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Abstract. We introduce a collection of polynomials FN , associated to each

positive integer N , whose divisibility properties yield a reformulation of the
Goldbach conjecture. While this reformulation certainly does not lead to a

resolution of the conjecture, it does suggest two natural generalizations for

which we provide some numerical evidence. As these polynomials FN are
independently interesting, we further explore their basic properties, giving,

among other things, asymptotic estimates on the growth of their coefficients.

1. Introduction

Let P denote the set of odd primes. One of the oldest unsolved problems in
mathematics concerns the set P + P = {p+ q : p, q ∈ P}.

Conjecture 1.1 (Goldbach Conjecture). If N > 4 is an even integer, then N ∈
P + P.

If N is any positive integer, we say that the Goldbach conjecture holds for N if
N ∈ P + P. Otherwise, we say the the Goldbach conjecture fails for N . Of course,
we make no attempt here to prove the Goldbach conjecture, however we wish to
study a related collection of polynomials. In order to construct these polynomials,
we let χP : N→ {0, 1} denote the indicator function of P. That is,

χP(n) =
{

1 if n is an odd prime,
0 otherwise.

Furthermore, for each positive integer N , we define

R(N) =
N−1∑
n=1

χP(n)χP(N − n)

so that R(N) counts the number of ways to write N as a sum of two odd primes.
We note that R(N) = 0 if and only if N 6∈ P + P. To each positive integer N , we
associate a polynomial FN ∈ Z[x] given by

FN (z) =
N−1∑
k=0

(
N−1∑
n=1

χP(n)zkn
)2

.

Our first result shows that the FN (z) are closely related to the Goldbach problem.
In this article, we will always use ΦN to denote the Nth cyclotomic polynomial.
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Theorem 1.2. Suppose that N is a positive integer. Then ΦN divides FN if and
only if the Goldbach conjecture fails for N .

In other words, Theorem 1.2 reformulates the Goldbach conjecture in terms of
the divisibility properties of FN . Since no odd integer can be written as a sum of
odd primes, we observe immediately that ΦN divides FN for all odd N . Naively,
it is reasonable to conjecture that FN is irreducible for all even integers N > 4.
Unfortunately, FN always has at least one non-trivial irreducible factor.

Theorem 1.3. If N is a positive integer then Φ2N divides FN .

Early numerical evidence seems to suggest that FN/Φ2N is, in fact, irreducible for
all even integers N > 4. If this is the case, then the Goldbach conjecture would fol-
low. Similarly, it appears that, for odd integers N > 5, we have that FN/(ΦNΦ2N )
is irreducible. Although this is not relevant to the Goldbach conjecture, we find it
independently interesting.

Conjecture 1.4. If N > 5 is an integer then the following conditions hold.

(i) If N is even, then FN/Φ2N is irreducible.
(ii) If N is odd, then FN/ΦNΦ2N is irreducible.

As we have noted, Conjecture 1.4 (i) would imply the Goldbach conjecture.
However, the converse is possibly false. Indeed, FN/Φ2N could be reducible but
still not divisible by ΦN . As such, we should view Conjecture 1.4 as being signifi-
cantly harder than the Goldbach conjecture, and therefore, not likely within reach
using current techniques. Nonetheless, we find it interesting to see the Goldbach
conjecture in this context.

As evidence in favor of Conjecture 1.4, we have found that it holds for all N ≤ 50.
For even N , the first few polynomials FN/ΦN are given in the following list.

F6/Φ12 = z46 + z44 − z40 − z38 + 3 z36 + 4 z34 + z32 − 3 z30 − 2 z28 + 3 z26

+ 5 z24 + 2 z22 − 2 z18 − z16 + 2 z14 + 5 z12 + 3 z10 − z8 − 3 z6 + 4 z2 + 4

F8/Φ16 = z90 − z82 + 3 z76 + z74 − 3 z68 − z66 + 2 z64 + 4 z62 + 3 z60 + z58

− 2 z56 − 4 z54 + 2 z52 − z50 + 5 z48 + 4 z46 − 2 z44 + 4 z42 − z40

− 4 z38 + 2 z36 − 2 z34 + 6 z32 + 4 z30 + z28 + 2 z26 − 4 z24 − 2 z18

+ 9 z16 + 3 z12 + 3 z10 − 7 z8 + z6 + 9

F10/Φ20 = z118 + z116 − z108 − z106 + z104 + z102 + 2 z100 + 3 z98 + z96 − z94

− z92 − z90 + z86 + z84 + 4 z82 + 4 z80 + 2 z76 + 2 z74 − z72 − z70

− 2 z66 + 2 z64 + 9 z62 + 5 z60 + 4 z56 − 4 z52 + 3 z48 + z44 + 7 z42 + 8 z40

+ 2 z38 + z34 − 3 z30 + z28 + 3 z26 + z24 + 6 z22 + 8 z20 + 2 z16

+ 4 z14 − 3 z12 − 4 z10 + 3 z8 + z6 + 9 z2 + 9.
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Now we give the analogous list but for odd N .

F7/(Φ7Φ14) = z48 − z46 + z38 + z36 − z34 − z32 + 3 z28 − 3 z26 + 2 z24

+ z20 − z18 − 2 z16 + 3 z14 − z10 + z8 + z6 − 4 z2 + 4

F9/(Φ9Φ18) = z100 − z94 + z86 + 2 z84 + z82 − z80 − 2 z78 − z76 + 3 z72

+ 4 z68 − z66 + z64 − 4 z62 + 3 z58 + z54 − 2 z52 + 4 z50 + 4 z48

− z46 − z44 − 5 z42 + 3 z40 + 6 z36 − 2 z34 + z32 + z30 + 4 z28

− z26 − 4 z24 − 2 z22 + 2 z20 + 7 z18 − z16 − z14 + 2 z12 + 3 z10

+ 2 z8 − 8 z6 + 9

F11/(Φ11Φ22) = z120 − z118 + z106 − z104 + 2 z100 − z98 − z96 + z92 − z90

+ 2 z88 − 2 z86 + z84 − z82 + 3 z80 − 3 z74 + 4 z70 − 4 z68 + 2 z66

+ z64 − 2 z62 + 4 z60 − 2 z58 + z52 − 4 z46 + 4 z44 − z42 + 4 z40

− 2 z38 + z36 − 2 z34 − z32 + 4 z30 + 2 z28 − 5 z26 − 4 z24 + 6 z22

+ 2 z20 − z18 + z16 − 2 z14 + z10 + z8 + z6 − 9 z2 + 9.

Indeed, we have found that the right hand sides on the above lists are all irreducible
over Z.

Because of their relevance to the Goldbach conjecture, it may also be interesting
to study the number of roots of FN that lie on the unit circle. In view of Theorem
1.3, it is clear that FN has at least ϕ(2N) such roots. For even integers N > 4,
if FN has no other roots on the unit circle, then the Goldbach conjecture would
follow from Theorem 1.2. Our numerical evidence suggests this to be the case.
Furthermore, when N is odd, we know that FN must, in fact, have at least ϕ(2N)+
ϕ(N) roots on the unit circle. Again, our evidence suggests that there are no others.
Also, the identity

ϕ(2N) =

{
2ϕ(N) if N is even
ϕ(N) if N is odd.

holds for all positive integers N . So we pose the following strengthening of the
Goldbach conjecture.

Conjecture 1.5. If N > 5 is an integer then FN has precisely 2ϕ(N) roots on the
unit circle.

Similar to our note above, the converse of Conjecture 1.5 is not necessarily true.
FN could have many roots on the unit circle while still not being divisible by ΦN .
Once again, this conjecture should be regarded as more difficult than the Goldbach
conjecture.

We also observe that Conjecture 1.5 is a consequence of Conjecture 1.4. Indeed,
for the case of even N , if F/Φ2N is irreducible and has a root on the unit circle,
then it must be reciprocal, which it certainly is not. Similar remarks apply to
F/(ΦNΦ2N ) when N is odd.

We have computed the number of roots of FN on the unit circle for N ≤ 50 and
have found that Conjecture 1.5 holds for those FN . This complete list is given in
Table 1 including the number of roots inside, on and outside the unit circle for each
FN .
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Table 1. Location of roots of FN

N 2ϕ(N) [|z| < 1 |z| = 1 |z| > 1]
6 4 [16 4 30]
7 12 [4 12 44]
8 8 [24 8 66]
9 12 [8 12 92]
10 8 [16 8 102]
11 20 [16 20 104]
12 8 [48 8 186]
13 24 [40 24 200]
14 12 [40 12 286]
15 16 [40 16 308]
16 16 [36 16 338]
17 32 [36 32 348]
18 12 [56 12 510]
19 36 [40 36 536]
20 16 [80 16 626]
21 24 [60 24 676]
22 20 [64 20 714]
23 44 [56 44 736]
24 16 [92 16 950]
25 40 [84 40 980]
26 24 [100 24 1026]
27 36 [108 36 1052]
28 24 [92 24 1126]
29 56 [100 56 1132]
30 16 [132 16 1534]
31 60 [128 60 1552]
32 32 [144 32 1746]
33 40 [136 40 1808]
34 32 [144 32 1870]
35 48 [160 48 1900]
36 24 [168 24 1978]
37 72 [136 72 2024]
38 36 [180 36 2522]
39 48 [172 48 2592]
40 32 [184 32 2670]
41 80 [176 80 2704]
42 24 [200 24 3138]
43 84 [184 84 3176]
44 40 [244 40 3414]
45 48 [252 48 3484]
46 44 [228 44 3598]
47 92 [244 92 3620]
48 32 [288 32 4098]
49 84 [260 84 4168]
50 40 [264 40 4302]



POLYNOMIALS RELATED TO THE GOLDBACH CONJECTURE 5

It is worth noting that, in our construction of FN , the set of odd primes may
be replaced with any subset of N. In this way, one may attempt to prove theorems
analogous to those stated above. One such example, which is of particular interest
in number theory, arises in the following way.

The Liouville function λ : N→ {−1, 1} is the completely multiplicative function
such that λ(p) = −1 at every prime p. Now define the set

L = {n ∈ N : λ(n) = −1}.

It is a direction of our future research to examine the analogs of FN that are obtained
by using the above construction with L in place of P. Perhaps this strategy can
yield a proof that every positive even integer N > 2 satisfies N ∈ L + L. On
the surface, such a result appears to be easier than the Goldbach conjecture, and
therefore, is possibly within reach.

One can also consider weighted forms of FN . Similar to the study of the prime
number theorem, instead of using the above indicator function of P, we use the
weighted form

∼
χP(n) =

{
log n if n ∈ P,
0 otherwise

and define the corresponding polynomials
∼
FN by

∼
FN (z) =

N−1∑
k=0

(
N−1∑
n=1

∼
χP(n)zkn

)2

.

It is clear that the
∼
FN (z) do not have integer coefficients, so we might expect

different types of results regarding these polynomials. Nonetheless, we believe they
yield another interesting route for future research.

In the following two sections, we examine a series of basic properties of the
polynomials FN . Specifically in section 3, we produce estimates on the size of
the coefficients of FN , as well as asymptotic formulae for certain sums of their
coefficients. The remaining sections are devoted to the proofs of our results.

2. Properties of the polynomials FN

Now that we understand the relevance of the polynomials FN to the Goldbach
conjecture, we consider some of their additional properties. We begin with the
following result regarding their symmetry.

Theorem 2.1. If N is a positive integer then FN (z) = FN (−z).

Theorem 2.1 certainly implies that if ΦN (z) divides FN (z) then so does ΦN (−z).
Furthermore, we know that if M is an odd integer then Φ2M (z) = ΦM (−z). Com-
bining these observations with Theorem 1.2, we obtain the following corollary.

Corollary 2.2. If M is an odd integer and N = 2M then the following conditions
are equivalent.

(i) ΦN divides FN .
(ii) ΦM divides FN .

(iii) The Goldbach conjecture fails for N .
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Suppose now that, for any positive integer M , ζM is a primitive Mth root of
unity. We may view Corollary 2.2 as examining the value of FN (ζM ) when M is
a certain divisor of N . Next, we consider the values of FN (ζM ) when M is an
arbitrary divisor of M . We write [x] to denote the largest integer less than or equal
to x.

Theorem 2.3. If N > 4 is an integer and M | N then the following conditions
hold.

(i) If M is odd then

FN (ζM ) ≥ N
[N/2M ]∑
n=1

R(2nM).

(ii) If M is even then

FN (ζM ) ≥ N
N/M∑
n=1

R(nM).

Applying Theorems 2.3 and 1.2 immediately yield the following simpler lower
bound on FN (ζM ).

Corollary 2.4. If N > 4 is an integer and M | N , then FN (ζM ) ≥ NR(N) with
equality when M = N .

The case M = N may not be the only case of equality in Corollary 2.4. In fact,
if M is odd and N = 2M , then it can be shown that FN (ζM ) = NR(N) as well.
This result also provides a strengthening of one direction of Theorem 1.2. If ΦM
ever divides FN , then it follows from Corollary 2.4 that R(N) = 0. In other words,
we have established the following statement.

Corollary 2.5. Suppose N > 4 is an integer and M | N . If ΦM divides FN then
the Goldbach conjecture fails for N .

The converse of Corollary (2.5) is certainly false. Otherwise, Φ1 would divide
FN for every odd N , and it certainly does not. When restricted to even integers,
it is likely true, but only because the Goldbach conjecture would imply that the
hypothesis is always false. In fact, in view of Theorem 1.2, such a statement is
equivalent to the Goldbach conjecture.

3. The coefficients of FN

Let us now turn our attention to understanding the coefficients of FN . For this
purpose, we note that degFN ≤ 2(N − 1)2 and write

FN (z) =
2(N−1)2∑
m=0

aN,mz
m.

It is easy to see that the constant term in FN is given by the formula

aN,0 =

(
N−1∑
n=1

χP(n)

)2

= (π(N − 1)− 1)2

where π(N − 1) denotes the number of primes p ≤ N − 1. Furthermore, by multi-
plying out the terms in the definition of FN , we obtain an explicit formula for all
other coefficients of FN .
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Theorem 3.1. Let N be a positive integer. We have that

aN,m =
∑
d|m

m/d<N

min{N,d}−1∑
n=max{0,d−N}+1

χP(n)χP(d− n)

for all 0 < m ≤ 2(N − 1)2.

Among other things, Theorem 3.1 shows that

aN,m ≤
∑
d|m

R(d)

with equality whenever 0 < m ≤ N . We can rephrase the case of equality by saying
that

(3.1) aN,m =
∑
d|m

R(d)

whenever 0 < m ≤ N . It is worth noting that the right hand side of (3.1) does
not depend on N , so that the non-constant coefficients of the FN (z) stabilize as N
tends to infinity. More specifically, if we write a(m) = aN,m for some N ≥ m, the
polynomials FN (z)− aN,0 converge coefficient-wise to the power series

F (z) =
∞∑
n=1

a(m)zm.

It is straightforward to verify that F (z) has radius of convergence 1, and the se-
quence {FN (z)−aN,0} converges uniformly to F (z) on compact subsets of the unit
disk.

Let us now examine the individual terms a(m). If m is odd, then all divisors
of m are also odd, so we conclude that a(m) = 0. Hence, it is only interesting
to consider the situation where m is even, in which case the coefficients seem to
behave in a rather subtle way. However, we can obtain lower bounds in relation to
other famous arithmetic functions. Before proceeding, we recall that ω(n) denotes
the number of distinct prime factors of n and d(n) denotes the number of divisors
of n.

Theorem 3.2. If m > 1 is an integer then

(3.2) a(2m) ≥ ω(m)−
{

1 if m ≡ 2 mod 4,
0 otherwise.

Moreover, if the Goldbach conjecture is true, then

(3.3) a(2m) ≥ d(m)−
{

2 if m is even,
1 otherwise.

We note that the right hand side of (3.2) is always positive for m > 2. So taking
an integer m > 4, we have that a(m) = 0 if and only if m is odd. It is also worth
observing that the right hand sides of (3.2) and (3.3) are sometimes equal, namely
when m is prime. In general, however, d(m) is much larger than ω(m) so that our
bound under the Goldbach conjecture is stronger than the analogous unconditional
bound.

It is reasonable to expect that, not only is R(2d) positive for d > 2, but it is quite
large most of the time. More specifically, Hardy and Littlewood have proposed the
following asymptotic formula.
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Conjecture 3.3 (Hardy and Littlewood [3]). As n tends to infinity,

(3.4) R(2n) ∼ 2C2
n

log2 n

∏
p|n
p>2

p− 1
p− 2

,

where C2 is the twin primes constant

C2 =
∏
p>2

(
1− 1

(p− 1)2

)
.

Under the assumption of Conjecture 3.3, we can improve the bounds of Theorem
3.2. If 2k ‖ m, then define

(3.5) J(m) =
(

2− 1
2k

) ∏
p`‖m
p>2

(
1− 2

p`+1

)(
1− 2

p

)−1

.

Here, p` ‖ m means that p` | m but p`+1 - m.

Theorem 3.4. If Conjecture 3.3 is true, then

a(2m) ∼ 2C2J(m)m
log2m

as m tends to infinity.

For a positive integer M , it is also of interest to study the summatory function

A(M) =
2M∑
m=1

a(m).

By applying Theorem 3.2 directly, we are able to verify that

A(M) ≥
M∑
m=1

ω(m) +O(M) = M log logM +O(M),

where the last equality is obtained from [2], page 355. If we are willing to assume
the Goldbach conjecture, a similar argument reveals that

(3.6) A(M) ≥
M∑
m=1

d(m) +O(M) = M logM +O(M).

As we have remarked following our statement of Theorem 3.2, we anticipate that
a(2m) is large much of the time. However, in order to obtain an asymptotic formula
for a(2m), we needed to assume a very strong conjecture of Hardy and Littlewood.
In the case of A(M), we can obtain such a formula unconditionally.

Theorem 3.5. We have that

A(M) =
π2M2

3 log2M
+O

(
M2 log logM

log3M

)
.
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4. Proofs of the results from section 1

We begin this section with the proof to Theorem 1.2

Proof of Theorem 1.2. Let ζ be a primitive Nth root of unity. We have immediately
that

FN (ζ) =
N−1∑
k=0

(
N−1∑
n=1

χP(n)ζkn
)2

=
N−1∑
k=0

N−1∑
m=1

N−1∑
n=1

χP(m)χP(n)ζk(m+n)

=
N−1∑
m=1

N−1∑
n=1

χP(m)χP(n)
N−1∑
k=0

ζk(m+n).

We know that
N−1∑
k=0

ζk(m+n) = 0

unless m + n ≡ 0 (mod N). In our case, this may occur only when m + n = N ,
implying that

FN (ζ) =
N−1∑
n=1

χP(n)χP(N − n)
N−1∑
k=0

ζkN = NR(N).

If R(N) = 0 then FN (ζ) = 0 showing that ΦN must divide FN . On the other hand,
if ΦN divides FN , it is obvious that FN (ζ) = 0 so that R(N) = 0. �

We already have all of the tools necessary to prove Theorem 1.3.

Proof of Theorem 1.3. We must show that FN (eπi/N ) = 0. To see this, note that

FN (eπi/N ) =
N−1∑
k=0

(
N−1∑
n=1

χP(n)e
πikn
N

)2

=
N−1∑
k=0

N−1∑
m=1

N−1∑
n=1

χP(m)χP(n)e
πik(m+n)

N

=
N−1∑
m=1

N−1∑
n=1

χP(m)χP(n)
N−1∑
k=0

e
πik(m+n)

N .

The product χP(m)χP(n) = 0 unless m and n are both odd primes. In this case,
we certainly have that m+ n is even so that

(4.1)
N−1∑
k=0

e
πik(m+n)

N =
N−1∑
k=0

e
2πik((m+n)/2)

N .

Of course, 0 < (m + n)/2 < N implying that the right hand side of (4.1) equals
zero. In other words, we have shown that

χP(m)χP(n)
N−1∑
k=0

e
πik(m+n)

N = 0

for all 1 ≤ m,n < N , verifying the theorem. �
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5. Proofs of the results from section 2

Proof of Theorem 2.1. It follows directly from the definition that

(5.1) FN (−z) =
N−1∑
k=0

(
N−1∑
n=1

(−1)knχP(n)zkn
)2

.

If n is even, we certainly have that χP(n) = 0. Otherwise, we have that (−1)n = −1,
which implies that (−1)knχP(n) = (−1)kχP(n) for all n. Using (5.1), we find that

FN (−z) =
N−1∑
k=0

(
(−1)k

N−1∑
n=1

χP(n)zkn
)2

=
N−1∑
k=0

(
N−1∑
n=1

χP(n)zkn
)2

= FN (z)

which completes the proof. �

In view of Theorem 2.1, we obtain our proof of Corollary 2.2 almost immediately.

Proof of Corollary 2.2. In view of Theorem 1.2, we immediately have that (i) if
and only if (iii). To finish the proof, we will show that (i) if and only if (ii). To
see this, note that since M is odd, we have that ΦN (z) = ΦM (−z). Furthermore,
Theorem 2.1 implies that ΦN (z) divides FN (z) if and only if ΦN (−z) divides FN
and the result follows. �

Proof of Theorem 2.3. Suppose that a = 1 if M is odd and a = 0 if M is even. We
must show that

FN (ζM ) ≥ N
∑

1≤k≤N/(2aM)

R(2akM).

From the definition of FN , we have that

FN (ζM ) =
N−1∑
k=0

∑
2<p1,p2≤N−1

ζ
k(p1+p2)
M

=
∑

2<p1,p2≤N−1

N/M−1∑
i=0

M−1∑
k=0

ζ
(iM+k)(p1+p2)
M

=
N

M

∑
2<p1,p2≤N−1

M−1∑
k=0

ζ
k(p1+p2)
M .

Now the inner summation over k is zero unless (p1 + p2)/M ∈ Z. Hence we have

FN (ζM ) = N
∑

1≤`≤2(N−1)/M

∑
2<p1,p2≤N−1
p1+p2=`M

1

= N

 ∑
1≤`≤N/M

+
∑

N/M+1≤`≤2(N−1)/M

 ∑
2<p1,p2≤N−1
p1+p2=`M

1

= N
∑

1≤`≤N/(2aM)

R(2a`M) +N
∑

N/M+1≤`≤2(N−1)/M

∑
2<p1,p2≤N−1
p1+p2=`M

1

≥ N
∑

1≤`≤N/(2aM)

R(2a`M).
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and the result follows. �

Proof of Corollary 2.4. If M is even, we have that

FN (ζM ) ≥ N
N/M∑
n=1

R(nM) ≥ NR
(
N

M
·M
)

= NR(N).

If M is odd and N is even, then N/2M ∈ N so it follows that

FN (ζM ) ≥ N
N/2M∑
n=1

R(2nM) ≥ NR
(

2 · N
2M
·M
)

= NR(N).

Finally, if M and N are both odd, then NR(N) = 0 so that

FN (ζM ) ≥ N
[N/2M ]∑
n=1

R(2nM) ≥ 0 = NR(N).

�

Proof of Corollary 2.5. If ΦM | FN then we have that FN (ζM ) = 0. It follows from
Corollary 2.4 that R(N) = 0. �

6. Proofs of the results from section 3

Proof of Theorem 3.1. We first note that

FN (z) =
N−1∑
k=0

(
N−1∑
n=1

χP(n)zkn
)2

=
N−1∑
k=0

N−1∑
m=1

N−1∑
n=1

χP(m)χP(n)zk(m+n).

Relabeling the indices, we find that

FN (z) =
2(N−1)2∑
m=0

 ∑
d|m

m/d<N

∑
n1+n2=d

1≤n1,n2<N

χP(n1)χP(n2)

 zm

=
2(N−1)2∑
m=0

 ∑
d|m

m/d<N

min{N,d}−1∑
n=max{0,d−N}+1

χP(n)χP(d− n)

 zm

establishing the theorem. �

Proof of Theorem 3.2. Using Theorem 3.1, we have immediately that

a(2m) =
∑
d|2m

d−1∑
n=1

χP(n)χP(d− n).

However, it is clear that
d−1∑
n=1

χP(n)χP(d− n) = 0
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whenever d is odd, which implies that

a(2m) =
∑
d|2m
d even

d−1∑
n=1

χP(n)χP(d− n)

=
∑
d|m

2d−1∑
n=1

χP(n)χP(2d− n).(6.1)

We now use (6.1) to prove (3.2). If p is an odd prime, we have that χP(p)χP(2p−
p) = 1 implying

(6.2)
2p−1∑
n=1

χP(n)χP(2p− n) ≥ 1.

Now let ωodd(m) denote the number of distinct odd prime divisors of m and consider
three cases according to the residue class of m modulo 4.

(i) First assume that m is odd. In this case, we have that ωodd(m) = ω(m) and
m 6≡ 2 mod 4. The inequality (6.2) holds for every odd prime divisor or m.
Combining this observation with (6.1), we find that

a(2m) ≥ ωodd(m) = ω(m)

completing the proof in this case.
(ii) Now assume that m ≡ 0 mod 4. It is easily verified that

∑
d|4

7∑
n=1

χP(n)χP(8− n) = 1,

and then it follows from (6.1) and (6.2) that

a(2m) ≥ ωodd(m) + 1.

Since 2 divides m, we have that ωodd(m) = ω(m) − 1 establishing the result
in this case.

(iii) Finally, we consider the case that m ≡ 2 mod 4. Again, m is even so that
ωodd(m) = ω(m) − 1, and we conclude from (6.1) and (6.2) that a(2m) ≥
ωodd(m). This completes the proof of (3.2).

To establish (3.3), we assume that the Goldbach Conjecture holds. Hence, we
have that

(6.3)
2d−1∑
n=1

χP(n)χP(2d− n) ≥ 1

for all divisors d of m with d 6∈ {1, 2}. Here we consider two cases.
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(i) Suppose first that m is odd. Here, we have that (6.3) holds for all divisors d
of m different than 1. This gives

a(2m) =
∑
d|m

2d−1∑
n=1

χP(n)χP(2d− n) =
∑
d|m
d 6=1

2d−1∑
n=1

χP(n)χP(2d− n)

≥
∑
d|m
d 6=1

1 = d(m)− 1

completing the proof in this case.
(ii) In the case that m is even, we have that (6.3) holds except when d = 1 or

d = 2. Therefore, we have that

a(2m) =
∑
d|m

2d−1∑
n=1

χP(n)χP(2d− n) =
∑
d|m

d 6∈{1,2}

2d−1∑
n=1

χP(n)χP(2d− n)

≥
∑
d|m

d 6∈{1,2}

1 = d(m)− 2

which completes the proof in this case as well.

�

We now move on to a proposition from which we will deduce Theorem 3.4. Define

f(n) =
∏
p|n
p>2

p− 1
p− 2

to be the multiplicative function appearing in Conjecture 3.3, and note that if k ≥ 0
is the integer such that 2k ‖ m, then∑

d|m

df(d) =
∏
p`‖m

∑
d|p`

df(d)

=
∏
p`‖m

(
1 + pf(p) + p2f(p2) + · · ·+ p`f(p`)

)
=
(

1 + 2
2k − 1
2− 1

) ∏
p`‖m
p>2

(
1 +

p− 1
p− 2

· pp
` − 1
p− 1

)

= (2k+1 − 1)
∏
p`‖m
p>2

p`+1 − 2
p− 2

= mJ(m)(6.4)

by comparison with (3.5).

Proposition 6.1. Let 0 < ε ≤ 1
2 be given. Suppose there exists a positive integer

n(ε) such that

(6.5) (1− ε)2C2f(n)
n

log2 n
≤ R(2n) ≤ (1 + ε)2C2f(n)

n

log2 n
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for all n > n(ε). Then there exists a constant m(ε) such that

(6.6) (1− 2ε)2C2J(m)
m

log2m
≤ a(2m) ≤ (1 + 11ε)2C2J(m)

m

log2m

for all m > m(ε).

It is clear that Theorem 3.4 follows from Proposition 6.1, since Conjecture 3.3
implies that the hypothesis of Proposition 6.1 holds for every ε > 0.

Proof of Proposition 6.1. We shall not keep track explicitly of the necessary value
for m(ε), instead simply saying “when m is large enough” (in terms of ε) in the
appropriate places. We begin by writing

(6.7) a(2m) =
∑
c|2m

R(c) =
∑
d|m

R(2d) =
∑
d|m

d≤m1−ε

R(2d) +
∑
d|m

d>m1−ε

R(2d)

(where the second equality uses the fact that R(c) = 0 when c is odd).
First we establish the upper bound in equation (6.6). We have m1−ε > n(ε)

when m is large enough, and so the summands in the second sum on the right-hand
side of equation (6.7) can be bounded above by the upper bound in equation (6.5).
For the first sum on the right-hand side we simply use the trivial bound R(2n) ≤ n.
The result is

a(2m) ≤
∑
d|m

d≤m1−ε

d+
∑
d|m

d>m1−ε

(1 + ε)2C2f(d)
d

log2 d

≤
∑
d|m

d≤m1−ε

m1−ε + (1 + ε)2C2
1

(1− ε)2 log2m

∑
d|m

d>m1−ε

df(d)

= m1−ετ(m) +
1 + ε

(1− ε)2
2C2

log2m
mJ(m)

using the identity (6.4), where τ(n) denotes the number of divisors of n. It is well
known that τ(m) �ε m

ε/3, and so the first term is less than εm/ log2m when m
is large enough. Also (1 + ε)/(1− ε)2 ≤ 1 + 10ε for 0 < ε ≤ 1

2 . Therefore

a(2m) ≤ ε m

log2m
+ (1 + 10ε)

2C2

log2m
mJ(m) ≤ (1 + 11ε)2C2J(m)

m

log2m

when m is large enough, since J(m) ≥ 1 for all positive integers m and 2C2 > 1.
This establishes the upper bound in equation (6.6).

A similar method addresses the lower bound in equation (6.6). Since m1−ε >
n(ε) when m is large enough, the summands in the second sum on the right-hand
side of equation (6.7) can be bounded below by the lower bound in equation (6.5);
the first sum on the right-hand side is nonnegative, and so we can simply delete it.
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We obtain the lower bound

a(2m) ≥
∑
d|m

d>m1−ε

(1 + ε)2C2f(d)
d

log2 d

≥ (1− ε) 2C2

log2m

∑
d|m

d>m1−ε

df(d) = (1− ε) 2C2

log2m

(
mJ(m)−

∑
d|m

d≤m1−ε

df(d)
)
,(6.8)

again using the identity (6.4). This last sum is bounded above by

∑
d|m

d≤m1−ε

df(d) ≤
∑
d|m

(
m1−ε

d

)1+ε/2

df(d) ≤ m1−ε/2
∑
d|m

∏
p|d
p>2

p− 1
pε/2(p− 2)

.

There are only finitely many primes p for which (p− 1)/pε/2(p− 2) exceeds 1, and
so the inner product on the right-hand side is uniformly bounded by some constant
C(ε). Therefore∑

d|m
d≤m1−ε

df(d) ≤ C(ε)m1−ε/2
∑
d|m

1 = C(ε)m1−ε/2τ(m),

which as above is less than εm form large enough. Therefore equation (6.8) becomes

a(m) ≥ (1− ε) 2C2

log2m
(mJ(m)− εm) ≥ (1− 2ε)2C2J(m)

m

log2m

when m is large enough, again since J(m) ≥ 1 always. This establishes the lower
bound in equation (6.6). �

Before we begin the proof of Theorem 3.5, we will require a lemma regarding the
function

Q(x) =
∑
p+q≤x

1,

where p and q denote primes.

Lemma 6.2. Uniformly for x ≥ 3,

Q(x) =
x2

2 log2 x
+O

(
x2 log log x

log3 x

)
.

Proof. We begin by writing

Q(x) =
∑
p≤x

π(x−p) =
∑

x/ log x≤p≤x−
√
x

π(x−p)+O
( ∑
p≤x/ log x

π(x−p)+
∑

x−
√
x≤p≤x

π(x−p)
)
.
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Trivially π(x− p) ≤ π(x) ≤ x, so

Q(x) =
∑

x/ log x≤p≤x−
√
x

π(x− p) +O

( ∑
p≤x/ log x

π(x) +
∑

x−
√
x≤p≤x

x

)

=
∑

x/ log x≤p≤x−
√
x

π(x− p) +O

(
π(x)π

(
x

log x

)
+ x
√
x

)

=
∑

x/ log x≤p≤x−
√
x

π(x− p) +O

(
x2

log3 x

)
.(6.9)

In the main term, the prime number theorem gives∑
x/ log x≤p≤x−

√
x

π(x− p) =
∑

x/ log x≤p≤x−
√
x

(
li(x− p) +O

(
x− p

log2(x− p)

))
(we could insert a better error term, but it would not improve the final result).
Since x− p ≥

√
x, we have log(x− p)� log x and so

=
∑

x/ log x≤p≤x−
√
x

li(x− p) +O

( ∑
x/ log x≤p≤x−

√
x

x

log2 x

)

=
∑

x/ log x≤p≤x−
√
x

li(x− p) +O

(
x

log2 x
π(x)

)

=
∑

x/ log x≤p≤x−
√
x

li(x− p) +O

(
x2

log3 x

)
,

which transforms equation (6.9) into

(6.10) Q(x) =
∑

x/ log x≤p≤x−
√
x

li(x− p) +O

(
x2

log3 x

)
.

Using partial summation, we have∑
x/ log x≤p≤x−

√
x

li(x− p) =
∫ x−

√
x

x/ log x

li(x− t) dπ(t)

= π(x−
√
x) li(

√
x)− π

(
x

log x

)
li
(
x− x

log x

)
+
∫ x−

√
x

x/ log x

π(t)
log(x− t)

dt,

since the t-derivative of li(x− t) is −1/ log(x− t). In other words,∑
x/ log x≤p≤x−

√
x

li(x− p) = O

(
x
√
x+ π

(
x

log x

)
li(x)

)
+
∫ x−

√
x

x/ log x

π(t)
log(x− t)

dt

=
∫ x−

√
x

x/ log x

π(t)
log(x− t)

dt+O

(
x2

log3 x

)
,

and so equation (6.10) becomes

Q(x) =
∫ x−

√
x

x/ log x

π(t)
log(x− t)

dt+O

(
x2

log3 x

)
.
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Using the prime number theorem again, this becomes

Q(x) =
∫ x−

√
x

x/ log x

1
log(x− t)

(
t

log t
+O

(
t

log2 t

))
dt+O

(
x2

log3 x

)

=
∫ x−

√
x

x/ log x

t

(log t) log(x− t)
dt+O

(∫ x−
√
x

x/ log x

t

(log2 t) log(x− t)
dt+

x2

log3 x

)
.

(6.11)

In the error term, again log(x− t)� log x and log2 t� log2 x due to the endpoints
of integration, and so the entire integral is� x2/ log3 x. In the main term, we have

log x ≥ log t ≥ log
x

log x
= log x− log log x = (log x)

(
1 +O

(
log log x

log x

))
,

and therefore equation (6.11) becomes

(6.12) Q(x) =
1

log x

(
1 +O

(
log log x

log x

))∫ x−
√
x

x/ log x

t

log(x− t)
dt+O

(
x2

log3 x

)
.

Finally,∫ x−
√
x

x/ log x

t

log(x− t)
dt =

∫ x−2

0

t

log(x− t)
dt+O

(∫ x/ log x

0

t dt+
∫ x−2

x−
√
x

t dt

)
=
∫ x

2

x− u
log u

du+O

(
x2

log2 x

)
= x li(x)−

∫ x

2

u

log u
du+O

(
x2

log2 x

)
.(6.13)

By integration by parts, this integral is∫ x

2

u

log u
du =

u2

2
1

log u

∣∣∣∣x
2

+
∫ x

2

u2

2
1

u log2 u
du

=
x2

2 log x
+O

(
1 +

∫ √x
2

u

log2 u
du+

∫ x

√
x

u

log2 u
du

)
=

x2

2 log x
+O

(√
x · x+ x

x

log2 x

)
=

x2

2 log x
+O

(
x2

log2 x

)
.

Therefore equation (6.13) becomes∫ x−
√
x

x/ log x

t

log(x− t)
dt = x li(x)− x2

2 log x
+O

(
x2

log2 x

)
=

x2

2 log x
+O

(
x2

log2 x

)
by the fact that li(x) = x/ log x+O(x/ log2 x). Using this in equation (6.12) finally
yields

Q(x) =
1

log x

(
1 +O

(
log log x

log x

))(
x2

2 log x
+O

(
x2

log2 x

))
+O

(
x2

log3 x

)
=

x2

2 log2 x
+O

(
x2 log log x

log3 x

)
,

as claimed. �

Equipped with Lemma 6.2, we are now prepared to prove Theorem 3.5.
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Proof of Theorem 3.5. Starting with the definitions of a(m) and A(M), we have

A(M) =
2M∑
m=1

a(m) =
2M∑
m=1

∑
d|m

R(d) =
2M∑
m=1

∑
d|m

∑
p+q=d

1 =
∑

p+q≤2M

∑
1≤m≤2M
(p+q)|m

1.

Writing m = (p+ q)n, we obtain
(6.14)

A(M) =
∑

p+q≤2M

∑
1≤n≤2M/(p+q)

1 =
∑

1≤n≤M/2

∑
p+q≤2M/n

1 =
∑

1≤n≤M/2

Q

(
2M
p+ q

)
.

The trivial bound Q(x) ≤ x2 allows us to write

A(M) =
∑

1≤n≤log3M

Q

(
2M
n

)
+O
( ∑
n>log3M

(
2M
n

)2)
=

∑
1≤n≤log3M

Q

(
2M
n

)
+O
(

M2

log3M

)
,

since
∑
n>log3M n−2 � 1/ log3M by comparison with an integral. We use Lemma 6.2

to get

A(M) =
∑

1≤n≤log3M

(
(2M/n)2

2 log2(2M/n)
+O

(
(2M/n)2 log log(2M/n)

log3(2M/n)

))
+O

(
M2

log3M

)

= 2M2
∑

1≤n≤log3M

1
log2(2M/n)

1
n2

+O

( ∑
1≤n≤log3M

√
2M log log 2M

log3 2M

(
2M
n

)3/2

+
M2

log3M

)
,

since
√
x log log x/ log3 x is an (eventually) increasing function of x. By the conver-

gence of
∑
n n
−3/2, we obtain

A(M) = 2M2
∑

1≤n≤log3M

1
log2(2M/n)

1
n2

+O

(
M2 log logM

log3M

)
.

Finally, we have log(2M/n) = logM − log(n/2) = logM + O(log(log3M)) =
(logM)(1 +O(log logM/ logM)) as before. Therefore

A(M) =
2M2

log2M

(
1 +O

(
log logM

logM

)) ∑
1≤n≤log3M

1
n2

+O

(
M2 log logM

log3M

)
.

We conclude that

A(M) =
2M2

log2M

(
1 +O

(
log logM

logM

))(
ζ(2) +O

(
1

log3M

))
+O

(
M2 log logM

log3M

)
=

π2M2

3 log2M
+O

(
M2 log logM

log3M

)
,

as desired. �
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