PAGE
9

Python

1Python

1Running Python

2User Input / Output

2Abort Program

2Strings

3Numeric types

3Mathematical Operations

4Boolean

4Control flow

4Time

4Lists

5Dictionaries

6Tuples

6File Input / Output

8Functions

10Modules

11Classes

12Inheritance

12Operator Overloading

13Attribute Access

15Exceptions

15Execution Environment

15Web Programming

16Turtle graphics for Tk

Running Python

helloworld.py

print("Hello World")
% python helloworld.py

#!/usr/LOCAL/bin/python

print ("Hello World")
% ./helloworld.py

Python is a dynamically typed language: names can represent values of different types during the execution of the program.

Each statement is terminated with a newline.

Indentation denotes different blocks of code, and must be consistent within the block. When a command is split among several lines with the line-continuation marker \, the continued lines can be indented in any manner.

User Input / Output

str_input = raw_input("Type a string: ")

a = input("Type a string: ")

print ("string" + " concatenation" + var) # but can't concatenate strings with numbers

print ("string", number)
for comma separated list, str() is invoked on each item

print ("string",)

if the print statement ends with a comma,

a trailing space is printed instead of a newline

Import sys

sys.stdout.write('t')
print with no trailing space
print "%c %s: %i + %f" % ('A',"calculate", 12, 1.2) # A calculate: 12 + 1.200000

print "%+.2f" % 50.4625 # +50.46

 # ".2" modifier truncates value to 2 decimal places

 # "+" modifier displays + or - sign before the value

print "%3d" % 5

right align in a column of width 3

print "%-3d" % 5

left align in a column of width 3

print "%(str)s great %(number)0.2f" % {'str':'hello', 'number':50}

print '-' * 80

prints a dash 80 times

Abort Program

import sys

sys.exit(0) # abort

Strings

single- and double-quoted string must be specified on one logical line

str = "Hello World"

str = 'Hello World'

str = "Hello \

World"

use triple quoted strings when the string span multiple lines

str = """Hello

World"""

str = '''Hello

World'''

str(33)
convert other datatypes into a nicely formatted string

repr(33)
convert other datatypes into a string;

string can be evaluated with eval() to re-create the object

`33`

same as repr(33)

import string

string.punctuation
!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

index = string.find("hello world", 'lo')

returns the index of first occurrence of 'lo'

index = string.find("hello world", 'lo', 2)
as above, starting at position 2

index = string.find("hello world", 'lo', 2, 7)
as above, ending at position 7

len("hello")

return length of string

"hello"[0]

'h'

str = "hello"; str[0]=1
Error: strings are immutable

str.center(20)

centers the string in a field of length 20

str.count("AT")

counts occurrences of the "AT" substring

str.count("AT", 5)
counts occurrences of "AT" starting at position 5

str.count("AT", 5, 30)
as above, and ending at position 30

str.endswith("ism")
check the end of the string for a suffix

str.startswith("Fe")
check the start of the string for a prefix

str.find("AT", 5, 30)
finds first occurrence of AT

str.index("AT", 5, 30)
finds first occurrence of AT or raises an exception

str.rfind("AT", 5, 30)
finds last occurrence of AT

str.rindex("AT", 5, 30) # finds last occurrence of AT or raises an exception

str.isalnum()

checks whether all characters are alphanumeric

str.isalpha()

checks whether all characters are alphabetic

str.isdigit()

checks whether all characters are digits

str.islower()

checks whether all characters are lowercase

str.isupper()

checks whether all characters are uppercase

str.isspace()

checks whether all characters are white space

str.capitalize()

capitalize the first character of str

str.title()

capitalize first character in every word

str.lower()

returns str converted to lowercase

str.upper()

returns str converted to uppercase

str.swapcase()

converts uppercase to lowercase and vice versa

str.lstrip()

removes leading whitespace

str.rstrip()

removes trailing whitespace

str.strip()

removes leading and trailing whitespace

str.replace("old", "new") # replaces the substring "old" with "new"

str.ljust(20)

pad string with spaces on left to a given length

str.rjust(20)

pad string with spaces on right to a given length

import re

regular expressions

re.findall(pattern, str)# return all substrings that match pattern

Numeric types

There are four built-in numeric types: integers, long integers, floating-point numbers, and complex numbers.

float("33.3")
convert string to float

int("3")

convert string to integer

long("33.3")
convert a value to long int

type(1)

<type 'int'>

import types
the types module can be used to compare data types of objects

type(1) == types.IntType

True

isinstance(1, types.IntType)

True

type(types) == types.ModuleType
True

010

8 octal

0x10

16 hexadecimal

123L

long int type can handle any size integer

123j

imaginary number

1.23e+02

floating-point number

Mathematical Operations

3/2

returns 1

3.0/2

returns 1.5

divmod(x, y)
returns (int(x/y), x%y)

pow(x, y)

returns x to the power of y

x**y

as above

abs(x)

return absolute value

round (1.234, 2)
rounds to 2 digits after the decimal point

import math

math.pi

3.1415926535897931

import random

num = random.randint(1,10)
generate random int between 1 and 10

num = random.random()

generate random float in the range [0.0, 1.0)

Boolean

The following values are considered false:

None, False, 0, '', (), [], {}.
All other values are considered True.

Boolean operations: x or y, x and y, not x

Comparisons: <, <=, >, >=, ==, !=, is (object identity), is not
Control flow

if 2 < 3:

 print "2 < 3"

elif 2 == 3:

 pass

do nothing

else:

 print "2 > 3"

If the body of a function, conditional, loop, or class is short,

it can be placed on the same line:

if not 2 < 3: print "chicken"

a = 0

while a < 10:

 a += 1

 if a == 3: continue
skip current iteration

 if a == 7: break
exit while loop

 print a

else: print "else will execute at end of loop, unless loop exited by 'break'"

for element in ["one", "two", "three"]:

 print element

Time

import time

num = time.asctime()

Sun Mar 22 22:04:30 2009

num = time.strftime("%B %d, %Y")
March 22, 2009

Lists

lst = [1, 2, 3]

print lst, lst[0], lst[-1], lst[0:2], lst [:2] # [1, 2, 3] 1 3 [1, 2] [1, 2]

lst[:2] = [5,6,7]

replace first 2 elements with 3 new elements

range(5)

[0, 1, 2, 3, 4]

range(3,6)

[3, 4, 5]

range(5, 1, -1)

[5, 4, 3, 2]

a = xrange(100000)
''' for large ranges, use xrange; Rather than creating a

list, the sequence returned by xrange() computes its values whenever it's accessed.'''

lst = ["a", "b"]

lst.append("new")

['a', 'b', 'new']

lst.insert(1, "new")

insert value in specific position

lst.extend(["c", "d"])

['a', 'b', 'c', 'd'], list concatenation

lst += ["two", "elements"]

same as above

lst = lst + ["val1", "val2"]

list concatenation - creates new list (slow)

li = [1, 2] * 3

[1, 2, 1, 2, 1, 2]

lst.sort()

sort list

For immutable objects such as numbers and strings, an assignment such as

a = b creates a copy of b. For mutable objects such as lists and dictionaries

it creates a new reference.

A shallow copy creates a new object, but populates it with references to the

items contained in the original object.

The list concatenation s + r and list multiplication s * 3 create shallow copies:

a = [3,4];

b = [a];

c = b * 2;

a[0] = 1;

print c;

[[1, 4], [1, 4]]

a[:] creates a copy of a

a = [1, 2, [3, 4]]

b = a[:]

b.append(100)

b[0] = 5

print a

a unchanged

b[2][0] = 100
b = [5, 2, [100, 4], 100]

print a

a = [1, 2, [100, 4]]

A deep copy creates a new object:

import copy

a = [1, 2, [3, 4]]

b = copy.deepcopy(a)

lst.index("new")

return the index of the first occurrence

x in lst

return True if x is in list

x not in lst

return True if x is not in list

del lst[2]

delete lst[2] from lst

lst.count("new")

return number of times "new" occurs in list

lst.remove("new")

remove the first occurrence of "new"

lst.pop()

return last list element and remove it

lst.pop(2)

return the third element and remove it

lst.reverse()

reverse order of list elements

(x, y, z) = ['a', 'b', 'c']
assigning multiple values at once

li = ["s1","s2","s3"]

li is a list of strings

oneString = ";".join(li)
s1;s2;s3

oneString.split(";")

['s1', 's2', 's3']

oneString.split(";", 1)

['s1', 's2;s3'], 1 is the number of times to split

"do re me".split()

without an argument, split splits on white space

len(lst)

return length of list

min(lst)

return minimum value

max(lst)

return maximum value

Dictionaries

d = {"key1":"value1", "key2":"value2"} # dictionary

print "Associated value with key1 is", d["key1"]

dictionaries have no duplicate keys:

d["key1"] = "new_value" # modify the value associated with key1

d["key3"] = "value3"
 # add new key-value pair

del d["key3"] # delete key-value pair

d.clear() # clear dictionary

d = {}

initialize an empty dictionary, also clear existing dictionary

d.keys()

["key1", "key2"]

d.values()

["value1", "value2"]

d.items()

[("key1", "value1"), ("key2", "value2")]

d.has_key(k)
check if key k exists. return True

d.get(k, v)

if key k exists, return associated value. else return v

d.setdefault(k, v)# if k exists, return associated value. else return v and sets d[k] = v

d.popitem()

removes a random key-value pair from d and returns it as a tuple

d.update(m)

adds all objects from dictionary m to d

d.copy()

returns a copy of d

len(d)

returns the length of d

min(d)

returns the minimum key in d

max(d)

returns the maximum key in d

matrix = {(0,3):1, (2,1):2, (4,3):3}
a dictionary with tuples as keys; matrix[0,3] == 1

Tuples

myTuple = ("a", "b") # a tuple is a list that once created, cannot be changed.

myTuple = "a", "b" # the parentheses are optional

myTuple = ("a",) # a tuple with one element

tuple(lst) # take a list and return a tuple

list(myTuple) # take a tuple and return a list

x, y = myTuple # assign tuple values to variables

x, y = y, x

 # swap the values of x, y

File Input / Output

fh = file("file.txt")

for line in fh:

 print line

f = open("file.txt")

line = f.readline()

while line:

 print line,

the ',' omits newline character

 line = f.readline()

f.close()

f = open("file.txt")

line = f.readlines()

read all lines into a list

print line[0],

print line[1],

f.close()

for line in f.xreadlines():
read a new line each iteration

 # Do something with line
instead of reading the whole file into memory

f = open("out", "w")
open file for writing

print >> f, "write a line to output file"

f.write("write a second line\n")

f.close

f = open("out", "r")
open file for read; file must already exist

f = open("out", "a")
open file for append; file is created if doesn't exist

Calling f.seek has no effect

f = open("out", "a+")
Calling f.seek works for read but not for write

f = open("out", "r+")
open file for update

f = open("out", "w+")
open file for update; file truncated if exists

f = open("out", "rb")
open file for reading binary data

f = open("out", "wb")
open file for writing binary data

f.read()

reads the entire content of the file

f.read(n)

reads at most n bytes

f.readline(n)
read a single line of input up to n characters

f.readlines()
reads all lines and returns a list

f.writelines(l)
writes all strings in list l

f.tell()

returns the current file pointer

f.seek(offset)
seeks to a new file position relative to start of file

f.seek(offset,1)
seeks to a new file position relative to current position

f.seek(offset,2)
seeks to a new file position relative to end of file

f.flush()

flushes the output buffers

f.truncate(size)
truncates the file to at most size bytes

f.closed()

Boolean value: 0 if file is open, 1 if closed

f.mode()

the I/O mode for the file

f.name()

Name of file if created using open().

sys.stdin

standard input

sys.stdout

standard output

sys.stderr

standard error

while 1:

read several lines of user input

 c = sys.stdin.read(1)

 text = text + c

 if c == '\n': break

s = raw_input("type something: ")
read one line of user input

Keyboard interrupts (often generated by Ctrl+C) raise a Keyboard interrupt

exception that can be caught using an exception handler.

Writing objects to files

import pickle

f = open('file', 'w')

pickle.dump(12.3, f)
save object to file

pickle.dump([1, 2, 3], f)

f = open('file', 'r')

ob1 = pickle.load(f)
retrieve first object

ob2 = pickle.load(f)
retrieve second object

import shelve

save objects in dictionary-like database

object = range(5)

f = shelve.open('file')

f['key'] = object # save object to file

a = f['key'] # retrieve it

f.close()

Functions

def double(x):
function definition

 """The function's doc string."""

 print __name__
__name__ == "__main__"

if function is imported, __name__ == "double"

useful for including testing blocks within function

 return x + x
if no return value is specified, 'None' is returned

 return

'None' is returned. The return statement allows you to

terminate the execution of a function before you reach the end.

print double
prints <function double at 0x19db30>

print double(3)

print double.__doc__

def func():

 return (2,3)
multiple values returned as a tuple

x,y = func()

def func(a, b=3):
parameter with a default value

 ...

must come at the end of the parameter list

Default parameter values are set to the objects that were supplied as values

when the function was defined. For example:

a = 10

def foo(x = a):

 print x

a = 5

Re-assign 'a'

foo()

Prints '10' (default value not changed)

However, when using mutable objects as default values:

a = [10]

def foo(x = a):

 print x

a.append(20)

foo()

Prints '[10, 20]'

A function can accept a variable number of parameters with * added to the

last parameter name:

def printf(fmt, *args):

 print fmt % args

printf("%d %s %f", 42, "hello world", 3.45)

A function can accept additional keyword arguments (those that don't match

any of the parameter names) when ** added to the very last parameter name:

def spam(**parms):

 print "The following arguments were supplied:"

 for k in parms.keys():

 print "%s = %s" % (k, parms[k])

spam(x=3, a="hello")

Arguments can be contained in a tuple or a dictionary:

a = ('x', '3')

b = { 'name':'Dave', 'id':12345 }

def foo(*arg, **argv):

 print arg, argv

Function foo can be called by each of the following syntaxes:

foo(*a, **b)

apply(foo, a, b)

foo('x', '3', name = 'Dave', id = 12345)

Scope Rules

a = 4.5

def func():

 print a

global variable 'a' can be accessed but not modified

func();

a = 4.5

def func():

 b = 3

local variable

 global a

global variable 'a' can now be modified

 a = 5

func(); print a

f = lambda x: x*2
define one-statement anonymous function

print f(5)

functions are objects, and therefore can be assigned to variables or placed in

lists, tuples or dictionaries:

g = f; g(5)

d['callback'] = f; d['callback'](5)

callable(li.pop)

True

callable objects include functions, class methods and classes

getattr(li, "pop")
a reference to the pop method for list object 'li'

equivalent to li.pop but can take name of function at run time

print getattr(li, "pop")()

a = [1, 2, 3, 4]

def foo(x): return 3*x

t = map(foo, a)

t = [3, 6, 9, 12]

map() applies the function foo to each of the elements in a and returns a

new list t. The function given to map() should require only one argument.

Alternatively, this could be calculated using an anonymous function:

t = map(lambda x: 3*x, a)

The map function can also be applied to multiple lists:

a = [1, 2, 3, 4]

b = [10, 20, 30, 40]

c = [10, 20, 30, 40, 50]

def sum(x,y): return x+y

print map(sum, a, b)

[11, 22, 33, 44]

If the function is set to None, map() returns a list of tuples:

print map(None, a, c)

[(1, 10), (2, 20), (3, 30), (4, 40), (None, 50)]

zip truncates the returned list to the shortest argument sequence:

print zip(a, c)

[(1, 10), (2, 20), (3, 30), (4, 40)]

reduce(sum, a)

(((1+2)+3)+4) = 10

filter return all list elements that are evaluated to True by the function:

print filter(lambda x:x<4, a)
[1, 2, 3]

Many operations involving map() and filter() can be replaced with a list construction:

[elem*2 for elem in range(5) if elem > 0]
[2, 4, 6, 8]

[s for s in a if s < 4]

[1, 2, 3]

eval('3*math.sin(x)')

evaluate a string containing math expression

exec 'print "hello", x'

execute a string containing code

Optionally, eval(), exec and execfile() can accept one or two dictionaries

that serve as the global and local namespaces for the code to be executed.

globals = {'x':7, 'y':3, 'birds':['Parrot', 'Swallow']}

locals = {}

a = eval('3*math.sin(x)', globals, locals)

exec "for b in birds: print b" in globals, locals

execfile("foo.py", globals, locals)

When a string is passed to exec, eval(), or execfile(), the parser first

compiles it into bytecode. If the code will be executed multiple times,

it's more efficient to precompile the code and reuse the bytecode:

str = "for i in range(10): print i"

c = compile(str, '', 'exec')
compile into a code object

exec c

execute it

str = "3*x + 4*y"

c = compile(str, '', 'eval')
compile into an expression

result = eval(c)

execute it

Modules

Modules fall into four general categories:

Program written in Python (.py files)

C or C++ extensions that have been compiled into shared libraries or DLLs

Packages containing a collection of modules

Built-in modules written in C and linked into the Python interpreter

import mymodule

import mymodule.py - create a new namespace

mymodule.func()

use a function of that namespace

import mymodule as foo

use an alternative name as qualifier

foo.func()

import module1, module2
import several modules

from mymodule import func
import func() into current namespace

from mymodule import func as foo # use an alternative name for func()

from mymodule import *
import all functions into current namespace

identifiers starting with a single underscore such as _foo are not imported

func()

use mymodule.func() that was imported to current namespace

Execute a python file from another file:

execfile('helloworld.py')

import sys

print sys.argv[1]

argv[1] is the first command-line option

print sys.path

sys.path.append('/my/new/path')

sys.modules

a dictionary of currently loaded module names and objects

import os

os.environ["PATH"]

os.environ["USER"]

os.environ["HOSTNAME"]

os.environ["PWD"]

os.environ["TZ"]

Time Zone

os.getcwd()

print current directory

os.chdir('path/to/dir')
change directory

os.listdir('my_dir')
list directory content

dir([])

dir returns a list of attributes and methods of any object

Packages allow a collection of modules to be grouped under a common package

name. It is defined by creating a directory with the same name as the

package and creating a file __init__.py in that directory.

subpackages can be placed in this directory too.

import Package.Subpackage.module
import a module from Package

Whenever any part of a package is imported, all the __init__.py

files en route are executed.

The __init__.py file should specify which submodules should be imported as

part of the imported package when the user type the statement

'from Package import *' by defining the __all__ variable:

__all__ = ["lines", "text", "fill"]

Modules contained within the same directory can refer to each other without

supplying a full package name.

.pyc files are .py files that were compiled into bytecode and written

to disk when a module was first imported.

.pyo files are created instead of .pyc files when the interpreter was

launched with the -O or the -OO option.

The -O option strip the bytecode of line numbers, assertions and other

debugging information. The -OO option strip these files from documentation

strings as well. These files are somewhat smaller and allow the interpreter

to run slightly faster.

Classes

class Chicken:

 "Chicken Class documentation String"

 chicken_type = "hen"

 def __init__(self, name, balance):

 self.name = name

 self.balance = balance

 self.__private = 5

double underscore prefix

 def deposit(self, eggs):

 "Add to the egg balance"

 self.balance = self.balance + eggs

 def __str__ (self):

allow printing nicely formatted instance

 return "Chicken "+ self.name + " laid " + str(self.balance) + " eggs"

 def __call__(self, new_balance):
allow calling an instance like a function

 self.balance = new_balance

a = Chicken("Matilda", 20)
create an instance of a class

a.deposit(3)

use class method

print a.name

access instance variable

print a.chicken_type

access class variable

print a._Chicken__private
access variable __private

print Chicken.__doc__

"Chicken Class documentation String"

print a

equivalent to print a.__str__()

a(30)

equivalent to a.__call__(30)

Class methods always operate on a class instance that's passed as the first

argument. By convention, this argument is called 'self'.

You cannot define class methods that don't operate on instances.

Class variables such as chicken_type are shared among all instances of a class.

Although a class defines a namespace, this namespace is not a scope for code

appearing inside the class body:

 def lay_egg(self)

 deposit(self, 1)

generates a NameError

 Chicken.deposit(self, 1)
correct

print a.__dict__

{'balance': 23, 'name': 'Matilda'}

a.pecking_order = 5

add new attribute

print a.__dict__

{'pecking_order': 5, 'balance': 23, 'name': 'Matilda'}

Class attribute __slots__ limits the legal attributes to a particular set

(new in version 2.2)

class Chicken(object):

 __slots__ = ('name', 'balance') # now can't add other attributes to Chicken obj

 ...

a.balance

that would work

a.pecking_order = 5

raises AttributeError

b = a

b is an alias of a

import copy

b = copy.copy(a)

b and a are two different objects (shallow copy)

b = copy.deepcopy(a)
b, a and their embedded objects are all different objects

Inheritance

class A:

 varA = 2

 def method(self):

 print "Class A method"

class B:

 def method(self):

 print "Class B method"

class C(A):
C is a derived class of class A

 def method(self):

 print "Class C method"

 A.method(self) # invoke base class method

class D(C,B): # D is a derived class of classes C and B

 pass
when a method is invoked on an instance of class D,

it will be searched in order at classes C, A and B

d = D()

d.method()

print d.varA

When an instance is created, the __init__ methods of base classes are not

invoked unless explicitly called in the derived class.

d = D()

b = B()

print isinstance(d, D)

True

print isinstance(d, A)

True, D is derived from A

print isinstance(b, A)

False, B is not derived from A

print issubclass(D, A)

True

Operator Overloading

import string

class Omelet:

 def __init__(self):

 self.eggs = 1

 def __add__(self, other):

 rt = Omelet()

 rt.eggs = self.eggs + other.eggs

 return rt

 def __coerce__(self, other):

useful to handle mixed types

 rt = Omelet()

 if type(other) == type(rt):

 return(self, other)

 elif type(other) == type(""):

 e = string.atoi(other)

 rt.eggs = e

 return(self, rt)

 def __radd__(self, other):

 return self + other

now y + "2" is evaluated

 def __str__(self):

 return str(self.eggs) + " eggs"

x = Omelet()

y = Omelet()

print x + y # prints 2 eggs

print "2" + y # prints 3 eggs

To evaluate the expression x + y, the following steps are taken:

if x is a class instance:

 if x has a __coerce__() method: replace x and y with the 2-tuple returned by

 x.__coerce__(y);

 if the returned x is a class instance, or x didn't have a __coerce__():

 if x has a method __add__(), return x.__add__(y)

elif x doesn't have an __add__() method and y is a class instance:

 if y has a __coerce__() method: replace y and x with the 2-tuple returned by

 y.__coerce__(x);

 if the returned y is a class instance, or y didn't have a __coerce__():

 if y has a method __radd__(), return y.__radd__(x)

Other mathematical operations that can be overloaded:

__add__(self, other)
self + other

__radd__(self, other)
other + self

__iadd__(self, other)
self += other

(The r and i versions are available for the following methods when applicable)

__sub__(self, other)
self - other

__mul__(self, other) # self * other

__div__(self, other) # self / other

__mod__(self, other) # self % other

__divmod__(self, other) # divmod(self, other)

__pow__(self,other)
self ** other, pow(self, other)

__and__(self, other) # self & other

__or__(self, other)
self | other

__abs__(self)

abs(self)

__int__(self)

int(self)

__long__(self)

long(self)

__float__(self)

float(self)

Comparison Operations

__cmp__(self, other)
Compares two objects. Should returns a negative integer
if self < other, 0 if self == other or a positive integer if self > other.

Each of the following methods can return any kind of object,

including a Boolean value, a list, or any other Python type:

__lt__(self,other)
self < other

__le__(self, other)
self <= other

__gt__(self, other)
self > other

__ge__(self, other)
self >= other

__eq__(self, other)
self == other

__ne__(self, other)
self != other

Attribute Access

__getattr__(self, name)
returns self.name

__setattr__(self, name)
set self.name = value

__delattr__(self, name)
deletes self.name

For class instances, the __getattr__() method is invoked only if the search

for the attribute in the object's local dictionary or corresponding class

definition fails. This method should return the attribute value or raise an

AttributeError exception on failure.

Class Properties (new in version 2.2)

A property is an attribute that is defined by get/set methods.

(when a set function is not defined, the property is read only)

class C(object):

 def getx(self):

 return self._x

 def setx(self, value):

 self._x = value

 def delx(self):

 del self._x

 x = property(getx, setx, delx, "The property description.")

obj = C()

obj.x = 8

Same class as above using decorators (new in version 2.6)

class C(object):

 @property

 def x(self):

 """The property description."""

 return self._x

 @x.setter

 def x(self, value):

 self._x = value

 @x.deleter

 def x(self):

 del self._x

Sequence and Mapping Methods

__len__(self)

returns the length of self

__getitem__(self, key)
returns self[key]

__setitem__(self, key)
sets self[key] = value

__delitem__(self, key)
deletes self[key]

__getslice__(self,i,j)
returns self[i:j]

__setslice__(self,i,j,s)# sets self[i:j] = s

__delslice__(self,i,j)
deletes self[i:j]

__contains__(self, obj)
returns obj in self; used to implement the in operator

Static Methods

Static methods don't receive an instance

class Class:

 def method(): # no 'self' parameter

 print "test"

 method = staticmethod(method) #new syntax: @staticmethod before class definition

Class.method()

obj = Class()

obj.method()

Class Methods

A class method doesn't receive an instance, but receives a class as its first

argument. By convention, this argument is called cls.

class Class:

 def method(cls):

 print "test"

 method = classmethod(method) # new syntax: @classmethod before class definition

Exceptions

Normally, errors cause a program to abort. However, you can catch and handle exceptions:

try:

 f = open("file.dat", "r")

except IOError, e:
IOError is the error type, e is the error message

 print e

except (IOError, TypeError, NameError), e:
handle 3 types of errors

 pass

except:

catch all types of errors

 print "An error occurred"

else:

 print "This code is executed if no exception was raised"

try:

 ...

finally:

 print "This code will execute regardless whether an exception was raised."

 print "no except statements can follow in this 'try' block."

Raising a built-in exception:

def func(x):

 if (x == 17):

 raise RuntimeError, "Unrecoverable error"

func(17)
RuntimeError: Unrecoverable error

Define new exception by creating a new class that inherits from exceptions.Exception

Execution Environment

python -V

prints version of Python program

python filename -i
Enters interactive mode after program execution

python -h

prints a list of all available command-line options

python -c "print 'hen'"
Executes string code

python -x

skips the first line of the source program

Web Programming

minimal python web file (in cgi-bin, with extension .cgi and 755 permission on SFU server):
#!/usr/LOCAL/bin/python

print "Content-Type: text/html"

print

print "Hello World"

Getting data from a form:

import cgi

form = cgi.FieldStorage()

if form.has_key("name"):

first check if field has been filled

 my_field_value = form["name"].value
read value from a form element named "name"

cgi.escape("< Sigal >")

& < > are replaced with < > &

Hence these characters won't be interpreted as html tags and will display properly on the web
Display errors for debugging purposes (but don't display syntax errors):

import cgitb

cgitb.enable(display=1, logdir=None, context=5, format='html') # these are the default values

Returns a web page as an object on which file operations are possible:

import urllib.request

web_page = urllib.request.urlopen("http://www.sfu.ca/~sblay")

data = web_page.read().decode('unicode-escape')
Turtle graphics for Tk

import turtle

turtle.color("red")

turtle.color("#ffcccc")

turtle.bgcolor("orange")

turtle.forward(20)

turtle.left(90)

turtle.up() # makes the turtle "pick up" its pen so that it will not draw a line when it moves

turtle.forward(20)

turtle.down()

turtle.forward(20)

turtle.reset()

clears the screen, puts the turtle in the middle facing east

turtle.position()
returns the current [x, y] location of the turtle

turtle.goto(x, y)
go to position specified by the x, y coordinates

turtle.setheading(angle) # set turtle head angle

turtle.window_height()

turtle.window_width()

turtle.circle(5)

draws a circle of radius 5

turtle.dot(5)

draws a filled circle of radius 5

turtle.shape()

returns turtle current shape

turtle.shape("turtle")
set the turtle shape to a turtle

other options are arrow, circle, square, triangle

turtle.shapesize(0.5)

turtle.stamp

Stamp a copy of the turtle shape onto the canvas

turtle.tracer(False)
subsequent drawing commands won't display the turtle motion

turtle.tracer(True)
all drawing commands since turtle.tracer(False) will take place

turtle.write('Write text at the current pen position')

Source: Python Essential Reference 2nd Ed./ David Beazley, 2001

