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Abstract
The main result of this paper gives an explicit computation of the Ly norm of any
cyclotomic polynomial of the form

f(@) = ®,,(£2)®,, (£2P) - -- B, (FxPrP2Pr-1),

Here ®,, is the pth cyclotomic polynomial and the p; are primes that are not necessarily
distinct.
A corollary of this is the following theorem.

Theorem. If

f(z) = ), (elx)q)pz (€gaPt) -+ @, (epgPrP2Pr=1),
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where N = pips ---pr and €; = £, then

[Fr @2 (=) ®s(—a?) - - Do(—2® ) |I4

N2 7 4r

G+ HVIDA+ VT — (-5 + VI (1 - VIT)"
- = _

In particular the minimum possible normalized L4 norm of any polynomial of the above

form is attained by

By (—2) By (—a?) -+ By(—a? ).

1. Introduction

For positive a, the L, norm on the boundary of the unit disk is defined by

1 27 . o
ol = (55 [ Io(c®)|" as)

For a polynomial p(z) := an2™ + --- + a1z + ag, the Ly norm is also given by

1/a

lipllz = Vlan[? + -~ + [a1]? + [ao|?.

Let

L, = {iaizi ja; € {—1,1}}
i=0

denote the set of polynomials of degree exactly n with coefficients from {—1,1}. In

general, we will call polynomials with coefficients in {—1,1} Littlewood polynomials.
There are three classical conjectures concerning Littlewood polynomials. Each of these

is at least 50 years old and while there are a host of interesting partial results none is

solved. This is discussed in detail in [1] and also [8].

CoNJECTURE 1-1. (Littlewood) There exist positive constants ¢c1 and co such that
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for any n it is possible to find p, € L,, with

avn+1< |pn(2)| € covn+1

for all complex z with |z| = 1.

CONIJECTURE 1-2. (Erd8s) There exists a positive constant ¢ such that for all suffi-

ciently large n and all p, € L, we have ||pp||co = (1 +c)vVn + 1.

CONJECTURE 1-3. (Golay) There exists a positive constant ¢ such that for all n and

all p, € L, we have ||py||ls = (1 +c¢)v/n + 1.

Because of the monotonicity of the L, norms, the conjecture of Golay implies the
conjecture of Erdés.
The Mahler measure of a polynomial
pn(z) = alz —a1)(z —a2) - - (z — ay)

is, by definition, the product of all the roots of p,, that have modulus at least 1 multiplied

by the leading coefficient. That is,

M(py) = la| I leul-

It is also the Ly norm:

e ey " loglp (¢) i) = o
The following conjecture is proved in Borwein and Choi [1999] for N odd and for a
variety of even N including N = 2. It is still open in general for N even. There are some
partial results for even case. In [5], Conjecture 1-4 is proved when N = 2p' or when P(x)

is a separable polynomial.

CONJECTURE 1-4. (Characterization of cyclotomic Littlewood polynomials)
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A Littlewood polynomial P(z) of degree N —1 has Mahler measure 1 if and only if P can

be written in the form
P(z) = £@p, (£2)Qp, (£271) -+ @y, (L7721
where N = p1ps - - - pr and the p; are primes, not necessarily distinct and

D,(z) := Z a(m,n)z™
is the nth cyclotomic polynomial.

Identifying extremal polynomials with respect to any of the above conjectures is hard.
The Littlewood polynomials of measure 1 (which we call cyclotomic Littlewood polyno-
mials) are clearly the minimal polynomials with respect to the Ly norm and, thus one
expects them to have relatively large L, norm when p > 2 (because of Holder’s inequality:
if 1<a<f<ooand a' + 47" =1, then [|fglls < Ifllallglls-)

The main purpose of this paper is to explicitly compute the L, norms of the type
of cyclotomic polynomials that arise in the above conjecture (and hence, conjecturally,
all cyclotomic Littlewood polynomials). This will show that both the L, norm and the
supremum norm of such polynomials must be relatively large.

The size of the coefficients of general cyclotomic polynomials has been the subject of
numerous investigations. Erdo§ conjectured that A(n) := max,, |a(m,n)| tends to infinity
for almost all n. This conjecture is proved by Maier in [9] (also see [10] and [11]). In
general, the coefficients of ®,,(z) can be large.

Cyclotomic Littlewood polynomials of degree N — 1 have all coefficients of size 1 and

hence have Ly norm v/ N. So by monotonicity of the norms, ||P||4 > v N. We will prove
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in Theorem 2-6 below that a considerably stronger result holds. Namely

[1P[]4 > NM — [O.589-

2. Proofs

Consider a cyclotomic Littlewood polynomial h(x) which factors in the form

where f(z) and g(x) are cyclotomic Littlewood polynomials of degrees k¥ — 1 and [ — 1.
The 4th power of the 4-norm of h(z) on the unit circle has the same value as the constant
term of (h(z)h(z )2 X (f(2)f(271)* = ao+ T @i’ +277) and (g(x)g(= 1)) =
b0+2fgf U b;(zi+2~%), then this constant term has value co = agbo+2axb; . Furthermore,
h(z) has degree kl — 1 and the coefficient of ¥, c;, in (h(z)h(z~!))? has value agby1 +
aob; + apb;_1. Written in matrix form, this becomes

co bo 2by ag

Chil by bi—1 + b1 | | ak

Each g(z) of degree | — 1 has an associated 2 x 2 matrix
bo /12 20 /12

bl/l2 (bi—1 + bl+1)/l2

Here we normalize the matrix by dividing 1? which is ||g||3. For example, ®;(z) =1+ =z

has the associated matrix

N
[\

Q
p
I

-
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and ®3(z) = 1 — z has the associated matrix

3
__2
:2

-1

1
1

More generally, for odd prime p, &, = ®,(z) =1+ z +...+ 2P~ ! is associated with

i+35)500—3)

+_
G, =
1 1y 1 2
_g(P—;) z(p+ 5)_
and @5, = ®,(—z) =1 -z + 22 — ...+ 2P~ ! is associated with
P p
Fo+4;) —5(0—13)
G, =
—s(p=3) 3+ 3)

for odd prime p. This gives an inductive method for determining the 4-norms of cyclo-

tomic Littlewood polynomials built up in the fashion (2-1).

PROPOSITION 2-1. If

f(.’li') = (I>P1 (6137)(1)?2 (621.1)1) U (Ppr (erxplp2"'pr_1)’

where N = pips -+ p, and €; = £, then

[Fil-gYil !
— =11 €r .. (€2 (€1
N2 ||f||3 [ O]Gl)r G;Dz Gp1
0

For example, let c¢p o be the 4th power of the 4-norm of the polynomial f,(z) =

(z¥ 7" = 1) of degree 2" — 1 and cp o the coefficient of 22" in (f,(2)fn(z™1))2.

[Tiei (=
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Then

Cn,0 Cn—1,0 6

= G; = (G;)n_l

Cp,2n Cp—1,2n-1 1

In fact, we can eliminate the coeflicients of the form ¢, 2= in the recursion. Starting from

the equations

Cn+1,0 = 6cny0 — 8cp,on

Cn+1,2n+1 = Cpo — 4cp on

we eliminate cp,2n to obtain ¢, 41 an+1 = L¢n11,0 — 2¢n,0 and thus ¢y 2n = 2cn0 —2¢n—1,0-

Substituting this in the first equation gives
Cnt1,0 = 2Cn,0 + 16¢p_1,0,

a recursion involving only the 4-norms.

The eigenvalues for the matrix G5 are (1 +1/17)/4. The 4th power of the 4-norm will
thus increase by a factor of approximately 1 4 1/17 for each doubling of the length. The
4th power of the 4-norm divided by the 2nd power of the 2-norm will increase by a factor

of approximately (1 4+ +/17)/4. For length n, this quotient will be of the order

logs n
<1+ V17> ’ 0.357...
— =n i

We extend the definition of the matrix G by

Zn+5) 3(n—12)

(n—3) 3(n+2)

D=
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forn=2,3,--- and

Zn+ L) —4(n-1)

~Ho - 1) dn+2)

for n = 3,4,---. The matrices G satisfy the following properties.

LEMMA 2-2. Let

Then for odd primes p and q, we have
(i) Gf = EG,E and G, = EG} E;
(i) Gy =GIE and Gf =G, E;

(i) Gf -Gf =GE =Gf -GE;
(iv) G} -G¥ = G;p =Gy -Gf;

(v) (G3)" =G

The aim of this article is to consider the set of the cyclotomic Littlewood polynomial
of degree N —1 such that N is a product of r primes and to show that the normalized L4
norm || f||1/]|f||4 attains its minimal value when f(z) = f.(z),i.e.,p1 =pa =+ =p, =2

and € = €3 =--- = ¢, =+ in (2-1).

LEMMA 2-3. Letr > 1 and

1 A
rGEr-1 ... G6 —
P

G;r Pr—1
0 B

Then A > 4|B| > 0. Moreover, B <0 if and only if G;; = G, for odd prime p > 3.
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Proof. We prove by induction on r. When r =1,

1 1 3/2
Gy =Gy =
0 0 1/4
and
20+ ) 2+ %)
N 1 1
Gp = ; Gp =
0 0
to-b) - 1)

Since £(p+ 5;) —4 % (§(p— 3)) = 3 > 0, the lemma s true for 7 = 1.

Suppose
1 A
Gy Ghy =
0 B
with A > 4|B| > 0.
If G;ﬁ = G, then
1 A 34/2 — 2B
G;: o -G16711 =G, =
0 B A/A—B

Since A/A— B > A/4—|B| >0, so

(;A—23> —4‘%A—B‘:%A+ZB>A_74|B|>

0.

The case G} = G7 can be proved in the same way as G§ = G5 E by (ii) Lemma 2-2.

If G57 = G, then
o+ 5:)A+3500-5)B

sp—3)A+3(p+2)B



10 PETER BORWEIN, STEPHEN CHOI AND RON FERGUSON
for p > 3. Since

1 1 1 2 1 1 1
“p=—=)A+= VB> p-=)A4-= Z) B
6( p) +3(p+p> 6(p p) 3(p+p)||
4 1 1 2
“p=—=)-= VY B
S HGH RGP
1 4
=(=p——)|B
(37— 5;) 181>

it then follows that

2 1 4 1 1 1 1 2
2 — A+ (p=-2)B)—-4|Z(p-=)Aa+= ‘B
(Glrrg)avs(r-3)8) 4[5 (p-7) 243 (+ 1)
2 1 4 1 4 1 4 2
=z A+ (p—Z)B-—<(p-—=)A—_ “)B
3 <p+ 2p) *3 (p p) 6 (p p> 3 (p+p>

zlA—éB>0.
p p

The case G = G, can be proved in the same way. [

p

For integer t > 0, we let

(3 + 5 VIDE + VID)! = (=3 + 5 VIT)(1 = VIT)!

ag .=

4t
_AVTT((1 = VIt = (14 VIT)Y)
be = 17 - 4t
VT + VI = (1= VIT)Y)
= 34 4
5 (3 + VI (1 = VIT) = (=5 + ZVIT) (1 + VIT)!
t 1= at

and
A= (1+VIDI+(1-VIT)!  and B := (1+V17)  — (1 - V17

Since
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and

B,=2 Y (;) (V17)™ >0,

m=1 (mod 2)

it then follows that
14, + 2V17B
a; = 20t TV oI ?ﬁ i >0

—44/17B,
bt = 717 4 <0

17B
_ V1B

“= 3aat

and d; can take positive or negative values for various ¢. By diagonalizing G , it can be

shown that for integer t > 0,
A\t az by
(Gy) = ) (2-2)

ct dy

LEMMA 24. Let A>0,B>20andt>0. Ifp>3orifp=2and B >0, then we

have

A A
Lo](G,) G| | >no@) ™| |- (2:3)
B B

Proof. Note that in view of (2-3), we have [1 0] (G;)t = [a¢ by]- S

[10](G;)" (G - G3)

2 1 3 4 4
Pt3, —33P— 3 2

1 1 11 2
6P~ —a3P T+
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where
2 1 3 1 1 1
A(p) == (gat + ébt) P’ - (§at + th) p+ (gat - gbt)
and
4 1 4 2
/.Lt(p) = (gat + gbt> p2 + (2a/t + bt)p + (—gat + gbt) .

Note that 2a; + §by = ( A+ ‘/_Bt) > 0 since Ay, B; > 0 and

d 2 1 3 1 2 1 3 1
d—p)\t(p) =2 <§at + Ebt> p— (5(]4, + th) 2 4 (gat + —bt> - (50/75 + th
1

( P ) >0

T 68

Thus A(p) is increasing in p. Hence A(p) > A (2) =0if p > 2 and

1 (11 9v/17

if p > 3. Similarly, % sar + lbt % ( A + 2‘FB,g) > 0 and

d 4 1 4 1
d—put(p) =2 (gat + gbt) p+ (Zat + bt) Z 4 (g(lt + gbt) + (2at + bt)

So p¢(p) is increasing in p and

pe(p) = pe(2) = T (4At + —

for p > 2. Therefore, for p > 3,

A A
[10](Gy)" (Gf - G3) _ [)\t(P) /it(P)]

(2:5)
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by (2-4) and (2-5) and for p = 2 and B > 0,

10](Gy) (Gf -G5) | | =

This proves Lemma 2-4. [

LEMMA 2:5. If A>4|B| >0,p>2,¢g>3 and t > 0, then
A

[10](G;) Gra; >[10](Gy)™
B B

Proof. We first let
1ol (G;)" (656; - (63)°) = lab
and claim that @ > 0 and b < 0. In fact, by (2-2) we get
1224 -4t .p-q-a = ((136At + 24V1TBy) ¢ + 2724, + 48\/1—73t) P
- <1071At + 279\/ﬁ3t) g
+ ((272/11t + 144V17B,)g? — (684, + 36x/ﬁBt))
= f(p,q)

and
12244t p.gq-b = ((272At +48V17B,)q” — (10884, + 192‘/ﬁBt)) v’
_ (612 A, + 324\/1_73t) pq
+ (3444, + 288VITB,)g* + (2724, + 144VTTB,) )

:==g(p,q)-
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Since
of g’; 9 _y ((136At + 24V17By)q® + 2724 + 48\/ﬁBt) p— (10714, + 279V17B;)q

>4 ((136At + 24V1TBy)¢? + 2724, + 48\/ﬁBt) — (10714, + 279V17B,)q
> 12(136A4; + 24V17B;)q — (10714, + 279V17B;)q

= (5614; + 9V17B;)q > 0

for ¢ > 3, hence

fw,9) > f(2,9)
=4 ((136At + 24VITB,)¢* + 2724, + 48\/ﬁBt)
—2 (1071At + 279\/ﬁBt) q
+ (2724, + 144VTTB,)¢? — (684, +36V1TB,))
>4 ((136At + 24V1TB,)3q + 2724, + 48\/ﬁBt)
~2 (10714, +279V/17B:) ¢
+ ((272At + 144V17By)3q — (684, + 36\/ﬁBt))

= (306A; + 162V17B;)q + 10204, + 1567/17B; > 0.

Similarly we can prove that g(p, ¢) is increasing both in p and ¢. Hence g(p, q) > ¢(2,3) =
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6936A4; + 1752+/17B; > 0. Therefore a > 0 and b < 0. It then follows that

t 2 A
101 (G3)" (G567 - (6)°)
B
A
= [a b] =aA + bB
B

> aA — |bB| = aA + b|B|
> a4|B| + b|B| = (4a + b)|B],

because A > 4|B| > 0. It suffices to show that 4a+b > 0 or equivalently 4f(p, ¢)—g(p, q) >

0. Since
4f(p,q) — 9(p, @)
- ((272At +48VITB,) @ + 21764, + 384\/ﬁBt) P
— (36724, + 792V17B, ) pg
+ ((544,41t +288VATB,) % — (5444, + 288\/ﬁBt))
= k(p, q)-
As before, we can show that k(p, q) is increasing both in p and ¢. Hence
k(p,q) > k(2,3) = 8164, + 816V17B; > 0.
This completes the proof of the lemma. [

THEOREM 2-6. If

[(@) = Bp, (€12) By, (€2271) - - - B, (€ 2™ P2 P71,
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where N = pips ---pr and €; = £, then

IFUE o @2 (—2)Bs(=a?) - @a(=a” )II§ _ £:lld

N2 7 qr A
, 1
=[10](G3)
0
G+ HVIDA+ VI — (=L + SVID( - VIT)
_ .

Proof. We consider the set of all cyclotomic Littlewood polynomials of degree N — 1
such that N is a product of r primes. We prove by induction on r. It is clear that for
€==+1,

1 1

noGs | |>noe;| | =
0 0

N W

So the theorem is true for » = 1 by Proposition 2-1. Let
€r € —\t € €
Gpr"'Gpllz(GZ) (Gplz"'Gpll)

be a Littlewood polynomial f with the smallest normalized L4 norm || f||3/||f||3 of degree

N—-1landt>0and!l=r—tand G}} # G;. We will show that

1 1
[10]Gy ---Got > [10](Gy)

If ¢ = +, then write G, 7} -+ -GS} -
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If B > 0, then by Lemma 2-4, we have [ > 2 and

1
[10](G5)" (Gg -+ G%)
0
A
=[10](G3)" G},
B
> [10](G5)"™
B
1
=10 (63)™" (Ggmr--G3)
0

which contradicts the minimality of || f||3/]f||3-
If B =0, by Lemma 2-3, we have [ = 1 and by Lemma 2-4

1 1
[10] (G ---G3) - [L0](G5) G | | =210(G5)
0 0 0

and the equality only holds when p; = 2. So

Gy ---Go = (G7) ' GY.

But
T 1 r—1 1
Loj(ez)" | | =Ro(&) 65
0 0
A Al
If B < 0. then by Lemma 2-3, A > 4|B| > 0 and =Gy with ¢ > 3 and
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A" > 4|B'| > 0. So

1 Al
N\t ven 1 . A\t _
[10] (Gz ) (sz "'Gpl) =[10] (G2 ) G;rle
0 B’
!
_\t42
>[10](G7)
BI
N2 vers - 1
= [1 O] (G2 ) (Gpt—z T Gpl)
0
by Lemma 2-5. This contradicts the minimality.
If ¢ = —, then we write
1 A
GrGazy - Go | | =
0 B
with B < 0 by Lemma 2-3. Thus
NE e 1
0
N\t A
=[10] (G2 )
B
ag bt A
=[10]
C¢ dt B
= atA + st
By induction assumption,
1 11
A=[10(G,,---G3) > [10](Gy) =a; =a,
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Since by < 0,¢,_+ > 0 and B <0, so

atA+ 0B > aiA
2 01ar—¢

2 aiar—t + biCr_g.

On the other hand,

Lol(Gy)" | | =no(es) (¢z)"

110
cdy| | Crogdry| |0
A
= [ar by]
Cr—t

= aar_¢ + bycr_y.

So

1 1
[10](G5) (Gp-Ga) | | 21101(G5)"
0 0

This completes the proof of Theorem 2-6. [
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