International Journal of Number Theory, to appear (2005)

ON SUMS OF THREE SQUARES

S.K.K. CHOI, A.V. KUMCHEV, AND R. OSBURN

Abstract

Let $r_{3}(n)$ be the number of representations of a positive integer n as a sum of three squares of integers. We give two distinct alternative proofs of a conjecture of Wagon concerning the asymptotic value of the mean square of $r_{3}(n)$.

1. Introduction

Problems concerning sums of three squares have a rich history. It is a classical result of Gauss that

$$
n=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
$$

has a solution in integers if and only if n is not of the form $4^{a}(8 k+7)$ with $a, k \in \mathbb{Z}$. Let $r_{3}(n)$ be the number of representations of n as a sum of three squares (counting signs and order). It was conjectured by Hardy and proved by Bateman [1] that

$$
\begin{equation*}
r_{3}(n)=4 \pi n^{1 / 2} \mathfrak{\Im}_{3}(n), \tag{1}
\end{equation*}
$$

where the singular series $\Im_{3}(n)$ is given by (16) with $Q=\infty$.
While in principle this exact formula can be used to answer almost any question concerning $r_{3}(n)$, the ensuing calculations can be tricky because of the slow convergence of the singular series $\mathfrak{S}_{3}(n)$. Thus, one often sidesteps (1) and attacks problems involving $r_{3}(n)$ directly. For example, concerning the mean value of $r_{3}(n)$, one can adapt the method of solution of the circle problem to obtain the following

$$
\sum_{n \leq x} r_{3}(n) \sim \frac{4}{3} \pi x^{3 / 2}
$$

Moreover, such a direct approach enables us to bound the error term in this asymptotic formula. An application of a result of Landau [9, pp. 200-218] yields

$$
\sum_{n \leq x} r_{3}(n)=\frac{4}{3} \pi x^{3 / 2}+O\left(x^{3 / 4+\epsilon}\right)
$$

for all $\epsilon>0$, and subsequent improvements on the error term have been obtained by Vinogradov [19], Chamizo and Iwaniec [3], and Heath-Brown [6].
In this note we consider the mean square of $r_{3}(n)$. The following asymptotic formula was conjectured by Wagon and proved by Crandall; see [4] (see also [2]) .

Theorem. Let $r_{3}(n)$ be the number of representations of a positive integer n as a sum of three squares of integers. Then

$$
\begin{equation*}
\sum_{n \leq x} r_{3}(n)^{2} \sim \frac{8 \pi^{4}}{21 \zeta(3)} x^{2} \tag{2}
\end{equation*}
$$

Apparently, at the time they proposed this conjecture Crandall and Wagon were unaware of the earlier work of Müller [11, 12]. He obtained a more general result which, in a special case, gives

$$
\sum_{n \leq x} r_{3}(n)^{2}=B x^{2}+O\left(x^{14 / 9}\right),
$$

where B is a constant. However, since in Müller's work B arises as a specialization of a more general (and more complicated) quantity, it is not immediately clear that $B=\frac{8}{21} \pi^{4} / \zeta(3)$. The purpose of this paper is to give two distinct proofs of this fact: one that evaluates B in the form given by Müller and a direct proof using the Hardy-Littlewood circle method.

2. A direct proof: the circle method

Our first proof exploits the observation that the left side of (2) counts solutions of the equation

$$
m_{1}^{2}+m_{2}^{2}+m_{3}^{2}=m_{4}^{2}+m_{5}^{2}+m_{6}^{2}
$$

in integers m_{1}, \ldots, m_{6} with $\left|m_{j}\right| \leq x$. This is exactly the kind of problem that the circle method was designed for.

Set $N=\sqrt{x}$ and define

$$
f(\alpha)=\sum_{m \leq N} e\left(\alpha m^{2}\right),
$$

where $e(z)=e^{2 \pi i z}$. Then for an integer $n \leq x$, the number $r^{*}(n)$ of representations of n as a sum of three squares of positive integers is

$$
r^{*}(n)=\int_{0}^{1} f(\alpha)^{3} e(-\alpha n) d \alpha
$$

Since $r_{3}(n)=8 r^{*}(n)+O\left(r_{2}(n)\right)$, where $r_{2}(n)$ is the number of representations of n as a sum of two squares, we have

$$
\begin{equation*}
\sum_{n \leq x} r_{3}(n)^{2}=64 \sum_{n \leq x} r^{*}(n)^{2}+O\left(x^{3 / 2+\epsilon}\right) . \tag{3}
\end{equation*}
$$

Therefore, it suffices to evaluate the mean square of $r^{*}(n)$. Let

$$
P=N / 4 \quad \text { and } \quad Q=N^{1 / 2}
$$

We introduce the sets

$$
\mathfrak{M}(q, a)=\left\{\alpha \in\left[P N^{-2}, 1+P N^{-2}\right]:|q \alpha-a| \leq P N^{-2}\right\}
$$

and

$$
\mathfrak{M}=\bigcup_{\substack{q \leq Q}}^{\substack{1 \leq a \leq q \\(a, q)=1}} \mid \mathfrak{M}(q, a), \quad \mathfrak{m}=\left[P N^{-2}, 1+P N^{-2}\right] \backslash \mathfrak{M} .
$$

We have

$$
\begin{align*}
r^{*}(n) & =\left(\int_{\mathfrak{M}}+\int_{\mathfrak{m}}\right) f(\alpha)^{3} e(-\alpha n) d \alpha \tag{4}\\
& =r^{*}(n, \mathfrak{M})+r^{*}(n, \mathfrak{m}),
\end{align*}
$$

We now proceed to approximate the mean square of $r^{*}(n)$ by that of $r^{*}(n, \mathfrak{M})$. By (4) and Cauchy's inequality,

$$
\begin{equation*}
\sum_{n \leq x} r^{*}(n)^{2}=\sum_{n \leq x} r^{*}(n, \mathfrak{M})^{2}+O\left(\left(\Sigma_{1} \Sigma_{2}\right)^{1 / 2}+\Sigma_{2}\right), \tag{5}
\end{equation*}
$$

where

$$
\Sigma_{1}=\sum_{n \leq x}\left|r^{*}(n, \mathfrak{M})\right|^{2}, \quad \Sigma_{2}=\sum_{n \leq x}\left|r^{*}(n, \mathfrak{m})\right|^{2} .
$$

By Bessel's inequality,

$$
\begin{equation*}
\left|\Sigma_{2}\right|=\sum_{n \leq x}\left|\int_{\mathfrak{m}} f(\alpha)^{3} e(-\alpha n) d \alpha\right|^{2} \leq \int_{\mathfrak{m}}|f(\alpha)|^{6} d \alpha . \tag{6}
\end{equation*}
$$

By Dirichlet's theorem of diophantine approximation, we can write any real α as $\alpha=a / q+\beta$, where

$$
1 \leq q \leq N^{2} P^{-1}, \quad(a, q)=1, \quad|\beta| \leq P /\left(q N^{2}\right) .
$$

When $\alpha \in \mathfrak{m}$, we have $q \geq Q$, and hence Weyl's inequality (see Vaughan [18, Lemma 2.4]) yields

$$
\begin{equation*}
|f(\alpha)| \ll N^{1+\epsilon}\left(q^{-1}+N^{-1}+q N^{-2}\right)^{1 / 2} \ll N^{1+\epsilon} Q^{-1 / 2} . \tag{7}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\int_{0}^{1}|f(\alpha)|^{4} d \alpha \ll N^{2+\epsilon} \tag{8}
\end{equation*}
$$

because the integral on the right equals the number of solutions of

$$
m_{1}^{2}+m_{2}^{2}=m_{3}^{2}+m_{4}^{2}
$$

in integers $m_{1}, \ldots, m_{4} \leq N$. For each choice of m_{1} and m_{2}, this equation has $\ll N^{\epsilon}$ solutions. Combining (6)-(8) and replacing ϵ by $\epsilon / 3$, we obtain

$$
\begin{equation*}
\Sigma_{2} \ll N^{4+\epsilon} Q^{-1} . \tag{9}
\end{equation*}
$$

Furthermore, another appeal to Bessel's inequality and appeals to (8) and to the trivial estimate $|f(\alpha)| \leq N$ yield

$$
\begin{equation*}
\Sigma_{1} \leq \int_{\mathfrak{M}}|f(\alpha)|^{6} d \alpha \leq \int_{0}^{1}|f(\alpha)|^{6} d \alpha \ll N^{4+\epsilon} . \tag{10}
\end{equation*}
$$

We now define a function f^{*} on \mathfrak{M} by setting

$$
f^{*}(\alpha)=q^{-1} S(q, a) v(\alpha-a / q) \quad \text { for } \alpha \in \mathfrak{M}(q, a) \subseteq \mathfrak{M} ;
$$

here

$$
S(q, a)=\sum_{1 \leq h \leq q} e\left(a h^{2} / q\right), \quad v(\beta)=\frac{1}{2} \sum_{m \leq x} m^{-1 / 2} e(\beta m) .
$$

Our next goal is to approximate the mean square of $r^{*}(n, \mathfrak{M})$ by the mean square of the integral

$$
R^{*}(n)=\int_{\mathfrak{M}} f^{*}(\alpha)^{3} e(-\alpha n) d \alpha .
$$

Similarly to (5),

$$
\begin{equation*}
\sum_{n \leq x} r^{*}(n, \mathfrak{M})^{2}=\sum_{n \leq x} R^{*}(n)^{2}+O\left(\Sigma_{3}+\left(\Sigma_{1} \Sigma_{3}\right)^{1 / 2}\right), \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Sigma_{3}=\sum_{n \leq x}\left|\int_{\mathfrak{M}}\left[f(\alpha)^{3}-f^{*}(\alpha)^{3}\right] e(-\alpha n) d \alpha\right|^{2} \leq \int_{\mathfrak{M}}\left|f(\alpha)^{3}-f^{*}(\alpha)^{3}\right|^{2} d \alpha, \tag{12}
\end{equation*}
$$

after yet another appeal to Bessel's inequality. By [18, Theorem 4.1], when $\alpha \in \mathfrak{M}(q, a)$,

$$
f(\alpha)=f^{*}(\alpha)+O\left(q^{1 / 2+\epsilon}\right) .
$$

Thus,

$$
\int_{\mathfrak{M}(q, a)}\left|f(\alpha)^{3}-f^{*}(\alpha)^{3}\right|^{2} d \alpha \ll q^{1+2 \epsilon} \int_{\mathfrak{M}(q, a)}\left(|f(\alpha)|^{4}+q^{2+4 \epsilon}\right) d \alpha,
$$

whence

$$
\int_{\mathfrak{M}}\left|f(\alpha)^{3}-f^{*}(\alpha)^{3}\right|^{2} d \alpha \ll Q^{1+2 \epsilon} \int_{0}^{1}|f(\alpha)|^{4} d \alpha+P Q^{4+6 \epsilon} N^{-2}
$$

Bounding the last integral using (8) and substituting the ensuing estimate into (12), we obtain

$$
\begin{equation*}
\Sigma_{3} \ll Q N^{2+2 \epsilon}+P Q^{4} N^{-2+3 \epsilon} \ll Q N^{2+2 \epsilon} . \tag{13}
\end{equation*}
$$

Combining (5), (9)-(11), and (13), we deduce that

$$
\begin{equation*}
\sum_{n \leq x} r^{*}(n)^{2}=\sum_{n \leq x} R^{*}(n)^{2}+O\left(N^{4+\epsilon} Q^{-1 / 2}+N^{3+\epsilon} Q^{1 / 2}\right) . \tag{14}
\end{equation*}
$$

We now proceed to evaluate the main term in (14). We have

$$
\int_{\mathfrak{M}(q, a)} f^{*}(\alpha)^{3} e(-\alpha n) d \alpha=q^{-3} S(q, a)^{3} e(-a n / q) \int_{\mathfrak{M}(q, 0)} v(\beta)^{3} e(-\beta n) d \beta
$$

so

$$
R^{*}(n)=\sum_{q \leq Q} A(q, n) I(q, n),
$$

where

$$
A(q, n)=\sum_{\substack{1 \leq a \leq q \\(a, q)=1}} q^{-3} S(q, a)^{3} e(-a n / q), \quad I(q, n)=\int_{\mathfrak{M}(q, 0)} v(\beta)^{3} e(-\beta n) d \beta
$$

Hence,

$$
\begin{equation*}
\sum_{n \leq x} R^{*}(n)^{2}=\sum_{n \leq x} I(n)^{2} \Xi_{3}(n, Q)^{2}+O\left(\left(\Sigma_{4} \Sigma_{5}\right)^{1 / 2}+\Sigma_{5}\right), \tag{15}
\end{equation*}
$$

where

$$
\begin{gather*}
\Xi_{3}(n, Q)=\sum_{q \leq Q} A(q, n), \quad I(n)=\int_{-1 / 2}^{1 / 2} v(\beta)^{3} e(-\beta n) d \beta, \tag{16}\\
\Sigma_{4}=\sum_{n \leq x} I(n)^{2}\left(\sum_{q \leq Q}|A(q, n)|\right)^{2}, \quad \Sigma_{5}=\sum_{n \leq x}\left(\sum_{q \leq Q}|A(q, n)(I(n)-I(q, n))|\right)^{2} .
\end{gather*}
$$

By [18, Theorem 2.3] and [18, Theorem 4.2],

$$
\begin{equation*}
I(n)=\Gamma(3 / 2)^{2} \sqrt{n}+O(1)=\frac{\pi}{4} \sqrt{n}+O(1), \quad A(q, n) \ll q^{-1 / 2} \tag{17}
\end{equation*}
$$

Furthermore, since $A(q, n)$ is multiplicative in $q,[18$, Lemma 4.7] yields

$$
\begin{align*}
\sum_{q \leq Q}|A(q, n)| & \leq \prod_{p \leq Q}\left(1+|A(p, n)|+\left|A\left(p^{2}, n\right)\right|+\cdots\right) \tag{18}\\
& \ll \prod_{p \leq Q}\left(1+c_{1}(p, n) p^{-3 / 2}+3 c_{1} p^{-1}\right) \ll(n Q)^{\epsilon},
\end{align*}
$$

where $c_{1}>0$ is an absolute constant. In particular, we have

$$
\begin{equation*}
\Sigma_{4} \ll N^{4+\epsilon} . \tag{19}
\end{equation*}
$$

We now turn to the estimation of Σ_{5}. By Cauchy's inequality and the second bound in (17),

$$
\Sigma_{5} \ll(\log Q) \sum_{n \leq x} \sum_{q \leq Q}|I(n)-I(n, q)|^{2}
$$

Another application of Bessel's inequality gives

$$
\sum_{n \leq x}|I(n)-I(n, q)|^{2} \leq \int_{P / q N^{2}}^{1 / 2}|v(\beta)|^{6} d \beta
$$

Using [18, Lemma 2.8] to estimate the last integral, we deduce that

$$
\Sigma_{5} \ll \log Q \sum_{q \leq Q}\left(q^{2} N^{4} P^{-2}+1\right) \ll N^{2} Q^{3+\epsilon} .
$$

Substituting this inequality and (19) into (15), we conclude that

$$
\begin{equation*}
\sum_{n \leq x} R^{*}(n)^{2}=\sum_{n \leq x} I(n)^{2} \mathfrak{S}_{3}(n, Q)^{2}+O\left(N^{3+\epsilon} Q^{3 / 2}\right) . \tag{20}
\end{equation*}
$$

We then use (17) and (18) to replace $I(n)$ on the right side of (20) by $\frac{\pi}{4} \sqrt{n}$. We get

$$
\sum_{n \leq x} I(n)^{2} \Im_{3}(n, Q)^{2}=\frac{\pi^{2}}{16} \sum_{n \leq x} n \Im_{3}(n, Q)^{2}+O\left(N^{3+\epsilon}\right)
$$

Together with (14) and (20), this leads to the asymptotic formula

$$
\begin{equation*}
\sum_{n \leq x} r^{*}(n)^{2}=\frac{\pi^{2}}{16} \sum_{n \leq x} n \Im_{3}(n, Q)^{2}+O\left(N^{4+\epsilon} Q^{-1 / 2}+N^{3+\epsilon} Q^{3 / 2}\right) \tag{21}
\end{equation*}
$$

Finally, we evaluate the sum on the right side of (21). On observing that $\Im_{3}(n, Q)$ is in fact a real number, we have

$$
\sum_{n \leq t} \Im_{3}(n, Q)^{2}=\sum_{\substack{q_{1}, q_{2} \leq Q}} \sum_{\substack{1 \leq a_{1} \leq q_{1} \\\left(a_{1}, q_{1}\right)=1}} \sum_{\substack{1 \leq a_{2} \leq q_{2} \\\left(a_{2}, q_{2}\right)=1}}\left(q_{1} q_{2}\right)^{-3} S\left(q_{1}, a_{1}\right)^{3} S\left(q_{2},-a_{2}\right)^{3} \sum_{n \leq t} e\left(\left(a_{1} / q_{1}-a_{2} / q_{2}\right) n\right) .
$$

As the sum over n equals $t+O(1)$ when $a_{1}=a_{2}$ and $q_{1}=q_{2}$ and $O\left(q_{1} q_{2}\right)$ otherwise, we get

$$
\sum_{n \leq t} \mathfrak{S}_{3}(n, Q)^{2}=t \sum_{\substack{q \leq Q}} \sum_{\substack{1 \leq a \leq q \\(a, q)=1}} q^{-6}|S(q, a)|^{6}+O\left(\Sigma_{6}^{2}\right),
$$

where

$$
\Sigma_{6}=\sum_{\substack{q \leq Q \\ q \leq}} \sum_{\substack{1 \leq a \leq q \\(a, q)=1}} q^{-2}|S(q, a)|^{3} \ll Q^{3 / 2} .
$$

We find that

$$
\sum_{n \leq t} \mathfrak{G}_{3}(n, Q)^{2}=B_{1} t+O\left(t Q^{-1}+Q^{3}\right)
$$

with

$$
B_{1}=\sum_{\substack{q=1}}^{\infty} \sum_{\substack{1 \leq a \leq q \\(a, q)=1}} q^{-6}|S(q, a)|^{6} .
$$

Thus, by partial summation,

$$
\sum_{n \leq x} n \Im_{3}(n, Q)^{2}=\left(B_{1} / 2\right) x^{2}+O\left(x^{2} Q^{-1}+x Q^{3}\right)
$$

Combining this asymptotic formula with (21), we deduce that

$$
\sum_{n \leq x} r^{*}(n)^{2}=\frac{\pi^{2}}{32} B_{1} x^{2}+O\left(x^{15 / 8+\epsilon}\right) .
$$

Recalling (3), we see that (2) will follow if we show that

$$
B_{1}=\frac{8 \zeta(2)}{7 \zeta(3)} .
$$

This, however, follows easily from the well-known formula (see [7, §7.5])

$$
|S(q, a)|= \begin{cases}\sqrt{q} & \text { if } q \equiv 1(\bmod 2), \tag{22}\\ \sqrt{2 q} & \text { if } q \equiv 0(\bmod 4), \\ 0 & \text { if } q \equiv 2(\bmod 4) .\end{cases}
$$

Indeed, (22) yields

$$
B_{1}=\frac{4}{3} \sum_{q \text { odd }} q^{-3} \phi(q)=\frac{8 \zeta(2)}{7 \zeta(3)},
$$

where the last step uses the Euler product of $\zeta(s)$. This completes the proof of our theorem.

3. Second Proof of Theorem

Rankin [13] and Selberg [17] independently introduced an important method which allows one to study the analytic behavior of the Dirichlet series

$$
\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

where $a(n)$ are Fourier coefficients of a holomorphic cusp form for some congruence subgroup of $\Gamma=S L_{2}(\mathbb{Z})$. Originally the method was for holomorphic cusp forms. Zagier [20] extended the method to cover forms that are not cuspidal and may not decay rapidly at infinity. Müller [11, 12] considered the case where $a(n)$ is the Fourier coefficient of non-holomorphic cusp or non-cusp form of real weight with respect to a Fuchsian group of the first kind. It is this last approach we wish to discuss. Note that if we apply a Tauberian theorem to the above Dirichlet series, we then gain information on the asymptotic behavior of the partial sum

$$
\sum_{n \leq x} a(n) .
$$

We now discuss Müller's elegant work. For details regarding discontinuous groups and automorphic forms, see $[8,10,11,14,15,16]$. Let $\mathbb{H}=\{z \in \mathbb{C}: \mathfrak{I}(z)>0\}$ denote the upper half plane and $G=S L(2, \mathbb{R})$ the special linear group of all 2×2 matrices with determinant $1 . G$ acts on \mathbb{H} by

$$
z \mapsto g z=\frac{a z+b}{c z+d}
$$

for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$. We write $y=y(z)=\mathfrak{J}(z)$. Thus we have

$$
y(g z)=\frac{y}{|c z+d|^{2}} .
$$

Let $d x d y$ denote the Lebesgue measure in the plane. Then the measure

$$
d \mu=\frac{d x d y}{y^{2}}
$$

is invariant under the action of G on \mathbb{H}. A discrete subgroup Γ of G is called a Fuchsian group of the first kind if its fundamental domain $\Gamma \backslash \mathbb{H}$ has finite volume. Let Γ be a Fuchsian group of the first kind containing $\pm I$ where I is the identity matrix. Let $\mathcal{F}(\Gamma, \chi, k, \lambda)$ denote the space of (non-holomorphic) automorphic forms of real weight k, eigenvalue $\lambda=\frac{1}{4}-\rho^{2}, \mathfrak{R}(\rho) \geq 0$, and multiplier system χ. For $k \in \mathbb{R}, g \in S L(2, \mathbb{R})$ and $f: \mathbb{H} \rightarrow \mathbb{C}$, we define the stroke operator $\left.\right|_{k}$ by

$$
\left(\left.f\right|_{k} g\right)(z):=\left(\frac{c z+d}{|c z+d|}\right)^{-k} f(g z)
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$. The transformation law for $f \in \mathcal{F}(\Gamma, \chi, k, \lambda)$ is then

$$
\left(\left.f\right|_{k} g\right)(z)=\chi(g) f(z)
$$

for all $g \in \Gamma$. Automorphic forms $f \in \mathcal{F}(\Gamma, \chi, k, \lambda)$ have a Fourier expansion at every cusp κ of Γ, namely

$$
A_{\kappa, 0}(y)+\sum_{n \neq 0} a_{\kappa, n} W_{(s g n n) \frac{k}{2}, \rho}\left(4 \pi\left|n+\mu_{k}\right| y\right) e\left(\left(n+\mu_{k}\right) x\right),
$$

where μ_{κ} is the cusp parameter and $a_{\kappa, n}$ are the Fourier coefficients of f at κ. The functions $W_{\alpha, \rho}$ are Whittaker functions (see [11, §3]), $A_{\kappa, 0}(y)=0$ if $\mu_{k} \neq 0$ and

$$
A_{\kappa, 0}(y)= \begin{cases}a_{\kappa, 0} y^{1 / 2+\rho}+b_{\kappa, 0} y^{1 / 2-\rho} & \text { if } \mu_{\kappa}=0, \rho \neq 0, \\ a_{\kappa, 0} y^{1 / 2}+b_{\kappa, 0} y^{1 / 2} \log y & \text { if } \mu_{\kappa}=0, \rho=0 .\end{cases}
$$

An automorphic form f is called a cusp form if $a_{\kappa, 0}=b_{\kappa, 0}=0$ for all cusps κ of Γ. Now consider the Dirichlet series

$$
S_{\kappa}(f, s)=\sum_{n>0} \frac{\left|a_{\kappa, n}\right|^{2}}{\left(n+\mu_{k}\right)^{\prime}} .
$$

This series is absolutely convergent for $\mathfrak{R}(s)>2 \mathfrak{R}(\rho)$ and has been shown [12] to have meromorphic continuation in the entire complex plane. In what follows, we will only be interested in the case f is not a cusp form. If f is not a cusp form and $\mathfrak{R}(\rho)>0$, then $S_{\kappa}(f, s)$ has a simple pole at $s=2 \mathfrak{R}(\rho)$ with residue

$$
\begin{equation*}
\beta_{\kappa}(f)=\underset{s=2 \mathfrak{R}(\rho)}{\operatorname{res}} S_{\kappa}(f, s)=(4 \pi)^{2 \mathfrak{R}(\rho)} b^{+}(k / 2, \rho) \sum_{\epsilon \in K} \varphi_{\kappa, l}(1+2 \mathfrak{R}(\rho))\left|a_{\iota, 0}\right|^{2}, \tag{23}
\end{equation*}
$$

where K denotes a complete set of Γ-inequivalent cusps, $\varphi_{K, l}(1+2 \Re(\rho))>0$ and $b^{+}\left(\frac{k}{2}, \rho\right)>0$ if $\rho+\frac{1}{2} \pm \frac{k}{2}$ is a non-negative integer. For the definition of the functions $\varphi_{\kappa, l}$ and b^{+}, see Lemma 3.6 and (69) in [12]. This result (23) and a Tauberian argument then provide the asymptotic behaviour of the summatory function

$$
\sum_{n \leq x}\left|a_{\kappa, n}\right|^{2}\left|n+\mu_{\kappa}\right|^{r} .
$$

Precisely, we have (see [11, Theorem 2.1] or [12, Theorem 5.2]) that

$$
\begin{equation*}
\sum_{n \leq x}\left|a_{\kappa, n}\right|^{2}\left|n+\mu_{\kappa}\right|^{r}=\sum_{z \in R} \operatorname{ress}_{s=z} S_{\kappa}(f, s) \frac{x^{r+s}}{r+s}+O\left(x^{r+2 \Re \rho-\gamma}(\log x)^{g}\right), \tag{24}
\end{equation*}
$$

where $2 \mathfrak{R}(\rho)+r \geq 0, R=\{ \pm 2 \mathfrak{R}(\rho), \pm 2 i \mathfrak{J}(\rho), 0,-r\}, \gamma=(2+8 \mathfrak{R} \rho)(5+16 \mathfrak{R} \rho)^{-1}$, and $g=\max (0, b-$ 1); b denotes the order of the pole of $S_{\kappa}(f, s)(r+s)^{-1} x^{r+s}$ at $s=2 \Re \rho(0 \leq b \leq 5)$.

We now consider an application of (24). Let $Q \in \mathbb{Z}^{m \times m}$ be a non-singular symmetric matrix with even diagonal entries and $q(\mathbf{x})=\frac{1}{2} Q[\mathbf{x}]=\frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}, \mathbf{x} \in \mathbb{Z}^{m}$, the associated quadratic form in $m \geq 3$ variables. Here we assume that $q(\mathbf{x})$ is positive definite. Let $r(Q, n)$ denote the number of representations of n by the quadratic form Q. Now consider the theta function

$$
\theta_{Q}(z)=\sum_{\mathbf{x} \in \mathbb{Z}^{m}} e^{\pi i Z Q[\mathbf{x}]}
$$

By [11, Lemma 6.1], the Dirichlet series associated with the automorphic form θ_{Q} is

$$
(4 \pi)^{-m / 4} \zeta_{Q}\left(\frac{m}{4}+s\right)
$$

where

$$
\zeta_{Q}(s)=\sum_{n=1}^{\infty} \frac{r(Q, n)}{n^{s}}=\sum_{\mathbf{x} \in \mathbb{Z}^{m} \backslash\{\mathbf{0}\}} q(\mathbf{x})^{-s}
$$

for $\mathfrak{R}(s)>m / 2$. Using (24), Müller proved the following (see [11, Theorem 6.1])

Theorem (Müller). Let $q(\mathbf{x})=\frac{1}{2} Q[\mathbf{x}]=\frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}, \mathbf{x} \in \mathbb{Z}^{m}$ be a primitive positive definite quadratic form in $m \geq 3$ variables with integral coefficients. Then

$$
\sum_{n \leq x} r(Q, n)^{2}=B x^{m-1}+O\left(x^{\left(m-1 \frac{4 m-5}{m m-3}\right.}\right)
$$

where

$$
B=(4 \pi)^{m / 2} \frac{\beta_{\infty}\left(\theta_{Q}\right)}{m-1}
$$

and $\beta_{\infty}\left(\theta_{Q}\right)$ is given by (23).
We are now in a position to prove our theorem in page 2.
Proof. We are interested in the case $q(\mathbf{x})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ and so $r(Q, n)=r_{3}(n)$ counts the number of representations of n as a sum of three squares. By Müller's Theorem above,

$$
\sum_{n \leq x} r_{3}(n)^{2}=B x^{2}+O\left(x^{14 / 9}\right)
$$

where B is a computable constant. Specifically, we have by (23) (with $k=3 / 2$ and $\rho=1 / 4$)

$$
B=\frac{4 \pi^{2}}{3-1} b^{+}(3 / 4,1 / 4) \sum_{\iota \in K} \varphi_{\infty, l}(3 / 2)\left|a_{l, 0}\right|^{2},
$$

where K denotes a complete set of $\Gamma_{0}(4)$-inequivalent cusps and $a_{\iota, 0}$ is the 0 -th Fourier coefficient of $\theta_{Q}(z)$ at a rational cusp ι. Choose $K=\left\{1, \frac{1}{2}, \frac{1}{4}\right\}$. Then by p. 145 and (67) in [11], we have

$$
\left|a_{\iota, 0}\right|^{2}=W_{\imath}^{3}\left|G\left(S_{\imath}\right)\right|^{2}
$$

where $\iota=u / w,(u, w)=1, w \geq 1, W_{\iota}$ is width of the cusp ι, and

$$
\left|G\left(S_{\iota}\right)\right|^{2}=2^{-3} w^{-3}\left|\sum_{x=1}^{w} e\left(\frac{u}{w} x^{2}\right)\right|^{6}
$$

As $W_{1 / 4}=W_{1 / 2}=1, W_{1}=4$, we have $\left|a_{1,0}\right|^{2}=1,\left|a_{1 / 2,0}\right|^{2}=0$, and $\left|a_{1 / 4,0}\right|^{2}=1$. An explicit description of the functions $\varphi_{\infty, l}(s)$ in the case $\Gamma_{0}(4)$ is given by (see (1.17) and p. 247 in [5])

$$
\begin{gathered}
\varphi_{\infty, 1 / 4}(s)=2^{1-4 s}\left(1-2^{-2 s}\right)^{-1} \pi^{1 / 2} \frac{\Gamma(s-1 / 2) \zeta(2 s-1)}{\Gamma(s) \zeta(2 s)}, \\
\varphi_{\infty, 1 / 2}(s)=\varphi_{\infty, 1}(s)=2^{-2 s}\left(1-2^{-2 s}\right)^{-1}\left(1-2^{1-2 s}\right) \pi^{1 / 2} \frac{\Gamma(s-1 / 2) \zeta(2 s-1)}{\Gamma(s) \zeta(2 s)} .
\end{gathered}
$$

Thus for $s=3 / 2$, we have

$$
\begin{gathered}
\varphi_{\infty, 1 / 4}(3 / 2)=2^{-5}\left(1-2^{-3}\right)^{-1} \pi^{2} \frac{\zeta(2)}{\Gamma(3 / 2) \zeta(3)}, \\
\varphi_{\infty, 1 / 2}(3 / 2)=\varphi_{\infty, 1}(3 / 2)=2^{-3}\left(1-2^{-3}\right)^{-1}\left(1-2^{-2}\right) \pi^{2} \frac{\zeta(2)}{\Gamma(3 / 2) \zeta(3)} .
\end{gathered}
$$

Now, from p. 65 in [12], we have

$$
b^{+}(3 / 4,1 / 4)=G_{1 / 4,1 / 4}^{*}(3 / 2) .
$$

By Lemma 3.3 and (16) in [12],

$$
G_{1 / 4,1 / 4}^{*}(s)=\Gamma(s+1 / 2)^{-1}
$$

and so $b^{+}(3 / 4,1 / 4)=\Gamma(2)^{-1}$. In total,

$$
\begin{aligned}
B & =\frac{(4 \pi)^{2}}{(3-1)} \frac{1}{\Gamma(2)}\left(2^{-3}\left(1-2^{-3}\right)^{-1}\left(1-2^{-2}\right) \pi^{1 / 2} \frac{\zeta(2)}{\Gamma(3 / 2) \zeta(3)}\right. \\
& \left.+2^{-5}\left(1-2^{-3}\right)^{-1} \pi^{1 / 2} \frac{\zeta(2)}{\Gamma(3 / 2) \zeta(3)}\right) \\
& =\frac{8 \pi^{4}}{21 \zeta(3)}
\end{aligned}
$$

Thus

$$
\sum_{n \leq x} r_{3}(n)^{2} \sim \frac{8 \pi^{4}}{21 \zeta(3)} x^{2}
$$

Remark. Müller's Theorem can also be used to obtain the mean square value of sums of $N>$ 3 squares. Precisely, if $r_{N}(n)$ is the number of representations of n by $N>3$ squares, then a calculation similar to the second proof of our theorem yields (compare with Theorem 3.3 in [2])

$$
\sum_{n \leq x} r_{N}(n)^{2}=W_{N} x^{N-1}+O\left(x^{(N-1) \frac{4 N-5}{4 N-3}}\right)
$$

where

$$
W_{N}=\frac{1}{(N-1)\left(1-2^{-N}\right)} \frac{\pi^{N}}{\Gamma(N / 2)^{2}} \frac{\zeta(N-1)}{\zeta(N)} .
$$

Acknowledgments

The authors would like to thank Wolfgang Müller for his comments regarding the second proof of the theorem. The third author would like to thank the Max-Planck-Institut für Mathematik for their hospitality and support during the preparation of this paper.

References

[1] P.T. Bateman, On the representations of a number as the sum of three squares, Trans. Amer. Math. Soc. 71 (1951), 70-101.
[2] J.M. Borwein, S.K.K. Choi, On Dirichlet Series for sums of squares, Ramanujan J. 7 (2003), 97-130.
[3] F. Chamizo, H. Iwaniec, On the sphere problem, Rev. Mat. Iberoamericana 11 (1995), 417-429.
[4] R. Crandall, S. Wagon, Sums of squares: computational aspects, manuscript (2001).
[5] J. Deshouillers, H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288.
[6] D.R. Heath-Brown, Lattice points in the sphere, in "Number Theory in Progress", vol. 2, eds. K. Györy et al., 1999, pp. 883-892.
[7] L.K. Hua, Introduction to Number Theory, Springer-Verlag, 1982.
[8] T. Kubota, Elementary Theory of Eisenstein Series, Wiley Halsted, New York, 1973.
[9] E. Landau, Collected Works, vol. 6, Thales-Verlag, Essen, 1986.
[10] H. Maass, Lectures on Modular Forms of One Complex Variable, Tata Institute, Bombay, 1964.
[11] W. Müller, The mean square of Dirichlet series associated with automorphic forms, Monatsh. Math. 113 (1992), 121-159.
[12] W. Müller, The Rankin-Selberg Method for non-holomorphic automorphic forms, J. Number Theory 51 (1995), 48-86.
[13] R.A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar functions. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 357-373.
[14] R. A. Rankin, Modular forms and functions, Cambridge University Press, 1977.
[15] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I, Math. Ann. 167 (1966), 292-337.
[16] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, II, Math. Ann. 168 (1967), 261-324.
[17] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Archiv. Math. Natur. B 43 (1940), 47-50.
[18] R.C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge University Press, 1997.
[19] I.M. Vinogradov, On the number of integer points in a sphere, Izv. Akad. Nauk SSSR Ser. Math. 27 (1963), 957-968, in Russian.
[20] D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 415-437.

Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
E-mail address: kkchoi@cecm.sfu.ca
Department of Mathematics, 1 University Station C1200, The University of Texas at Austin, Austin, TX 78712, U.S.A.

E-mail address: kumchev@math.utexas.edu
Max-Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: osburn@mpim-bonn.mpg.de

