapter 5: Divide and Conquer

Divide-and-conquer algorithms partition the problem into disjoint subproblems, solve the subprob-
lems recursively, and then combine their solutions to solve the original problem. [CLRS]
It is usually used to reduce a polynomial running time down to a faster running time.

Master Theorem:

T (n) ≤

{
aT (n/b) + cnx n > 1

d n = 1

a > bx ⇒ T (n) ∈ θ(nlogb a)

a = bx ⇒ T (n) ∈ θ(nx logb n)

a < bx ⇒ T (n) ∈ θ(nx)

1A set of nodes is a clique if every two nodes are adjacant.
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In the first case the total running time is dominated by the work done on constant-size subproblems
at the bottom of the recursion. In the the third case it’s dominated by the top level. The second
case represents a “knife-edge”; the amount of work done at each level is exactly the same.

Mergesort:

T (n) = T (divide) + T (sub1) + T (sub2) + T (combine)

= 2T (n/2)︸ ︷︷ ︸
recursion

+ cn︸︷︷︸
divide+combine

Chapter 6: Dynamic Programming

In contrast to divide-and-conquer (which applies on disjoint subprblems), dynamic programming
applies when the subproblems overlap (i.e. when subproblems share subsubproblems). [CLRS]
Memoization: A DP algorithm solves each subsubproblem just once and then saves its answer in
a table, thereby avoiding the work of recomputing the answer every time it solves each subsubprob-
lem.[CLRS]

Dijkstra’s Algorithm (Greedy, O(mlogn)): Finding shortest path from one node to all nodes.
Bellman-Ford’s Algorithm (DP, θ(mn)): Finding shortest path from one node to all nodes, where
negative edges are allowed.
Floyd-Warshall’s Algorithm (DP, θ(n3)): Finding shortest path between all pairs of nodes, where
negative edges are allowed.

Bellman-Ford’s and Floyd-Warshall’s algorithms can be used to detect negative cycles in graphs.

Chapter 7: Network Flow

A flow network is a directed graph G = (V,E) with the following features. Associated with each
edge e is a nonnegative capacity ce. There is a single source node s and a single sink node t.

Assumptions: 1) No edge enters the source s and no edge leaves the sink t. 2) There is at least one
edge incident to each node. 3) All capacities are integers.

An s-t flow is a function f that maps each edge e to a nonnegative real number, f : E → R+; the
value f(e) intuitively represents the amount of flow carried by edge e. A flow f must satisfy the
following two properties:
(i) (Capacity conditions) For each e ∈ E, we have 0 ≤ f(e) ≤ ce.
(ii) (Conservation conditions) For each node v other than s and t, we have∑

e into v

f(e) =
∑

e out of v

f(e) (fout(v) = f in(v))

The value of a flow f , denoted v(f), is defined to be the amount of flow generated at the source:
v(f) = fout(s).

Ford-Fulkerson Max-Flow Algorithm

Theorem 5 If all capacities in the flow network are integers then the Ford-Fulkerson Algorithm
can be implemented to run in O(mC) time (C =

∑
e out of s ce).

3



An s-t cut is a partition (A,B) of the vertex set V , so that s ∈ A and t ∈ B. The capacity of a cut
(A,B), denoted c(A,B), is simply the sum of the capacities of all edges out of A.

Theorem 6 If f is an s-t flow such that there is no s-t (augmenting) path in the residual graph,
then there is an s-t cut (A∗, B∗) for which v(f) = c(A∗, B∗). Consequently, f has the maximum
value of any flow, and (A,B) has the minimum capacity of any s− t cut.

Given a flow f of maximum value, we can compute an s-t cut of minimum capacity in O(m) time
as follows: We construct the residual graph Gf , and perform breadth-first or depth-first search to
determine the set A∗ of all nodes that s can reach. We then define B∗ = V A∗.

Scaling Max-Flow Algorithm
Augmentation increases the value of the maximum flow by the bottleneck capacity of the selected
path; so if we choose paths with large bottleneck capacity, we will be making a lot of progress. A
natural idea is to select the path that has the largest bottleneck capacity. Having to find such paths
can slow down each individual iteration by quite a bit. We avoid this slowdown by not worrying
about selecting the path that has exactly the largest bottleneck capacity. Instead, we will maintain
a scaling parameter ∆, and we will look for paths that have bottleneck capacity of at least ∆.

Theorem 7 The Scaling Max-Flow Algorithm in a graph with m edges and integer capacities
finds a maximum flow in at most 2m(1 + dlog2Ce) augmentations. It can be implemented to run in
at most O(m2log2C) time.

Preflow-Push Max-Flow Algorithm
A preflow is a quasi-flow where in place of the conservation conditions, we require only inequalities:
Each node other than s must have at least as much flow entering as leaving. The Preflow-Push
Algorithm will maintain a preflow and work on converting the preflow into a flow.

Theorem 8 The running time of the Preflow-Push Algorithm, implemented using a special data
structures, is O(mn) plus O(1) for each nonsaturating push operation. In particular, the generic
Preflow-Push Algorithm runs in O(n2m) time, while the version where we always select the node at
maximum height runs in O(n3) time.

The Ford-Fulkerson Algorithm can be used to find a maximum matching in a bipartite graph in
O(mn) time.

Chapter 8: NP-Completeness

To prove problem X is NP-Complete first show that it is in NP. Then reduce an NP-complete
problem Y to X (Y ≤P X) i.e.: Start with an instance of Y . Transform it to an instance of X in
polynomial time. Discuss the connection between the two instances.

Chapter 11: Approximation Algorithms

Standard form for Linear Programming (LP), as an optimization problem:

Given an m×n matrix A, and vectors b ∈ Rm and c ∈ Rn, find a vector x ∈ Rn to solve
the following optimization problem: min ctx

s.t. x ≥ 0,

Ax ≥ b
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The decision version of LP is in NP ∩ co-NP . The most widely used algorithm for LP is the
simplex method. It works very well in practice yet its worst-case running time is known to be ex-
ponential; it is simply that this exponential behavior shows up in practice only very rarely. But in
general LP problems can be solved in polynomial time, and very efficient algorithms exist in practice.

Decision version of Subset Sum (a special case of the Knapsack Problem) is as follows:

Given natural numbers w1, . . . , wn, and a target numberW , is there a subset of {w1, . . . , wn}
that adds up to precisely W?

We have already seen an algorithm to solve this problem; why are we now including it on our list
of computationally hard problems? Using dynamic programming we can solve this problem in time
O(nW ), which is reasonable when W is small, but becomes hopelessly impractical as W (and the
numbers wi) grow large. Consider, for example, an instance with 100 numbers, each of which is 100
bits long. Then the input is only 100 × 100 = 10, 000 digits, but W is now roughly 2100 (i.e. W is
also roughly 100 bits long but its value can be as high as 2100).

Vahid Vaezian (vvaezian [at] sfu.ca), February 3, 2018
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