
GVis: A Scalable Visualization Framework for Genomic Data 1

GVis: A Scalable Visualization Framework for Genomic Data

Jin Hong1, Dong Hyun Jeong2, Chris D Shaw1, William Ribarsky3, Mark Borodovsky1, and Chang Song2
1Georgia Institute of Technology, 2Hallym University, and 3UNC Charlotte

Abstract

This paper describes a framework we have developed for the visual analysis of large-scale phylogeny hierarchies populated
with the genomic data of various organisms. This framework allows the user to quickly browse the phylogeny hierarchy of
organisms from the highest level down to the level of an individual genome for the desired organism of interest. Based on this
framework, the user can initiate gene-finding and gene-matching analyses and view the resulting annotated coding potential
graphs in the same multi-scale visualization framework, permitting correlative analysis and further investigation. This paper
introduces our framework and describes the data structures and algorithms that support it.

1 INTRODUCTION

The DNA sequencing revolution initiated the exponential
growth of DNA and protein sequence data that are changing
the paradigm of biological research. Thus, Biology has
entered the realm of Big Data, where large-scale
investments in technology, machinery, and infrastructure
are needed to generate new scientific knowledge. The new
challenge is to build tools that enable interactive analysis,
exploration of complex data, and data-driven discovery.

Currently, the process of annotating a genome (finding
genes and estimating their function) in genomic sequences
is increasingly labor intensive. Generally, about one half of
a genome can be annotated automatically, one half of what
is left requires twice as much effort. If functions of genes
have to be identified, one half of what is left takes again
twice as much time, and so on. Gene function prediction
involves multiple steps, access to multiple tools, parsing
and reconciling the outputs and inferences of relationships
between genetic data using multiple pieces of evidence.

In this paper we present a new framework for highly
interactive visual analysis of comprehensive genomic data
that supports the above analysis process and can be scaled
to any number of genomes. The framework uses a
zoomable, multiresolution approach that can handle
genomes of any size from millions of nucleotides
(eukaryote) to a few thousand (viral). Structures on these
widely different scales can be efficiently accessed and
visualized together. The navigable visual environment
provides overviews and detailed views in a rich, dynamic
context. Gene analysis tools, such as BLAST or GeneMark
[Bor93] (which finds likely genes), can be launched from
within the framework and can efficiently access the data
stored there. The results from such analyses are
immediately available for visualization and comparative
study. This visualization framework significantly changes
the genome analysis process by speeding it up greatly,
removing tedious steps, and displaying unforeseen avenues
of analysis.

This framework permits a scientist to interactively
explore, browse, compare and analyze many types of
biological information. It helps researchers identify new
information within DNA sequences about genes and
encoded proteins and to establish relationships between
pieces of genetic information across species. Our approach
is to develop data structures and systems to create a spatial
embedding for genomic data sets that can be accessed by a
visualization procedure that employs level-of-detail
techniques to rapidly display the data that the user is

interested in. Its ability to combine visual exploration with
efficient access to comprehensive data and embedded
analysis tools is novel.

The framework, called GVis, has the following properties,
which will be described further in Sections 3 through 7:
• A multiscale structure based on the Pad++ “infinite

pan and zoom” paradigm,
• A general tree structure capable of providing quick

access to many thousands of genomes of any size,
• A layout scheme for arranging genomic information,

including annotations, at different scales that supports
iterative analysis and comparison,

• Level of detail techniques to continuously reveal
increasing amounts of detail as one zooms in,

• Multiple interaction techniques for presenting “details
on demand” through direct interaction with the visual
presentation,

• Integrated analysis tools that can be launched within
GVis and whose results can then be compared.

We have first applied GVis to a database of 1330
complete virus, archaea, bacterial, and eukaryote genomes.
The viral portion of this database was recently reannotated
by Borodovsky and colleagues and is a valuable resource
for investigating viral function and behavior. Since then we
have added several thousand additional genomes to the
database.

2 Prior Art

Given the wealth of data generated by the Human
Genome project for human and other species, there is a
well-recognized need [Ste02] for powerful integration &
visualization tools to explore massive genomic data,
structures and gene networks.

A number of visualization tools have been created to
allow users to view genome-sized data in an integrative
manner. These have been constructed such that the
information can be scaled to the level of interest. One such
tool is Ensembl, www.ensembl.org, which has a
“Mapquest-like” interface (i.e., discrete jumps between
viewpoints rather than the continuous method we employ),
and contains a wealth of information about a particular
genome down to the nucleotide sequence level. Another
visualization program is GenDB [Goe03], which makes use
of static databases to produce a dynamic interface, which
the user can peruse. However, neither these nor other tools
make use of highly interactive exploration (in particular

GVis: A Scalable Visualization Framework for Genomic Data 2

continuous zooming and panning through multiple levels of
detail), real time analyses and comparative genome analysis.
Instead, they merely display data that has already been
analyzed and compiled into a database for future viewing.
In addition, while many such tools are made for use with
large-scale data, their actual visualization is primitive and
not easily scalable, which often causes navigation through
the data to be slow and views narrow.

In the visualization community, tools for
comprehensively handling large scale genomic data are rare.
Chi et. al. [Chi95] developed a graphical representation for
multivariate sequence similarity search results. A 3D
viewer compared sequences obtained via BLAST,
including frame numbers and frame shifts for protein
encoding. Several results can be compared in this viewer,
but there is no possibility of showing contextual data; only
the results from the BLAST hits are displayed.

There has also been some preliminary work on genome
function analysis in an immersive virtual environment
[Kan02]. Here a CAVE-like environment with 5 screen
walls is used for pair-wise comparison of cluster sets from
different gene expression datasets. These comparisons are
visualized as a set of 3D histograms and overlapping
clusters that surround the viewer.

There has been work on genome visualization using a
desktop "virtual environment" [Ada02]. This study uses a
desktop environment similar to the one used here and has
the capability to zoom in from overviews of chromosomes
to individual genes and their associated proteins. The study
supports our premise that a multiresolution genome
visualization is useful and can be supported on off-the-shelf
desktop computers (with 3D graphics cards), but it doesn't
have the complete scalable hierarchy and large range of
scales and resolutions supported in our framework. Finally,
the challenges for interactive visualization posed by very
large amounts of data and tasks such as comparing different
genomes, studying variations between individuals,
interpreting protein expression data, and other tasks has
been emphasized [Tur01]. The authors promote
interdisciplinary collaborations and level of detail
approaches, both of which are part of the framework
presented here.

Our framework is based on the "Pad" [Per93] metaphor
and its extension, Pad++ [Bed94, Fur95]. In this metaphor,
the information space is considered as an infinite 2D plane,
which can be stretched by orders of magnitude at any point
to investigate details. This is an important capability
because we have found, in other highly
scalable interfaces [War99], that one
often discovers new things to
investigate while navigating somewhere
else. Pad++ has been mostly explored as
a highly interactive, zoomable
alternative to windows and icons
interfaces and in applications such as
navigable Web interfaces.

The Pad++ software has been used for
genomic visualization [Lor02]. Here the
zoomable capability is put to good use
as a browser to investigate human
genome data at different scales showing
overall gene structure for some part of

the genome and then gene marking, protein, sequence, and
other annotations at different scales. Our approach has all
of these capabilities but generalizes to multiple genomes,
comparative analysis, and support for very large databases.

3 Enhanced Gene Finding and Analysis Process

We are applying a human-centered design process for the
interactive visualization aspects of GVis [Dix98,Nor02]. In
brief, the process we have followed is to iterate over the
phases of Task Analysis, Design, and Rapid Prototping.
Part of our findings from Task Analysis (developed in
discussions with bioinformaticists) is that gene-finding is a
multi-step process fraught with delays and that overviews
plus fast access to genomes both in the vicinity of a target
genome and at other locations in the database is quite useful.
In addition, launching analyses and seeing their results
from within the visualization are quite important. We have
therefore focused on these aspects in the development of
the GVis framework.

The task analysis indicates a work flow shown in Figure 1.
Here a researcher zooms in from the universe of genomes
stored in the system (level 1) to a particular genome (level
2), to a gene neighborhood (level 3), to an individual gene
and its structure (level 4) to its nucleotide sequence (level
5). In following sections, we explain how this rapid
traversal in scale and context is accomplished. For example,
the actual nucleotide sequence of a stop codon can only be
checked by looking at level 5, while the presence of many
possible start codons (marked by icons) may only be visible
at level 4. Level 3 may reveal an unusually high G+C
content that would otherwise be hard to detect at more
detailed levels. Level 2 allows viewing of a whole
geneome’s structure, and level 1 reveals possible similar
genetic structure with related nearby organisms.

Figure 1 shows protein sequence information in the center
column and domain architecture in the right column. For
simplicity, we have shown these as being at finer levels of
scale. Although the user may initially follow a particular
path through the genome universe, there will then typically
be much branching, jumping across the genome space, or
returning to higher levels to follow different paths. Detailed
and often complex analyses occur at levels 4 and 5, which
can result in recursive links and jumps to other levels. This
will often be the result of analyses carried out as the user
follows the path. In particular, tools such as BLAST
establish connections to other genomes (often not in the
neighborhood of the original genome). It is a main goal of

Level 1: Set of (viral) genomes

Level 2: A whole genome

Level 3: Gene neighborhood
(from GenBank)

(GeneMark analysis (graph))

Level 4: A gene structure
(if available) (from GenBank)

Level 5: DNA sequence of the
gene (from GenBank)

Molecule: DNA Molecule: Protein

Protein sequence Protein domain architecture
(from Pfam and SMART)

BLINK or BLAST
(connection to other genomes)

Protein structure
(if known) (from PDB)

(using Cn3D)

 Figure 1. Overview major steps in the gene analysis process.

GVis: A Scalable Visualization Framework for Genomic Data 3

our GVis framework to effectively support this gene-
finding, analysis process, and resulting correlative analysis
among genomes. The framework we present in this paper
so far supports levels 1, 2, 3 and 5 of the genetic analysis
represented in the left column of Figure 1, plus some
analyses represented in the middle column.

4 Multiscale Approach

To support this general process, we require an interactive
approach that encompasses both space and scale. We
consider a "2D + scale" space that has two spatial
dimensions and a scale dimension. The basic pan and zoom
navigation modes are easy to use and understand, yet the
2D + scale space is able to handle very much more data
than a non-scalable 2D visualization. In addition the
reduction to two spatial dimensions makes existing 2D
layouts straightforward to use and dynamic models for
clustering and general layout control simple.

In our vision, the GVis framework allows the scientist to
freely interact with data describing the genetic structure of
any known organism, and trace the relationships between
similar sequences, performing analysis and comparison at
key points. As one zooms in on a particular region of the
data, for example, the system brings forth and displays new
detail for that region. Such a model is especially useful for
exploration and discovery in large data, which has multiple
scales and many different features.

The exploratory visualization encompasses two types of
scalability: scalability in the number and diversity of
genomes, and scalability in being able to navigate freely
from an overview to the level of detail (LOD) of the
individual nucleotide. Interactivity must be maintained for
both types of scalability and when comparing and analyzing
genomes, which is the main use for our methods. We are
applying multiscale, multiresolution methods to maintain
interactivity while revealing necessary detail at each level.
Our methods retain contextual information as one navigates
the genomic space. Contextual information, including
overviews so that one knows where one is in the overall
genomic space and detailed views that show relevant
information in the vicinity of one's navigation path, has
been shown to be quite important in exploratory analysis,
where one does not always know in advance what one is
looking for [Fau00]. Most analyses of large and complex
data have an exploratory component. This principle has
been encapsulated in the dictum, 'Focus + Context' from
information visualization [Pir01].

For the gene finding task, maintaining scalability,
multiresolution data, and interactivity in a visual interface
requires a special type of data organization. We consider
this data organization next and discuss how it can be
coupled with existing genomic data structures. An
important aspect of this data organization is a universal
model that permits multiple data servers and users who
have individual copies. Because individual users can build
their own parts of the universal data model, it also supports
a new form of annotation that captures the process of
exploration and analysis, rather than just individual notes.

5 Managing Big and Complex Data

Since the total size of the GVis gene database will grow
significantly as users start acquiring more data of interest to

view, we have developed data management techniques that
apply a level of abstraction approach across the genomes in
the database. Clearly, there is no point in drawing millions
of nucleotides per genome when we are viewing all of them
at the broadest level of overview, since each nucleotide
would project to a small fraction of a pixel.

For efficient navigation and exploration, data should be
stored in a spatial hierarchy for incremental access and
multiresolution display. The Pad authors [Per93] mention
that the 2D + scale layout is geographical, but they do not
fully capitalize on this fact. In this work we have used the
geographical layout in a specific way. We lay out this
structure in such a way that it satisfies, for the universal
genome knowledge organization described below, the
criterion that the contents of children be totally contained
spatially in their parents and not overlap each other. This
makes the domain-specific structure especially efficient to
traverse and query spatially. The domain-specific structure
encompasses both the 2D spatial extent and the scale
dimension (through use of tree depth). It lends itself to
interactive navigation of the scalable data space, with
incremental updates from out-of-core data storage.

5.1 Taxonomy Layout and Data Structure

We want to build a structure that is based on a universal
model containing comprehensive domain knowledge
appropriate for genomic investigations. A universal
structure is quite important because it can be used
everywhere, on servers or by individual users collecting and
annotating data, and is known apriori by everyone. This
means that everyone knows where to put a new genomic
annotation or find an existing piece of data. A universal
structure means that genomic data can be highly distributed

Figure 2. Zoom in operation from root (all genomes) to a
specific genome (Human herpesvirus 7).

GVis: A Scalable Visualization Framework for Genomic Data 4

and easily shared. Everybody knows the structure but
nobody possesses all the data. However, parts of the
structure can easily be compared between users or servers
to coordinate their contents. We chose the comprehensive
phylogeny tree for all organisms as the universal structure.
This tree has a place for everything in its branches,
including archaea, bacteria, viruses, and eukaryotes. The
phylogeny tree is widely recognized by users. It tends to
group genomes with similar characteristics in size and
functional structures on nearby branches. The phylogeny
classification structure embodies how biologists tend to
think about organisms. Nevertheless, it is also true that no
structure, even if comprehensive, can encompass all the
relationships that genomic scientists discover and
investigate. Indeed, it is increasingly true that scientist
compare quite disparate species (e.g., viruses and bacteria)
to discover common mechanisms. Finally, it is important to
note that the data layout and organization mechanism does
not depend on the details of the structure used. If a
universal structure other than a phylogeny tree were
deemed more useful, the data could be efficiently organized
for this structure.

The embodiment of the phylogeny structure is a
taxonomy tree based on the taxonomy and directory
structure defined in NCBI. Each directory is considered as a
node in the tree, and each genome is considered as a leaf
node. (A tree structure appropriate for navigating within a
genome is then attached to these leaf nodes.) The storage
scheme on disk simply uses the file system tree to create
categories and subcategories, so that data for new genomes
can be added with little effort.

In GVis, each node is represented by an ellipse and each
leaf node is represented by a genome structure as shown in
Figure 2. GVis adopts a containment relationship between
parent and children nodes, which is similar to a Venn
Diagram. Figure 3 illustrates the conventional node link
tree structure in this representation. The location and size of
child nodes inside the parent node depends on the number
of children nodes, with no child nodes overlapping. First,
locations are assigned randomly around the origin and then
each of the locations is considered as a particle that pushes
others nearby. To prevent particles from moving too far
away, we add a counter-force that attract particles towards
the origin (and keeps them within the parent node). These
two complementary forces move particles in equilibrium
positions eventually, and we then store them.

When GVis loads the tree structure, depending on the
number of children, it reads the location table and assigns
this spatial coordinate into the node. In this way, it
accelerates the loading process because the system does not
need to compute the location of the children and users can

freely add or remove genomes from a directory without
worrying about changing the spatial information.

Because of the containment relationships between parent
and child nodes, the tree can be efficiently traversed. When
the root node is put into the visual query, GVis will decide
if the root node needs to be drawn by checking whether the
view window contains or intersects it. If so, GVis traverses
to the next level of the tree and applies the same test
recursively. At some level, the size of node on the screen
will be too small compared to a screen-space threshold, and
this is the point when the traversal stops. In this way, the
tree can be traversed very quickly.

5.2 Multiscale Objects in Scale-Space

Interactive visualization within the scale-space depends
on two types of multiscale methods. One, already discussed
above, is semantic zooming [Per93], which is purely
multiscale and the other is view-dependent geometry and
image simplification, which is both multiscale and
multiresolution. The central idea in semantic zooming is to
allow the user to examine areas of the data space in greater
detail by smoothly allocating more and more screen area to
it. While this is happening, data outside the current area of
interest are shrunk and represented more and more
abstractly. View-dependent simplification involves
continuous reduction (or increase) of geometric and image
detail based on screen space errors that are updated as the
viewpoint changes. We invoke semantic zooming when we
wish to relate levels of abstraction without regard to a
detailed relation between geometry or appearance at
different levels. We invoke simplification when it is
effective to simplify the detailed geometric representation.
For example in our system, the various views of gene
sequence structure in Figure 2 are connected by semantic
zooming, while the similarity graphs in Figure 10 below
use view-dependent multiresolution simplification.

6 Overview Windows

One of the drawbacks of a zooming interface is that it is
easy to get lost as we navigate, especially with a rich
information space with a wide range of scales. To resolve
this problem, GVis provides two overview windows. One
contains the tree structure by representing the hierarchy as a
circular node link tree as shown in Figure 4, and the other
overview uses the genome structure in the main window
(Figure 2). Thus changes of view on the main window are
displayed in this second overview. For large genomes, more
overviews could be constructed.

Two forms of the first overview are provided. In the
circular node link overview, the child nodes of the root are
distributed evenly around the root node. To prevent
overlapping between node c and d in Figure 5, the length of
the link between parents (a and b) and children nodes (c and
d) are defined as less than the half of the distance between
parent nodes (a and b). The remaining locations of child
nodes can be obtained recursively and if the length of link
between the nodes is very small, the algorithm stops
drawing the following children and stops traversing the tree.
By applying this algorithm, the upper two pictures in Figure
4 can be generated, which correspond to zoom-in operation
as shown in Figure 2. As the current node in the main
window changes while zooming in, the path of the

 a

c
db e

f g

b d

c
e

f
g

a

Figure 3: Translation from tree structure to Venn diagram

GVis: A Scalable Visualization Framework for Genomic Data 5

traversed node is shown. The pink links indicate leaf nodes,
representing genomes.

The circular node link tree is good for providing the path
information of traversed nodes, but it is a completely
different representation from that of main window. GVis
therefore provides another overview window, which
contains the same representation as that of the main
window. Instead of actually zooming in, this second
overview displays the viewed region of the main window,
which shows where the user is located in the taxonomy
hierarchy. In the lower two images in Figure 4, the pink
rectangle denotes the main window’s view area. (See the
color plate.) When zooming and panning, the size and
location of this rectangle change. To avoid shrinking the
pink rectangle to invisibility, GVis also zooms in (or out)
the overview by a certain amount when the pink rectangle
size is too small (or too large) for the current overview. The
lower right picture in Figure 4 corresponds to the last one in
Figure 2. By using Figure 4, the user can clearly see what
the path is of the genome in the hierarchy and where she is
in the information space. This structure provides a
contextual and understandable set of views that go all the
way from a general overview of all genomes to individual
nucleotides.

GVis handles navigation between widely separated
genomes by providing interaction between main and
overview windows. For example, in the circular tree in
Figure 4, users can click any node, and this action will
cause the main window to jump directly into that
information space or genome. In addition, for overview 2 in
Figure 4, users can drag the desired viewing area on the
overview window, and the main window will pan and zoom

to that desired view. Through these interactions, users do
not need to zoom-in, zoom-out, pan, and zoom-in again to
go to different information spaces.

6.1 GVis in Action

The following example
shows the highly interactive
data navigation possible with
GVis. The user starts off with
an image of the collection of
genomes in the database Our
initial test database has some
thousands of genomes and
multiple Gigabytes of data.
Note that because of the
hierarchical structure and the
multiscale views, described further next, the database can
be scaled to any size. For any size database, the only data
that need be rendered from active memory are those for a
particular view and scale. These particular data can be quite
efficiently retrieved from the multiscale spatial layout using
a mechanism similar to one used for large scale geospatial
data [Dav99].

This is represented as a hierarchical layout of clusters of
genomes, divided by taxonomy. As shown in the top left
image of Figure 2, a large oval encapsulates the different
classes of organisms; Archaea, Bacteria, Eukaryotes, and
viruses. From here, the user can immediately zoom in
interactively to the class, family, sub-family, or genus for
the organism of interest. As the user zooms in, more and
more semantic detail is revealed, starting with the segment
of DNA that holds a gene, the gene name, its nucleotide
index number, and so on.

The image sequence from the top left to lower right in
Figure 2 shows screenshots of our prototype viewer running
on a 2.4GHz Pentium 4 computer with an nVidia GeForce
4 graphics card. Each succeeding image was taken at
500ms intervals over the 3 seconds it took to zoom in from
the overview to the single virus genome in the lower left
small image. Note, because the zoom is logarithmic in scale
[Bed94], even a database containing all known genomes
could be navigated in seconds (presuming that one had fast
access to the scalable data structure in Sec. 5).

For the user, the effect of this interface is that one is
smoothly flying in, as in an overhead view of a landscape,
and increased detail is unfolding. (The reverse effect occurs
as one flies out.) The entire E.coli genome can be navigated
in a few seconds, permitting one to investigate any level of
detail at any location in the genome. The entire genome
appears to be a coherent and accessible whole that can be
navigated in context. This is contrasted with the usual Web
query structure, where each query produces a result after a
(sometimes lengthy) pause and the genome appears to be
composed of a set of unconnected images.

6.2 DNA Strand Spatial Organization

The fundamental unit of spatial layout for our
visualization is the horizontal DNA strand. This is a well-
understood spatial organization, appearing in gene viewing
websites, such as Ensembl, the sequence alignment output
of BLAST, and in many other displays of genomic data.
GVis allows immediate navigation of the DNA strand to

Figure 4. Upper Left: Node link tree of our genome database
containing 500Mbytes of data and 1500 genomes. Lower Left:
Corresponding and overview image of zoomable phylogeny
tree. Upper Right: Node link tree with a virus highlighted in
green Lower Right: Corresponding zoomed-in view of
unclassified bacteriophages. The pink rectangle represents
the view being displayed in the main window.

a

b

root

c
d

Figure 5. Node link
circular tree

GVis: A Scalable Visualization Framework for Genomic Data 6

the left or right by simply dragging the displayed scene left
or right with the mouse. For simple display of genomes,
this organization would have the disadvantage of requiring
horizontal motion to see more data while the rest of the
screen lay unoccupied. However, in GVis the screen space
above and below the DNA strand is used for the unified and
scaled display of multiple annotations of the DNA strand.

Currently, each individual gene (Figure 6) is represented
by a colored box (or button) that is simply an icon for the
underlying sequence. Each color represents a different type
of data. For example, a gray button is for gene and a
magenta button is for CDS (coding sequence). Clicking on
a box (Gene Button) will immediately pop up a little
window with the text record for the item, including the
name, the sequence start and end, the gene’s function, the
protein it creates, and so on. Users can pan the text inside
any pop-up window by dragging the text with the mouse.
The buttons above the organism name represent the positive
DNA coding strand and those below the organism name are
for negative strand. The annotation windows align
themselves dynamically in the 2D space, near the section of
the genome they represent, so that overlap is minimized as
several boxes are opened.

We apply several guiding design principles. First, we
locate related items as closely as possible to one another.
Second, we seek to minimize direct screen space
rearrangement by the user (mainly done to make occluded
items visible) by dynamic rearrangement and by dynamic
scaling (items in a collection next to the DNA sequence can
be brought forward individually while others fall back to
minimize overlap). All this permits the user to quickly get
the maximum amount of information while not losing
context. Third, we make a mouse selection of a feature in
one type of display (sequence, say) result in the other
related analyses or objects being highlighted in a brushing
and linking interaction.

6.3 Representing Gene Annotations
GVis uses information on GenBank files to visualize

genomes. Based on gene annotations by NCBI (National
Center for Biotechnology Information,

http://www.ncbi.nlm.nih.gov). The following is a small
fragment of the GenBank file for E.coli.

CDS 2046677..2048227
 /gene="ansP"

 /function="transport; Transport of small
molecules: Amino acids, amines"

 /note="Residues 1 to 516 of 516 are 100.00 pct
identical to residues 1 to 516 of 516 from
Escherichia coli K-12

 Strain MG1655: B1453"
 /codon_start=1
This fragment of text refers to one of the coding

sequences in E.coli. All other genes or misc_features, etc.
are represented in this way. To represent this text file
visually, the key words such as CDS, gene, etc. are
represented by the gene buttons shown across the horizontal
centerline in Figure 6. Other genomes (e.g., viruses or
eukaryotes) are represented in a similar way.

6.4 Data Management for One DNA Sequence
Currently, the DNA sequences in our database range in

size from 50Kbytes to 40Mbytes, and DNA sequences
range in lengths from a few thousand to 20 million.
Loading all of this data at once will exceed the memory
size of many desktop machines and will not admit
scalability. We therefore manage the data in a way that
allows GVis to load and display only the data being viewed
at the moment.

To manage data for a single DNA sequence, we have
built a data structure that manages the spatial detail
according to the projected size of the information to be
displayed. This data structure provides semantic zooming
capabilities, which uses levels of abstraction rather than
levels of detail, the goal being to transmit as much meaning
as possible at each scale. Thus upon zooming in, the user
sees not only more detail but also more types of
information coordinated in a meaningful way.

The data for each DNA sequence is preprocessed into a
binary tree structure, and each level of this tree has an
aggregate representation of the contents in its child nodes.
Figure 7 illustrates this multi-resolution genome tree. The

Figure 6. Representation of a small segment of the E. Coli
genome.

Level 0

Level 1

Level 2

Level 3

Level 3

Level 2

Level 1

 Level 0

Figure 7. Building a binary tree from bottom to top for a DNA
sequence. As we go up the tree, gene buttons that are close
merge into one box.

GVis: A Scalable Visualization Framework for Genomic Data 7

domain of the tree is the DNA sequence; with each node in
a tree representing a range of DNA base pairs.

At the leaf node level (Level 3 in Figure 7), each node
represents a contiguous range of 64K basepairs. Each node
also contains a list of visually salient items, so leaf nodes
thus contain the highest level of detail. Thus, each leaf node
has all the information of each gene in its range, such as
start and stop sequence, direction, name, protein coding
sequence, etc.

When two nodes are combined at Level 2, those buttons
(genes, CDS, RNA, etc) that are close together are clustered
and are represented as one button, and those smaller than
one pixel will disappear. This structure is intended to
support a viewing program in which at least 1 or 2 nodes
are visible at one of the levels in the tree. By comparing the
view window size with the genome sequence length inside
the view window, the level and node are determined and
this is when the information of the node to be displayed is
retrieved from disk. By representing a genome with several
levels of abstraction, it can be explored efficiently, and by
retrieving data only when it is needed, the system can
lessen the memory load when handling large amount of
data. This structure is entirely scalable to collections of
genomes of any size with individual genomes of any length.

We measured the real-time disk access for GVis as the
user zooms in to a single large DNA sequence. Retrievals
of 10KB are typical during the zoom when the projected
size of the entire sequence is between a few pixels and 500
pixels. As the DNA sequence stretches across the entire
width of the display, retrievals are 80KB on average. On
average, there are about 10 retrievals per second, each
resulting from a traversal from parent to child. This
retrieval rate is governed largely by drawing speed of the
retrieved data, and retrieval causes no pauses in the drawing.
In fact, on newer desktop PCs, the speed of retrieval and
drawing is so fast that pauses must be inserted to keep
navigation at a reasonable speed, which can be adjusted
according to user preference.

7 Analysis Within GVis
One of the most powerful aspects of GVis is to analyze

data found as a result of fast, interactive exploration and
display the results in context for correlative analysis. All
the data needed, including annotations, can be collected in
one database and thus quickly retrieved and displayed. Here
we demonstrate with BLAST results, but a variety of other
gene or protein analysis tools could be inserted.

Since BLAST and like tools find related nucleotide or
protein sequences that might belong to widely different
organisms, it is best to display results using a series of
secondary windows, as shown in Figure 8. The secondary
windows can all be panned and zoomed. In addition, the
user has the option of selecting in one window and having
the appropriate genome (including the relevant part of the
genome) highlighted in the main window.

The user, guided by the annotations, directly selects a
nucleotide sequence of interest (Figure 9). The selection bar
defaults to open reading frames (ORFs), likely sites for
gene expression, but can also be interactively placed and
sized. The selected area is sent off to BLAST. In the
example shown in Figure 10, the nucleotide sequence is
automatically expressed into possible proteins and BLAST
then provides a list, in its own window, of hits in
descending order of interest, with the original protein
sequence on top. When the user passes the cursor over the
hits, names and other information pop up (Figure 10 (left)).
The curves on top of each sequence in the hit list show the
local similarity to the original sequence. Thus peaks and
especially plateaus are of interest and can quickly be found.
Since hits from different places on the list may be of
interest, the user can select from this list and an analysis
window pops up that contains the user’s selections in the
order selected. Detailed comparisons will be made from the
working (analysis) window (Figure 10 (right)), so any
annotations should be displayed there. For example, when
BLAST is run to find related nucleotide sequences, the
analysis window contains gene, CDS, and other annotations
as shown in Figure 6. Multiple BLAST windows can be set
up and selections made into one or more working windows.
Furthermore, BLAST can be run again from selections
within the working window. This is the iterative process,
indicated in Figure 1, supporting deeper analysis and

Figure 8. Selection from genome and resulting BLAST output
window.

Figure 9. Selection interface. The black barbell at the bottom
is the selection and the colored barbells indicate ORFs.

GVis: A Scalable Visualization Framework for Genomic Data 8

understanding.
This collection of fast, intuitive, and interconnected

analysis tools greatly increase the capabilities of
bioinformatics investigators. We have put these tools into
the hands of these investigators both at Georgia Tech and
UNC Charlotte. Their feedback has already led to a round
of additions and refinement.

8 Conclusions and Future Work

The goals of this work have been to support the new gene
finding and analysis process illustrated in Figure 1. The
current GVis framework supports the viewing and analysis
of genomic data by allowing the user to investigate, and
launch analyses on, any of the genomes in the database at
any level of detail. These levels of detail range from
taxonomy or phylogeny to the individual nucleotides.

The GVis framework improves significantly on the tools
currently available to many biologists in the international
public databases such as Ensembl and GeneDB. These web
interfaces provide only a fragmented view of a single piece
of data at a time, and offer interaction times ranging from
seconds to minutes when accessing data. By contrast, the
GVis framework provides a comprehensive taxonomical
view of the genetic database that the user may have, and
can view that data at any level of desired detail. Moreover,
the GVis framework provides very fast access to these data
at any level of detail. Rapid access is provided by
hierarchical structures that speed up both the graphical
display of data and the incremental retrieval of data from
disk.

Our future work is to extend the GVis framework to
support more analysis tools, and to display correlative
analyses of genomic data in a more comprehensive and
effective way. We also plan to add a system for users to
enter their own annotations to the database. Finally, we are
planning thorough evaluations and comparative testing.

References

[Ada02] R.M. Adams, B. Stancampiano, M. McKenna, and D.

Small. Case Study: A Virtual Environment for Genomic Data
Visualization. IEEE Visualization 2002, pp. 513-516 (2002).

 [Bar94] Bartram, L., R. Ovans, J. Dill, M. Dyck, A. Ho, and
W.S. Havens. “Contextual Assistance in User Interfaces to

Complex, Time-Critical Systems: The Intelligent Zoom”. In
Graphics Interface 1994, Banff, AB, Canada, May 1994.

[Bed94] Bederson, B.B., and Hollan, J.D., “Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface Physics,”
Proc. ACM UIST ’94, Marina del Rey, CA,Nov. 1994, pp. 17-26.

[Bel00] Bell, B. and Feiner S, "Dynamic space management for
user interface", Proceedings of the 13th annual ACM symposium
on User interface software and technology, 2000, Sandiego,
California, pp. 239-248.

[Bor93] Borodovsky, M. and J. McIninch. GeneMark: Parallel
Gene Recognition for both DNA Strands. Computers & Chemistry
17: 123-133, (1993)

[Chi95] Chi, E.H.-H.; Barry, P.; Shoop, E.; Carlis, J.V.; Retzel,
E.; Riedl, J. Visualization of biological sequence similarity search
results. IEEE Visualization '95, pp. 44-51 (1995).

[Dav99] Davis, D., W. Ribarsky, T.Y. Jiang, N. Faust, and S. Ho.
"Real-Time Visualization of Scalably Large Collections of
Heterogeneous Objects," IEEE Visualization '99, pp. 437-440.
 [Fau00] N. Faust, W. Ribarsky, T.Y. Jiang, and T. Wasilewski.
Real-Time Global Data Model for the Digital Earth. Proc. Intl
Conf.on Discrete Global Grids (2000).
 [Fur95] G. Furnas and B.B. Bederson. Scale Space Diagrams:
Understanding Multiscale Interfaces. CHI'95, pp. 234-241 (1995).

[Goe03] A. Goesmann et al. Building a BRIDGE for the
integration of heterogeneous data from functional genomics into a
platform for systems biology. J Biotechnol 106(2-3): 157-67
(2003).

[Joh91] Johnson, Brian, and Shneiderman, B. "Treemaps: A
space Filling Approach to the Visualization of Hierarchical
Information Structures", Proceedings of the IEEE Visualization,
1991, San Diego, CA, pp.284-291

[Kan02] M. Kano, S. Tsutsumi, and K. Nishimura. Visualization
for Genome Function Analysis Using Immersive Projection
Technology. IEEE Virtual Reality '02, pp. 224-231

[Lor02] Ann Loraine and Gregg Helt. Visualizing the Genome:
Techniques for Presenting Human Genome Data and Annotations.
BMC Bioinformtics 3(19) (2002).

[Per93] Perlin, K., and Fox, D., “Pad: An Alternative Approach
to the Computer Interface,” Proc. ACM SIGGRAPH ’93, Anaheim,
CA, Aug. 1993, pp. 57-64.

[Pir01] P. Pirolli, S. Card, and M. Van Der Wege. Visual
Information Foraging in a Focus +
Context Visualization. Proceedings of
CHI 2001, pp. 506-513 (2001).

Rib03 William Ribarsky. Virtual
Geographic Information Systems. To be
published. The Visualization Handbook,
C. Hanson and C. Johnson, eds
(Academic Press, New York, 2003).

[Sha02] C. Shaw, W. Ribarsky, Z.
Wartell, and N. Faust. Building the
Visual Earth. Vol. 4744B, SPIE 16th Int.
Conf. on Aerospace/Defense Sensing,
Simulation, and Controls (2002).

[Ste02] Stein L., Creating a
Bioinformatics Nation. A Web Services
Model Will Allow Biological Data to be
Fully Exploited, Nature, 2002, 417,
pp.119-120

[Tur01] R.J. Turner et. al.
Visualization Challenges for a New
Cyber-Pharmaceutical Computing

Paradigm. Proc. IEEE 2001 Symposium on Parallel and Large
Data Visualization

[War99] Wartell, Z., Ribarsky, W., and Hodges, L.. Third Person
Navigation of Whole-Planet Terrain in a Head-tracked
Stereoscopic Environment. IEEE Virtual Reality 99, pp. 141-149.

Figure 10. Close-up of BLAST output window (left) and working (analysis) window
(right).

GVis: A Scalable Visualization Framework for Genomic Data 9

Figure 4. Upper Left: Node link tree of our genome database
containing 500Mbytes of data and 1500 genomes. Lower Left:
Corresponding and overview image of zoomable phylogeny
tree. Upper Right: Node link tree with a virus highlighted in
green Lower Right: Corresponding zoomed-in view of
unclassified bacteriophages.

Figure 8. Selection from genome and resulting BLAST output window.

Figure 2. Zoom in operation from root (all genomes) to a
specific genome (Human herpesvirus 7).

