Java

1Hello World

1Primitive Data Types

1The Unicode Character Set

1Primitive Type Conversions

2Wrapper Classes

2Numbers and Math

2Random numbers

2Big Numbers

2Converting Numbers from and to Strings

2Formatting Numbers

3Enumeration

3enum class with method

4Dates and Times

4Control Statements

4Arrays

4The Character Class

5Strings

5Comparing Strings

5Substrings

5The StringBuilder Class

6The StringTokenizer Class

6Program Structure

6Packages

6Classes

6Data Fields

7The Object Class

7Class Relationships

7Inheritance

8Abstract Classes

8Interfaces

9Generic Data Type

10Collections

11Exceptions

12Text Input

13File Input/Output

13Object Serialization

13Archives

14GUI

Java is an interpreted language: the Java compiler translates source code into an intermediate representation known as byte-codes for the Java Virtual Machine (JVM), rather than native machine code. To actually run a Java program, you use the Java interpreter to execute the complied byte-codes. Because Java byte codes are platform-independent, Java programs can run on any platform that the JVM has been ported to.

Just-in-time compilation (JIT), also known as dynamic translation, can be used as a way to speed up execution of bytecode. At the time the bytecode is run, the just-in-time compiler will compile some or all of it to native machine code. The performance improvement over interpreters originates from caching the results of translating blocks of code and not simply re-evaluating each line or operand each time it is met.

Java Development Kit (JDK) is a Sun Microsystems product aimed at Java developers. includes the Java compiler and interpreter and many Java libraries.

Java Runtime Environment (JRE) enables you to run existing Java programs, but not to write and compile your own.

Java Runtime Environment (JRE) = Java Virtual Machine (JVM) + Java API (Application Programming Interface).

Hello World

// hello.java

class hello {

 public static void main(String args[]) {
// The program starts executing here

 System.out.println("Hello World!");

 }

}

% javac hello.java
// Compile on Linux

% java hello

// run

The following two commands will compile all .java files contained within the directory ./src and its subdirectories:

find ./src -name '*.java' > sources_list.txt

javac @sources_list.txt -d destination

// one-line comment

/* multi-lines comment */

/** doc comment; extracted by the javadoc program */

Java is case-sensitive and ignores white space.

Primitive Data Types

	Type
	Contains
	Default
	Size

	boolean
	true or false
	false
	1 bit

	char
	Unicode character
	\u0000
	16 bits

	byte
	Signed integer
	0
	8 bits (-128 to 127)

	short
	Signed integer
	0
	16 bits (-32768 to 32767)

	int
	Signed integer
	0
	32 bits

	long
	Signed integer
	0
	64 bits

	float
	IEEE 754 floating point
	0.0
	32 bits

	double
	IEEE 754 floating point
	0.0
	64 bits

boolean values can never be converted to or from other data types.

So if(myInt) must be written as if(myInt != 0) and if (myVar) as if(myVar != null)

The Unicode Character Set

Java programs are written using Unicode. Unlike the 7-bit ASCII character set, which is useful only for English, and the 8-bit ISO Latin-1 character set, which is useful only for major Western European languages, the Unicode character set can represent virtually every written language in common use on the planet. 16-bit Unicode characters are typically written to files using an encoding known as UTF-8, which converts the 16-bit characters into a stream of bytes. The format is designed so that plain ASCII text is valid UTF-8 byte stream.

If you don't want to force other programmers who view or edit your code to use a Unicode-enabled editor, you can embed Unicode characters into your Java programs using the special Unicode escape sequence \uxxxx (each x represents a hexadecimal character).

char c = 'A';
// declaring a character literal

\b backspace
\t tab
\n newline
\f form feed
\r carriage return
\" double quotes
\' single quotes
\\ backslash

Primitive Type Conversions

A widening conversion occurs when a value of one type is converted to one that has a larger range of legal values. Java performs widening conversions automatically when, for example, you assign an int literal to a double variable.

The Java complier complains when you attempt any narrowing conversion (with the exception of assigning an int to a byte or short variable if the literal falls within the range of the variable).

If you need to perform a narrowing conversion and are confident you can do so without losing data or precision, you can perform a cast by placing the name of the desired type in parentheses before the value to be converted: byte b = (byte) myInt;

Wrapper Classes

The package java.lang provides corresponding wrapper classes for each of the primitive types. Each of these classes provides a constructor to convert a value of a primitive type to an object:

int x = 9;

Integer int_obj = new Integer(x);

System.out.println(int_obj.intValue());

Numbers and Math

The wrapper classes Byte, Short, Integer, Long, Float and Double are each a subclass of Number. They define some useful constants:

Byte.MIN_VALUE
// The smallest byte value

Byte.MAX_VALUE
// The largest byte value

Math.PI
// 3.141592653589793

Math.E
// 2.718281828459045

double d = Math.toRadians(27);
// Convert 27 degrees to radians

d = Math.cos(d);

d = Math.sqrt(d);

d = Math.log(d);

d = Math.exp(d);

d = Math.pow(10, d);

d = Math.atan(d);
// computes the arc tangent

d = Math.toDegrees(d);
//Convert back to degrees

double up = Math.ceil(d);
// Round to ceiling

double down = Math.floor(d);
// Round to floor

long nearest = Math.round(d);
// Round to nearest

Random numbers

double r = Math.random();

// A simple random number, 0.0 <= r < 1.0

// Create a new random object, seeding with the current time:

java.util.Random generator = new java.util.Random(System.currentTimeMillis());

double d = generator.nextDouble();
// 0.0 <= d < 1.0

float f = generator.nextFloat();
// 0.0 <= f < 1.0

long l = generator.nextLong();
// Chosen from the entire range of long

int i = generator.nextInt();

// Chosen from the entire range of Int

i = generator.nextInt(limit);

// 0 <= i < limit (Java 1.2 and later)

boolean b = generator.nextBoolean();// true or false (Java 1.2 and later)

d = generator.nextGaussian();

// Mean 0, Standard deviation 1
byte[] randomBytes = new byte[128];

generator.nextBytes(randomBytes);
// Fill in array with random bytes

For cryptographic strength random numbers, use the SecureRandom subclass:

java.security.SecureRandom generator1 = new java.security.SecureRandom();

generator1.setSeed(generator1.generateSeed(16));
// 16 bytes seed

generator1.nextBytes(randomBytes); // use secureRandom like any other Random object

Big Numbers

java.math contains the BigInteger and BigDecimal classes for working with arbitrary-size and arbitrary-precision integers and floating point values.

Converting Numbers from and to Strings

Integer.parseInt("42");

Float.parseFloat("42.1");

Formatting Numbers

// Add thousands separators:

String s = String.format("%,d", Integer.MAX_VALUE);
// "2,147,483,647"

// Output value right-justified in a field 8 characters wide

s = String.format("%8d",123);

// " 123"

// Pad on the left with zeros to make 5 digits total:

s= String.format("%05d", 123);
// "00123"

s = String.format("%.2f", 0.1234);
// 0.12
float with 2 significant digits

Enumeration

import java.util.EnumSet;

public class EnumDemo {

 enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY}

 public static void main(String[] args) {

 Day workDay = Day.WEDNESDAY;

System.out.println(workDay);

// WEDNESDAY

System.out.println(workDay.ordinal());
// 3

if (Day.FRIDAY.compareTo(Day.MONDAY) > 0)

System.out.println (Day.FRIDAY + " is greater than " + Day.MONDAY);

for(Day n : Day.values())

System.out.println(n);

for(Day n : EnumSet.range(Day.MONDAY, Day.WEDNESDAY))
System.out.println(n);

 }

}

enum class with method

The enum type Planet contains a constructor, and each enum constant is declared with parameters to be passed to the constructor when it is created:

public class EnumDemo {

public enum Planet {

MERCURY (3.303e+23, 2.4397e6),

VENUS (4.869e+24, 6.0518e6),

EARTH (5.976e+24, 6.37814e6),

MARS (6.421e+23, 3.3972e6),

JUPITER (1.9e+27, 7.1492e7),

SATURN (5.688e+26, 6.0268e7),

URANUS (8.686e+25, 2.5559e7),

NEPTUNE (1.024e+26, 2.4746e7),

PLUTO (1.27e+22, 1.137e6);

private final double mass; // in kilograms

private final double radius; // in meters

Planet(double mass, double radius) {

this.mass = mass;

this.radius = radius;

}

public double mass() { return mass; }

public double radius() { return radius; }

// universal gravitational constant (m3 kg-1 s-2)

public static final double G = 6.67300E-11;

public double surfaceGravity() {

return G * mass / (radius * radius);

}

public double surfaceWeight(double otherMass) {

return otherMass * surfaceGravity();

}

}

// this program takes your weight on earth (in any unit) and calculates

// and prints your weight on all of the planets (in the same unit):

public static void main(String[] args) {

double earthWeight = Double.parseDouble(args[0]);

double mass = earthWeight/Planet.EARTH.surfaceGravity();

for (Planet p : Planet.values())

System.out.printf("Your weight on %s is %f%n",

p, p.surfaceWeight(mass));

}

}

Dates and Times

Dates and times are represented as a long value that holds the positive or negative number of milliseconds since midnight January 1, 1970. This special date and time is known as the epoch and is measured in Greenwich Mean Time (GMT) or Universal Time (UT).

To find the current time in this representation use:

long now = System.currentTimeMillis();

String s = String.format("%tR", now);

// 16:51

s = String.format("%tl:%tM:%tp", now, now, now);
// 5:00 pm

s = String.format("%tD", now);

// 11/14/09

Control Statements

if (n == 1) {...} else if (n == 2) {...} else {...}

while (expression) statement

do statement while (expression);

switch(n) {

 case 1:

 // Execute code block #1

 break;

 case 2:

 // Execute code block #2

 break;

 default:

 // Execute code block #3

 break;

}

for (initialize; test; update) statement

A labelled statement is a statement that has been given a name. Labels are used by the break and continue statements:

rowLoop: for (int r = 0; r < rows.length; r++) {

 colLoop: for (int c = 0; c < columns.length; c++) {

 break rowLoop;

 }

}

The break statement causes the Java interpreter to skip to the end of a containing statement.

A continue statement quits the current iteration of a loop and starts the next one.

When used without a label, continue causes the innermost loop to start a new iteration.

The for/in statement is a new loop that was added to the language in Java 5.0:

int[] primes = new int[] {2, 3, 5, 7, 11};

for(int n : primes)

 System.out.println(n);

Arrays

int[] num; // Declaring an integer array

num = new int[10]; // Allocating memory

num[0] = 11;

int[] num1 = {1,2,3,4}; // using an initializer list

int i = num.length; // return the length of the array

int [][] md_array = new int[24][60]; // a two-dimensional array

// The first dimension indexes the rows, the second dimension - the columns

The Character Class

char[] text = {'a', 'b', 'c'}; // Initializing an array of characters

char[] text = "abc".toCharArray(); // as above

i = text.length; // returns 3

b = Character.isWhitespace(text[1]);

b = Character.isLetter(text[1]);

text[1] = Character.toUpperCase(text[1]);

Strings

The class String is a non-mutable string type; once the value of the string has been set, it cannot me modified.

String s = "Hello";

String t = s + "World";

int len = t.length(); // Number of characters in the string
s = String.valueOf('c'); // Returns the string representation of the char argument.
s = String.valueOf(42); // Returns the string representation of the int argument.
s = object.toString(); // Convert object to string

s = t.toUpperCase();

s = t.toLowerCase();

String Concatenation Operator:

If either of the operands to + is a string, the operator converts the other operand to a string.

Therefore, addition expressions should be put in parentheses when combining them with string concatenation.

The Java interpreter has built-in string conversions for all primitive types. An object is converted to a string by invoking its toString() method. Some classes define custom toString() methods so that objects of that class can easily be converted to strings in this way.

Comparing Strings

String s1 = "hello";

String s2 = "hello";

boolean b = s1.equals("Hello"); // returns false

b = s1.equalsIgnoreCase("Hello"); // Case-insensitive string comparison

b = (s1.intern() == s2.intern()); // equals() compare strings character by character, slower.

b = (s1 == s2); // returns true

Substrings

s = t.substring(2); // returns substring starting with s[2]

s = t.substring(2,4); // returns substring from s[2] to s[3]

char c = t.charAt(1); // Gets the 2nd character of s

char[] ca = t.toCharArray(); // Convert string to an array of characters

t.getChars(0, 3, ca, 1); // Put 3 char of t, starting with t[0], into ca starting with ca[1]

b = t.startsWith("Now");

b = t.endsWith("World");

i = t.compareTo("ABC"); // Returns 0 for equal strings, < 0 if t precede "ABC", > 0 otherwise

i = t.compareToIgnoreCase("ABC"); // (Java 1.2 and later)

i = t.indexOf('o'); // position of first character 'o'

i = t.indexOf("rld"); // position of first substring "rld"

i = t.indexOf('o', i+1); // position of next 'o'. if not exist, returns -1

i = t.lastIndexOf('o'); // position of last 'o'

i = t.lastIndexOf('o', i-1); // Search backwards for 'o' from char 6

s = t.replace('o', 'O'); // replace all instances of one character with another

s = t.trim(); // Strip blank space off the beginning and end of a string

s1.contains(s2); // returns true if string s1 contains string s2

printf introduced in Java 5.0

System.out.printf("String: %s, Integer: %d, Character: %c", "hello", 3, 'a');

%tc expects a Date, Calendar or number of milliseconds and converts that value to text representation of the full date and time.

%n outputs the platform-specific line terminator, just like println().

The StringBuilder Class

Since String objects are immutable - you cannot manipulate the characters of an instantiated String. To do this, use

java.lang.StringBuilder or java.lang.StringBuffer. These two classes are identical except that String Buffer has synchronized methods. String

Builder was introduced in Java 5.0 and is preferable, unless it might actually be manipulated by multiple threads.

StringBuffer b = new StringBuffer("Mow");

char c = b.charAt(0); // Returns 'M', just like String.charAt()

b.setCharAt(0, 'N'); // b holds "Now": can't do that with a String!

b.append(' '); // Append a character

b.append("is the time."); // Append a string

b.append(23); // Append an integer or any other value

b.insert(6, "n't"); // Insert starting at position 6

b.replace(4, 9, "is"); // Replace a range of characters with a string

b.delete(16,18); // Delete a range

b.deleteCharAt(2); // Delete 2nd character

b.setLength(5); // Truncate by setting the length

b.reverse(); // Reverse character order
String s = b.toString(); // Convert back to an immutable string

s = b.substring(1,2); // Or take a substring

The StringTokenizer Class

java.util.StringTokenizer allows a program to break a string into pieces or tokens. The tokens are separated by characters known as delimiters.

String s = "Love and scandal are the best sweeteners of tea";

java.util.StringTokenizer st = new java.util.StringTokenizer(s);

while(st.hasMoreTokens())

 System.out.println(st.nextToken());

Tokenizing words that are delimited by characters other than spaces:

java.util.StringTokenizer st = new java.util.StringTokenizer(s, ":");

Program Structure

Packages

package package_name; // This statement precedes any class definition

Java packages provide a mechanism for grouping related classes. To indicate that a class is part of a package, you indicate a package statement as the first program line of your code. The classes in a particular package are contained in the same directory. This directory must have the same name as the package.

the Java API consists of many predefined packages, e.g. java.lang, java.util, java.io. The dot notation directly relates to the directory structure.

import package_name.class_name; // This statement precedes any class definition

The import statement allows you to use classes contained in other packages.

import package_name.*; // imports all items from the package

Classes

A Java class is a data type that specifies the data and methods that are available for instances of the class. The name of the file that defines this class MUST be the same as the class (case sensitive and we always start class names with an upper case character; by convention)

The file may contain other classes but these classes may not have an access specifier (that is, they must use default access).

To create an object or instance of a class, you use the new operator:

MyClass obj1;

obj1 = new MyClass(arg1, arg2, ...); // 'new' returns the location of the object in memory

Class modifiers and clauses

	Subclassing modifier

(use only one)
	abstract
	Class must be extended to be useful

	
	final
	Class cannot be extended

	Access modifiers
	public
	Class is available outside of package

	
	no access modifier
	Class is available only within package

	extends clause
	extends superclass_name
	Indicates that this class is a subclass of superclass_name

	implements clause
	implements interface_list
	Indicates the interfaces that this class implements as a comma-separated list

Data Fields

Data fields are class members that are either variables or constants.

Data fields modifiers

	Access modifier

(use only one)
	public
	Data field is available everywhere (when the class is also declared public)

	
	private
	Data field is available only within the class

	
	protected
	Data field is available within the class, in subclasses and to classes within the same package

	
	No access modifier
	Data field is available within the class and within the package

	Use modifiers

(all can be used at once)
	static
	Indicates that only one such data field is available for all instances of this class. Without this modifier, each instance has its own copy of a data field

	
	final
	The value provided for the data field cannot be modified (a constant)

	
	transient
	The data field is not part of the persistent state of the object

	
	volatile
	The value provided for the data field can be accessed by multiple threads of control. Java ensures that the freshest copy of the data field is always used

Methods

Methods modifiers

	Access modifiers

(use only one)
	public
	Method is available everywhere (when the class is also declared as public)

	
	private
	Method is available only within the class (cannot be declared abstract)

	
	protected
	Method is available within the class, in subclasses and to classes within the same package

	
	No access modifier
	Method is available within the class and to classes within the package

	Use modifiers

(all can be used at once)
	static
	Indicates that only one such method is available for all instances of this class. Since a static method is shared by all instances, the method can refer only to data fields that are also declared static and shared by all instances.

	
	final
	The method cannot be overridden in a subclass

	
	abstract
	The method must be overridden in a subclass

	
	native
	The body of the method is not written in Java but in some other programming language

	
	synchronized
	The method can be run by only one thread of control at a time

Arguments passed to Java methods are passed by value. That is, the method makes local copies of the values of the actual arguments. Thus, the method cannot alter the actual arguments that you pass to it. However, when the formal parameter is an object or an array, the actual argument is a reference value that is copied. This means that you can change the contents of the array or object, but not the value of the reference itself.

Constructor methods have the same name as the class and no return type. The constructor is executed only when a new instance of the class is created. A class can contain multiple constructors, differentiated by the number and types of the parameters. The actual arguments you provide when creating a new instance determine which constructor is executed.

Static data fields or methods can be accessed by using the class name (instead of an object of the class):

myClass.static_member;

The Object Class

Java supports a single class inheritance hierarchy, with the class Object as the root. Every Java class inherits the methods of the class Object. In some cases, it is common for a class to redefine or override the version of the method inherited from Object. some of the methods are:

public boolean equals(Object obj)
indicates whether some other object is equal to this one. As defined in the class Object, equality is based upon references - that is, whether both of the references are referencing the same object. This is referred to as shallow equality. It is common for a class to redefine this method for deep equality.

protected void finalize()
The garbage collector calls the finalize method on an object when it determines that there are no more references to the object.

public String toString()
Returns a string that "textually represents" this object.
Class Relationships

Inheritance

public class Sphere {

 private double theRadius;

 public sphere() {
// default constructor

 setRadius(1.0);

 }

 public sphere(double initialRadius) {

 setRadius(initialRadius);

 }

 public void setRadius(double newRadius) {

 theRadius = newRadius;

 }

}

public class Ball extends Sphere {
// a subclass can extend only a single superclass

 private String theColor;

 public Ball() {

// The superclass constructor is called implicitly

 setColor("transparent");

 }

 public Ball(double initialRadius, String initialColor);

 super(initialRadius);
// call the constructor of the superclass.

// The call to super must precede any other statement.

 setColor(initialColor);

 }

 public setColor(String newColor) {

 theColor = newColor;

 }

}

Public members of the superclass are available in the subclass. An instance of a subclass can invoke public methods of the superclass.

Before any constructor in the subclass is executed, the default constructor (the constructor with no parameters) of the superclass will be executed, unless an alternative constructor from the superclass is specified.

A subclass can override a method with another method that has the same name and same set of parameters as the original method in the superclass. A method can be overloaded by another method with the same name but a different set of parameters.

It is always legal to supply a reference to a subclass when a reference to a base class is required (e.g., as an argument to a function).

It is also legal to cast from base class to sub class:

class MyClass {

 public static void someFunc(BaseClass bc) {

if (bc instanceof SubClass)

 SubClass sc = (SubClass)bc;

If bc does not actually reference an object of class SubClass, the cast generates a run-time error (hence the use of instanceof).

Abstract Classes

An abstract class has no instances and is used only as the basis of other classes. A class that contains at least one abstract method is an abstract class and must be declared abstract.

public abstract class myAbstractClass {

 public abstract void abstractMethod();
// An abstract method does not have a body

An abstract class can provide a constructor, but the constructor cannot be abstract.

A subclass of an abstract class must be declared abstract if it does not provide implementations for all abstract methods in the superclass.

Interfaces

An interface can specify methods and constants, but supplies no implementation detail for the methods. You can then design a method to work with a variety of object types that implement a common method by specifying the interface as the parameter type for the method, instead of a class.

public interface Interface1 {

 public final int f = 0;

 public void method1();

 public void method2();

}

public class MyClass implements Interface1, Interface2 { ... }

A class must be declared abstract if it does not provide implementations for all methods in the interface it implements.

Interface1 obj = new MyClass();
// allows use only of methods declared in Interface1

An interface cannot be instantiated, so it does not define a constructor.

An interface defines a public API. All members of an interface are implicitly public, and it is conventional to omit the unnecessary public modifier.

The only fields allowed in an interface definition are constants that are declared both static and final.

Marker Interfaces: sometimes it is useful to define an interface that is entirely empty. A class can implement this interface without having to implement any methods. This technique is a useful way to provide additional information about an object. For example, java.io.Serializable is a marker interface that indicates that the class instances may be safely serialized.

Generic Data Type

Usage:
// Primitive can't be used as generic types.

import java.util.ArrayList;

public class test {

 public static void main(String[] args) {

 // Array list is a type-safe generic data type:

 // You can specify the type of the object that an ArrayList will store.

 ArrayList<String> nameList = new ArrayList<String>();

 nameList.add("Sigal");

 nameList.add("Gil");

 System.out.println(nameList.size());

 System.out.println(nameList.get(0)); // prints the first item in nameList

 }

}

Declaring a generic type:

class ArrayList<Type> {

 public Type add(Type t) { ... }
Collections

The Collection class provides the interface for all Set, List and Queue implementations. Collection, Set, List, Map, SortedSet and SortedMap are all interfaces, but the java.util package also defines various concrete implementations, such as lists based on arrays and linked lists, and maps and sets based on hashtables or binary trees.

Set - a collection of objects that doesn't allow duplicates.

Implementations: HashSet (internally a hash table, best general-purpose implementation), LinkedHashSet (preserves insertion order), EnumSet (holds non-null enum values), TreeSet (elements sorted in ascending order)

List - an ordered collection of objects.

Implementations: ArrayList (best all-around implementation), LinkedList (double linked-list; efficient insertion and deletion, no random access), Vector (legacy class; use ArrayList instead), Stack (extends Vector; add push(), pop(), peek(). LIFO)

Queue - an ordered collection, FIFO, no random access to elements.

Map - a set of 'key' object mapped to 'value' objects.

Implementations: HashMap (general purpose implementation)

import java.util.Collection;

import java.util.Collections;

import java.util.Arrays;

import java.util.ArrayList;

import java.util.HashSet;

import java.util.Iterator;

class test {

 public static void main(String args[]) {

 Collection<String> c = new HashSet<String>(); // an empty set
 Collection<String> f = new HashSet<String>(5); // an empty set with initial capacity 5
 // It is more efficient to specify the initial capacity. otherwise, the
 // internal array will have to be repeatedly reallocated as the list grows.
 Collection<String> d = Arrays.asList("one", "two"); // immutable

 Collection<String> e = Collections.singleton("three"); // immutable

 c.add("zero"); // Add a single element; returns true if successful

 c.addAll(d); // Add a collection of elements

 Collection<String> copy = new ArrayList<String> (c); // copy a collection

 boolean b = c.isEmpty();

 int s = c.size();

 c.remove("zero"); // remove a single element

 c.removeAll(e); // remove a collection of elements

 c.retainAll(d); // remove all elements that are not in d

 c.clear(); // remove all elements

 b = c.contains("zero");

 b = c.containsAll(d);

 c.addAll(copy); // restore collection from the copy we made
 c.set(2, "object"); // sets the element at the specified index
 // Iterate through collection elements with a while loop

 Iterator<String> iterator = c.iterator();

 while(iterator.hasNext()) System.out.println(iterator.next());

 // Iterate through collection elements with a for loop

 for (Iterator<String> i = c.iterator(); i.hasNext();)

 System.out.println(i.next());

 // Java 5.0 iteration using a for/in loop

 for (String word : c)

 System.out.println(word);

 // Most collection implementations have a useful toString() method

 System.out.println(c); // [one, two, zero]

 Object[] elements = c.toArray(); // Obtain an array of collection elements.

 String[] strings = c.toArray(new String[c.size()]);

 strings = c.toArray(new String[0]); // passing an empty String[] to specify the type.
 }

}

Exceptions

A try block can have many catch blocks associated with it, since even a single statement may be capable of throwing more than one type of exception. When a statement in the try block actually throws an exception, the remainder of the try block is abandoned, and control is passed to the catch block that corresponds to the type of exception thrown. The catch blocks must be ordered with the most specific exception classes appear before the more general exception classes; otherwise, the code will not compile.

Some exceptions from the Java API cannot be ignored. You must provide a handler for these exceptions. For example, in the class java.io.FileInputStream, the constructor will throw java.io.FileNotFoundException if the file specified cannot be found. In this case, the compiler will complain if no exception handler is provided.

You may throw a predefined exception class or define your own by extending RuntimeException or Exception:
class MyException extends Exception {

 public MyException() {}

 public MyException(String msg) {
// constructor with a string parameter

 super(msg);

 }

}

public class ExceptionDemo {

 public void func() throws MyException {

 if(true) throw new MyException("Throwing MyException from func()");

 }

 public static void main(String[] args) {

 ExceptionDemo ed = new ExceptionDemo();

 try {

 ed.func();

 System.out.println("test"); // won't execute in this example

 }
 catch(MyException e) {

 System.err.println("Caught it!");

 e.printStackTrace(System.err);

 }
 catch (Exception e) {

 System.out.println("Some error have been caught");

 }

 finally {

 // This block is executed whether or not an exception is thrown within the try block.

 // If an exception is thrown, the appropriate catch block executes and then the finally

 // block executes.

 }

 }

}
A method can throw more than one type of exception; each is listed after the throws clause, separated by commas:
All exceptions in Java are instances of the class java.lang.Exception or one of its subclasses.

Java has two types of exceptions: checked exceptions and runtime exceptions.
Checked exceptions are instances of classes that are subclasses of the java.lang.Exception class. They are typically used when the method encounters a serious problem. In some cases, the error may be considered serious enough that the program should be terminated. Any method that calls another method which throws a checked exception must either provide a catch block or contain a throws clause of its own for that type of exception. The exception java.ioi.FileNotFoundException is an example of a checked exception.
Runtime exceptions occur when the error is not considered as serious. These types of exceptions can often be prevented by fail-safe programming. Runtime exceptions are instances of classes that are subclasses of the java.lang.RuntimeException class.
Text Input

Read input from the console (the easy way):
import java.util.Scanner;
Scanner scan = new Scanner(System.in);

System.out.print ("Enter a string: ");

String s = scan.next();

System.out.print ("Enter a double: ");

double d = scan.nextDouble();

int i = scan.nextInt();
scan.nextLine();
// Advances scanner past current line and returns the input that was skipped.
scan. useDelimiter(",|\n|\r\n"); // Sets scanner's delimiting pattern to specified pattern.
scan.hasNext();
// Returns true if this scanner has another token in its input.
Read input from the console (the hard way):

BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));

String nextLine = stdin.readLine();

System.in reads a stream of bytes. InputStreamReader transforms a given raw byte stream into a sequence of characters. BufferedReader provides additional facilities that allow the character data to be read as a block or line of characters at a time.
The full program:

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.IOException;

public class HelloWorld {

 public static void main(String args[]) {

try {

 BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));

 String nextLine = stdin.readLine();

 System.out.println(nextLine);

}

 catch (IOException e) {

 System.out.println("Some error have been caught");

}

 }

}

If you need to read the character in the string nextLine as a sequence of integers instead of as a sequence of characters, use StringTokenizer and than convert the string to a primitive type value:

StringTokenizer input = new StringTokenizer(nextLine);

x = Integer.parseInt(input.nextToken());

y = Integer.parseInt(input.nextToken());

File Input/Output

The following Program read a file line by line and write each line into an output file:

import java.io.FileReader;

import java.io.FileWriter;

import java.io.BufferedReader;

import java.io.PrintWriter;

import java.io.IOException;

public class CopyLines {

 public static void main(String[] args) throws IOException {

 BufferedReader inputStream = null;

 PrintWriter outputStream = null;

 try {

 inputStream = new BufferedReader(new FileReader("in.txt"));

 outputStream = new PrintWriter(new FileWriter("out.txt"));

 // To append to an output file rather than overwrite it:

 // outputStream = new PrintWriter(new FileWriter("out.txt", true));

 String l;

 while ((l = inputStream.readLine()) != null) {

 outputStream.println(l);

 }

 } catch (IOException e) {

 System.out.println(e);

 System.exit(1);

 } finally {

 if (inputStream != null) {

 inputStream.close();

 }

 if (outputStream != null) {

 outputStream.close();

 }

 }

 }

}

With unbuffered I/O each read or write request is handled directly by the underlying OS. This can make a program much less efficient, since each such request often triggers disk access, network activity, or some other operation that is relatively expensive.

To reduce this kind of overhead, the Java platform implements buffered I/O streams. Buffered input streams read data from a memory area known as a buffer; the native input API is called only when the buffer is empty.

Object Serialization

Object serialization transforms an object into a sequence of bytes. Once an object is serialized, it can be stored in a file and read back at a later time using deserialization.

Any object that is to be saved using object serialization must implement the interface java.io.Serializable.

Saving an object to a file:

ObjectOutputStream ooStream = new ObjectOutputStream(new FileOutputStream("file_name"));

ooStream.writeObject(p);

Reading serialized objects from a file:

ObjectInputStream ioStream = new ObjectInputStream(new FileReader("file_name"));

while (obj = ioStream.readObject()) ! = null) { ... }

Archives

jar cvf myarchive.jar *.class

create a jar
jar uvf myarchive.jar *.class

update a jar
jar tvf myarchive.jar

list jar files
jar xvf myarchive.jar

extract all jar files
jar xf myarchive.jar myfile.java

extract a specific file

jar uf myarchive.jar myfile.class

add file to jar

java –classpath myarchive.jar myfile
run executable (myfile.class) which imports classes from archive
GUI
Top-level containers, such as JFrame, JWindows, JDialog, and JApplet, interface with the operating system's window manager.
Non-displaying content panes are intermediate containers such as JPanel, JScrollPane, JLayeredPane, JSplitPane and JTabbedPane. These organize the layout structure when multiple controls (like text fields and other widgets) are being used.
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class myFrame extends JFrame implements ActionListener
{

 JPanel pane = new JPanel();

 JButton pressme = new JButton("Press Me");

 JLabel answer = new JLabel("");
 myFrame()

// the frame constructor

 {

 super("JPrompt Demo");
 setBounds(100,100,300,200);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Container con = this.getContentPane();
// inherit main frame

 con.add(pane);

// JPanel containers default to FlowLayout

 pane.add(pressme);
 pane.add(answer);
 pressme.setMnemonic('P');

// associate hotkey to button

 pressme.addActionListener(this);

// register button listener
 // The reserved word 'this' indicates that the required (by implements ActionListener)
 // handler method called actionPerformed() will be included in the current class.
 pressme.requestFocus();

 setVisible(true);

// make frame visible

 }

 // here is the basic event handler
 public void actionPerformed(ActionEvent event)

 {

 Object source = event.getSource();

 if (source == pressme)

 {

 answer.setText("Button pressed!");

 JOptionPane.showMessageDialog(null, "I hear you!", "Message Dialog",

 JOptionPane.PLAIN_MESSAGE);

 setVisible(true);
 }

 }

 public static void main(String args[])

 {

 new myFrame();

 }

}
import javax.swing.*;

import java.awt.Color;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class ButtonDemo_Extended implements ActionListener {

 int redScoreAmount = 0;

 JPanel scorePanel, buttonPanel;

 JLabel redScore;

 JButton redButton;

 public JPanel createContentPane (){

 // We create a bottom JPanel to place everything on.

 JPanel totalGUI = new JPanel();

 totalGUI.setLayout(null);

 // Creation of a Panel to contain the score labels.

 scorePanel = new JPanel();

 scorePanel.setLayout(null);

 scorePanel.setLocation(10, 40);

 scorePanel.setSize(260, 30);

 totalGUI.add(scorePanel);

 redScore = new JLabel(""+redScoreAmount);

 redScore.setLocation(0, 0);

 redScore.setSize(120, 30);

 redScore.setHorizontalAlignment(0);

 redLabel.setForeground(Color.red);
 scorePanel.add(redScore);

 // Creation of a Panel to contain all the JButtons.

 buttonPanel = new JPanel();

 buttonPanel.setLayout(null);

 buttonPanel.setLocation(10, 80);

 buttonPanel.setSize(260, 70);

 totalGUI.add(buttonPanel);

 redButton = new JButton("Red Score!");

 redButton.setLocation(0, 0);

 redButton.setSize(120, 30);

 redButton.addActionListener(this);

 buttonPanel.add(redButton);

 totalGUI.setOpaque(true);

 return totalGUI;

 }

 public void actionPerformed(ActionEvent e) {

 if(e.getSource() == redButton)

 {

 redScoreAmount = redScoreAmount + 1;

 redScore.setText(""+redScoreAmount);

 }

 }

 private static void createAndShowGUI() {

 JFrame.setDefaultLookAndFeelDecorated(true);

 JFrame frame = new JFrame("[=] JButton Scores! [=]");

 //Create and set up the content pane.

 ButtonDemo_Extended demo = new ButtonDemo_Extended();

 frame.setContentPane(demo.createContentPane());

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(280, 190);

 frame.setVisible(true);

 }

 public static void main(String[] args) {

 //Schedule a job for the event-dispatching thread:

 //creating and showing this application's GUI.

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 createAndShowGUI();

 }

 });

 }

}
PAGE
12

