(
Relational Algebra
Selection is selecting rows from a relation ((): (selection condition(relation)
 Projection is selecting columns from a relation ((): (columns(relation)

	((and) or ((or)
A = {1, 3, 6}
B = {1, 2, 5, 6}
	Union: A (B = B (A = {1, 3, 6, 2, 5}

Intersection: A (B = B (A = {1, 6}

Set Difference: A – B = {3} , B (A = {2, 5}

Cartesian Product: A (B = B (A = {(1,1), (1,2), (1,5), (1,6), (3,1), (3,2), (3,5), (3,6), (6,1), (6,2), (6,5), (6,6)}

The renaming operator: (
	Renaming by position:

((resultingRelationNewName (5 (Column5NewName), Customer (Policy)
	Renaming an entire relation:
(resultingRelationNewName (A1, A2, …, An) (Customer (Policy)

	Condition joins

Customer ((income (dep_income Dependent

Equijoins

LivesAt ((LivesAt.city (Address.city Address

Natural joins

LivesAt ((Address equivalent to:

(LivesAt.city (Address.city (LivesAt.street (Address.street (

LivesAt.number (Address.number (LivesAt (Address)

	Division

Assume that R has two fields (x and y) and S has only one field y.

Then R (S is equivalent to: (x(R) – (x(((x(R) (S) (R)

Return the x’s in R that have relationships with all
 y’s in S

Relational Calculus

(Find the names of customers with incomes less than 100000. {P | (C (Customer(C.income (100000 (
 P.fName (C.fName (P.lName (C.lName)}
(Find the SINs and policyNos of all customers that live in Vancouver.
{P | (C(Customer (Po (Policy (L (LivesAt (P.SIN (C.SIN (P.policyNo (C.policyNo (C.policyNo (Po.policyNo (C.SIN (L.SIN (L.city (“Vancouver”)}

(Find the SINs of customers who have addresses in all categories.
 {P | (L (LivesAt (A(Address ((L1 (LivesAt (A1 (Address (P.SIN = L.SIN (L.SIN = L1.SIN (L.city (A1.city (L.street (A1.street (L.number (A1.number (A.category (A1.category))}
Domain Relational Calculus

Find the names of customers with incomes equal to 50. {(F, L(| (S, I, P ((S, F, L, I, P((Customer (I = 50)} or {(F, L(| (S, P ((S, F, L, 50, P((Customer)}
RAID levels (Redundant Arrays of Independent Disks)

Level 0: Nonredundant. no check disk. uses striping.

Level 1: Mirrored. a check disk for every data disk, no striping.

Level 0+1 (10): Mirroring and Striping.

Level 2: Error-correcting codes. bit-level striping, Hamming code to identify and recover single disk failure. number of check disks grows logarithmically with number of data disks.

Level 3: Bit-interleaved parity. single check disk, bit level stripping.

Level 4: Block Interleaved parity. single check disk, block level striping.

Level 5: Block-interleaved distributed parity. parity blocks are distributed uniformly over all disks.

Level 6: P + Q Redundancy. Reed-Solomon codes allows recovery from 2 simultaneous disk failures. 2 check disks, block-interleaved distributed parity.

Buffer Manager (BM), frames
pin-count - number of users. pinning, unpinning.

dirty - page has been modified

LRU (Least Recently Used) - queue (FIFO) of frames with pin-count 0.
MRU (Most Recently Used)

Clock replacement: referenced - turned on when its pin-count is zero.

if the current frame has referenced turned on, turn it off and increment current. If the current frame has referenced off (and has a pin-count of zero) replace it.

Fixed Length Records - Packed: when a record is deleted move last record on its page to its location. Unpacked: Use a bit array.

Variable Length Records - Directory for each page with record offset, record length. When a record is moved it's rid <page id, slot number> doesn't change. Use a delimiting character between fields, or keep an array of integer offsets at the start of each record.

"forwarding address" to a record that grew bigger and moved page.

B data pages, R records a page

D - average time to read \ write a page

C - average time to process a record (compare etc.)
H - time to map a value to a hash function

	Type
	Scan
	Equality Search
	Range Search
	Insert
	Delete

	Heap
	B(D+RC)
	1/2B(D+RC)
	B(D+RC)
	2D+C
	D+C (given rid)

	Sorted
	B(D+RC)
	Dlog2 B +Clog2 R
	Dlog2 B +Clog2 R + page #
	B(D+RC)
	B(D+RC)

	Hashed (80% occupancy)
	1.25B(D+RC)
	D+H+1/2RC
	1.25B(D+RC)
	H+C+2D
	H+C+D (or 2D)

clustered index: index and data are sorted by the same key.

dense index: 1 index key per one data entry.

sparse index: 1 index key for each page of records. clustered.
primary index: search key includes primary key.

secondary index: search key doesn't include primary key.

inverted file: file has a dense secondary index.

fully inverted file: file has a dense secondary index on each field which is not a primary key.

ISAM (Indexed Sequential Access Method), static structure, non-leaf index don't change.

search cost logF N where N is number of leaf pages and F is number of children of an index page.

B+ tree Nodes have up to n pointers and n-1 search key values. Leaf node contain at least ((n-1)/2(values and pointers to values (except pn).

Non-leaf nodes hold at least (n/2(pointers. Linear Hashing. 'next' indicates which bucket is to be split next.

Extendible Hashing. array index is last bits of hash values. Directory is doubled when overflow occurs. global depth of hashed file and local depth of each page.

External Sort – two way merge sort cost 2N((log2 N(+ 1). (log2 N(+ 1 number of passes, N - number of pages to sort.

Given B buffer pages, number of passes ((logB-1 N/B(+1
	SC(A,r) is the Selection Cardinality of attribute A in relation r - the average number of records with the attribute value (1 if the attribute is a superkey).

fr is the blocking factor of relation r - the number of records in a block.

Selection with no index, unsorted data index br
no index, unsorted data index, superkey br /2

no index, sorted data (log2 br (+ (SC(A,r) / f r (-1
	clustered B+ tree index on a superkey and equality selection HT + 1

clustered B+ tree index on non-key or range selection HT + (SC(A,r) / f r (
unclustered B+ tree index on a non-key HT + L-1 + SC(A,r)

 L – number of leaf nodes in the range.

Hash, clustered index HT + (SC(A,r) / f r (
Hash, unclustered index HT + (SC(A,r)(

	CREATE TABLE TableName

 (fieldName1
DOMAIN

 …

 fieldNamen
DOMAIN

 UNIQUE (fldNmi, … fldNmj)

 [CONSTRAINT Id] PRIMARY KEY (fldNmk, … fldNml)

 FOREIGN KEY (fldNmi) REFERENCES RefTableName

 ON DELETE CASCADE \ ON DELETE SET NULL)
The UNIQUE constraint specifies a candidate key.

CREATE TABLE Owns
 (sin

CHAR(11)

 policyNo
INTEGER NOT NULL

 PRIMARY KEY (sin)

 FOREIGN KEY (sin) REFERENCES Customer)
INSERT

INTO TableName (fldNm1, ..., fldNmn)

VALUES (v1, ..., vn)

DELETE

FROM TableName Identifier

WHERE Condition

To delete all the tuples in a table:

DELETE

FROM TableName

To modify tuples:

UPDATE TableName Identifier

SET Identifier.fieldName = value

WHERE Condition

To delete a table:

DROP TABLE TableName
CREATE VIEW Customer_Fee
 (sin, fName, fee) AS

 SELECT [DISTINCT]
 C.sin, C.fName, P.fee

 FROM Customer C, Policy P

 WHERE C.policyNo = P.policyNo

SELECT *
FROM LivesAt

WHERE city = “Vancouver”
SELECT C1.fName, C1.lName
FROM Customer C1, Customer C2

WHERE C2.SIN = “101-244-578” AND

 C1.income (C2.income

SELECT policyNO, fee AS old, fee * 1.1 AS new
FROM Policy

SELECT lName, fName

FROM Customer

WHERE lName LIKE “Sm_t%”

// The % symbol stands for zero or more arbitrary characters.
// The _ symbol stands for exactly one arbitrary character.

UNION returns m + n copies.
INTERSECT returns min (m, n) copies.

EXCEPT returns m – n copies.

SQL allows duplicates to be retained using the ALL keyword.

The EXISTS operator tests if a set is non-empty.
SELECT: SUM(), AVG(), MAX(), MIN(), COUNT()

WHERE X: IN, NOT IN, EXISTS, NOT EXISTS,UNIQUE, ANY, ALL, IS NULL, IS NOT NULL, > ANY, < ALL

Projection using sorting

Cost: read + write + sort to remove duplicates

= b r + b r1 + b r1 log b r1
r1 is the relation after unwanted attributes are removed.

Projection using Hash function

Hash pages from file to B-1 partitions in main memory using h1. save to disk.

Hash each partition using h2.

if a tuple hashes to the same value an an existing tuple, check for duplicates.

Cost : b r + b r1 + b r1+ b r2 (write to disk).

	SELECT C.fName, C.lName
FROM Customer C

WHERE C.SIN IN

 (SELECT D.SIN

 FROM Dependent D

 WHERE d_fName = “John”)

Find the SINs of customers who earn more than any customer whose first name is Bruce
SELECT C1.SIN

FROM Customer C1

WHERE C1.income > ANY

 (SELECT C2.income

 FROM Customer C2

 WHERE C2.fName = “Bruce”)

Find the SIN of the customer with the most income.
SELECT C1.SIN

FROM Customer C1

WHERE C1.income >= ALL

 (SELECT C2.income

 FROM Customer C2)

Find the average age of minor (under 18) dependents of customers who have more than one such dependent.
SELECT C.SIN, AVG(age)
FROM Customer C, Dependent D

WHERE C.SIN = D.SIN AND age < 18

GROUP BY C.SIN

HAVING COUNT(*) > 1

INNER, LEFT OUTER, RIGHT OUTER,
FULL OUTER.
An outer join includes tuples that do not match the join conditions.

SELECT E_SIN, salary, income
FROM Customer RIGHT OUTER JOIN Employee ON E_SIN =SIN
SELECT SIN, C.policyNo, fee
FROM Customer NATURAL INNER JOIN Policy
SELECT *
FROM LivesAt INNER JOIN Address USING (city, street)
CREATE DOMAIN SINvalues INTEGER DEFAULT 555555555 CHECK (VALUE > 99999999 AND VALUE < 1000000000)
CREATE TABLE CUSTOMER (…

CHECK (“Hamilton” <> SELECT L.city

 FROM
 LivesAt L

 WHERE
L.SIN = Customer.SIN))
Create an assertion that checks that there is no overlap between salesmen and managers.

CREATE ASSERTION SalesNotMan

CHECK(NOT EXISTS

 (SELECT M.empNo

 FROM Manager M, Salesman S

 WHERE S.empNo = M.empNo))

Query By Example (QBE)

P. Print

I. Insert

D. Delete

U. Modify

_V Variable

SUM, COUNT, AVG, MAX, MIN

SUM.UNQ Remove duplicates

.AO(1) Ascending Order, 1st to order by

.DO(2) Descending Order
Joins

Nested Loop cost b r + n r * b s or b r + b r * b s

Block Nested Loop cost b s + b r or

 b s + b r * (b s /B - 2(
Index Nested Loop. Make indexed relation (S) the inner one. Cost b r + (n r * index access time)

Sort-Merge Join cost of sorting:

b r log b r + b s log bs cost of merge: b s + b r
cost of merge using merge-sort: 3* (b s + b r)

Hash partition R using h1 (cost: 2 b r),

partition S using h1.

Probing : match partitions – read partition of R, hash with h2, read partition of S, hash with h2.

	B+ Tree Insertion Algorithm

find node L where entry should appear
insert-entry (L, V, P)

procedure insert-entry (node L, key V, pointer P)

if (L has space for (V, P))

insert (V, P) in L
//and exit

else

//Split L

if (L is a leaf node)

 Let V’ be the value so that (n/2(of

 L.K1, …, L.Kn-1, V are (V’
Let m be the least value | L.Km (V’

move L.Km, …, L.Kn-1 (and Ps) to L’

if (V (V’)
insert (P, V) in L

else insert (P,V) in L’

else
//L is not a leaf node

Let V’ be the value so that (n/2(of

L.K1, …, L.Kn-1, V are (V’

Let m be the least value | L.Km (V’

add Nil, L.Km, …, Pn-1, Kn-1, Pn to L’
delete L.Km, …, Pn-1, Kn-1, Pn from L
if (V (V’) insert (P, V) in L

else

insert (P,V) in L’
delete (Nil, V’) from L’

if (L is not the root)

insert-entry (parent (L), V’, L,)
else
//L is the root

create new root with V’ and L, L’
if (L is a leaf)

set L’.Pn = L.Pn
set L.Pn = L’

B+ Tree Deletion Algorithm

procedure delete_shell (key V, pointer P)

find the leaf node L that contains (V, P)

delete-entry (L, V, P)

procedure delete-entry (node L, key V, pointer P)

delete (V, P) from L

if (L is root and L has only 1 remaining child)

make child (L) root, delete L
//and exit

else if (L has too few keys / pointers)

// Redistribute if possible

if (an entry can be borrowed from a sibling)

Let L’ be left / right siblingNote 1 //choose

Let V’ be value between L and L’ in parent

if (L is a non-leaf node)

if (L’ is right sibling)

remove P1, K1 from L’

insert V’, L’.P1 in L

replace V’ in parent(L) with L’K1Note 2

else

Let m | L’Pm is last pointer in L’

remove Km-1, Pm from L’

insert L’.Pm, V’ in L

replace V’ in parent(L) with L’Km-1Note 3

else //L is a leaf

if (L’ is right sibling)

remove P1, K1 from L’

insert L’P1, L’.K1 in L

replace V’ in parent(L) with new L’K1

else

Let m | L’Km is last value in L’

remove Pm, Km from L’

insert L’.Pm, L’.Km in L

replace V’ in parent(L) with new L.K1

else //Coalesce if redistribution not possible

Let L’ be left / right sibling //choose

Let V’ be value between L and L’ in parent

if (L is a non-leaf node)

insert V’ and all of L in L’Note 4

else //L is a leaf

insert all of L in L’

reset pointer chains

delete-entry (parent(L), V’, L)

delete node L

B+ Tree Deletion Algorithm

procedure delete_shell (key V, pointer P)

find the leaf node L that contains (V, P)

delete-entry (L, V, P)

procedure delete-entry (node L, key V, pointer P)

delete (V, P) from L

if (L is root and L has only 1 remaining child)

make child (L) root, delete L
//and exit

else if (L has too few keys / pointers)

// Redistribute if possible

if (an entry can be borrowed from a sibling)

Let L’ be left / right siblingNote 1 //choose

Let V’ be value between L and L’ in parent

if (L is a non-leaf node)

if (L’ is right sibling)

remove P1, K1 from L’

insert V’, L’.P1 in L

replace V’ in parent(L) with L’K1Note 2

else

Let m | L’Pm is last pointer in L’

remove Km-1, Pm from L’

insert L’.Pm, V’ in L

replace V’ in parent(L) with L’Km-1Note 3

else //L is a leaf

if (L’ is right sibling)

remove P1, K1 from L’

insert L’P1, L’.K1 in L

replace V’ in parent(L) with new L’K1

else

Let m | L’Km is last value in L’

remove Pm, Km from L’

insert L’.Pm, L’.Km in L

replace V’ in parent(L) with new L.K1

else //Coalesce if redistribution not possible

Let L’ be left / right sibling //choose

Let V’ be value between L and L’ in parent

if (L is a non-leaf node)

insert V’ and all of L in L’Note 4

else //L is a leaf

insert all of L in L’

reset pointer chains

delete-entry (parent(L), V’, L)

delete node L
B+ Tree Insertion Algorithm

find node L where entry should appear
insert-entry (L, V, P)

procedure insert-entry (node L, key V, pointer P)

if (L has space for (V, P))

insert (V, P) in L
//and exit

else

//Split L

if (L is a leaf node)

 Let V’ be the value so that (n/2(of

 L.K1, …, L.Kn-1, V are (V’
Let m be the least value | L.Km (V’

move L.Km, …, L.Kn-1 (and Ps) to L’

if (V (V’)
insert (P, V) in L

else insert (P,V) in L’

else
//L is not a leaf node

Let V’ be the value so that (n/2(of

L.K1, …, L.Kn-1, V are (V’

Let m be the least value | L.Km (V’

add Nil, L.Km, …, Pn-1, Kn-1, Pn to L’
delete L.Km, …, Pn-1, Kn-1, Pn from L
if (V (V’) insert (P, V) in L

else

insert (P,V) in L’
delete (Nil, V’) from L’

if (L is not the root)

insert-entry (parent (L), V’, L,)
else
//L is the root

create new root with V’ and L, L’
if (L is a leaf)

set L’.Pn = L.Pn
set L.Pn = L’

	CREATE TABLE TableName

 (fieldName1
DOMAIN

 …

 fieldNamen
DOMAIN

 UNIQUE (fldNmi, … fldNmj)

 [CONSTRAINT Id] PRIMARY KEY (fldNmk, … fldNml)

 FOREIGN KEY (fldNmi) REFERENCES RefTableName

 ON DELETE CASCADE \ ON DELETE SET NULL)
The UNIQUE constraint specifies a candidate key.

CREATE TABLE Owns
 (sin

CHAR(11)

 policyNo
INTEGER NOT NULL

 PRIMARY KEY (sin)

 FOREIGN KEY (sin) REFERENCES Customer)
INSERT

INTO TableName (fldNm1, ..., fldNmn)

VALUES (v1, ..., vn)

DELETE

FROM TableName Identifier

WHERE Condition

To delete all the tuples in a table:

DELETE

FROM TableName

To modify tuples:

UPDATE TableName Identifier

SET Identifier.fieldName = value

WHERE Condition

To delete a table:

DROP TABLE TableName
CREATE VIEW Customer_Fee
 (sin, fName, fee) AS

 SELECT [DISTINCT]
 C.sin, C.fName, P.fee

 FROM Customer C, Policy P

 WHERE C.policyNo = P.policyNo

SELECT *
FROM LivesAt

WHERE city = “Vancouver”
SELECT C1.fName, C1.lName
FROM Customer C1, Customer C2

WHERE C2.SIN = “101-244-578” AND C1.income (C2.income

SELECT policyNO, fee AS old, fee * 1.1 AS new
FROM Policy

SELECT lName, fName

FROM Customer

WHERE lName LIKE “Sm_t%”

// The % symbol stands for zero or more arbitrary characters.
// The _ symbol stands for exactly one arbitrary character.

UNION returns m + n copies.
INTERSECT returns min (m, n) copies.

EXCEPT returns m – n copies.

SQL allows duplicates to be retained using the ALL keyword.

The EXISTS operator tests if a set is non-empty.
SELECT: SUM(), AVG(), MAX(), MIN(), COUNT()

WHERE X: IN, NOT IN, EXISTS, NOT EXISTS,UNIQUE, ANY, ALL, IS NULL, IS NOT NULL, > ANY, < ALL
	SELECT C.fName, C.lName
FROM Customer C

WHERE C.SIN IN

 (SELECT D.SIN

 FROM Dependent D

 WHERE d_fName = “John”)

Find the SINs of customers who earn more than any customer whose first name is Bruce
SELECT C1.SIN

FROM Customer C1

WHERE C1.income > ANY

 (SELECT C2.income

 FROM Customer C2

 WHERE C2.fName = “Bruce”)

Find the SIN of the customer with the most income.
SELECT C1.SIN

FROM Customer C1

WHERE C1.income >= ALL

 (SELECT C2.income

 FROM Customer C2)

Find the average age of minor (under 18) dependents of customers who have more than one such dependent.
SELECT C.SIN, AVG(age)
FROM Customer C, Dependent D

WHERE C.SIN = D.SIN AND age < 18

GROUP BY C.SIN

HAVING COUNT(*) > 1

INNER, LEFT OUTER, RIGHT OUTER,
FULL OUTER.
An outer join includes tuples that do not match the join conditions.

SELECT E_SIN, salary, income
FROM Customer RIGHT OUTER JOIN Employee ON E_SIN =SIN
SELECT SIN, C.policyNo, fee
FROM Customer NATURAL INNER JOIN Policy
SELECT *
FROM LivesAt INNER JOIN Address USING (city, street)
CREATE DOMAIN SINvalues INTEGER DEFAULT 555555555 CHECK (VALUE > 99999999 AND VALUE < 1000000000)
CREATE TABLE CUSTOMER (…

CHECK (“Hamilton” <> SELECT L.city

 FROM
 LivesAt L

 WHERE
L.SIN = Customer.SIN))
Create an assertion that checks that there is no overlap between salesmen and managers.

CREATE ASSERTION SalesNotMan

CHECK(NOT EXISTS

 (SELECT M.empNo

 FROM Manager M, Salesman S

 WHERE S.empNo = M.empNo))

Query By Example (QBE)

P. Print

I. Insert

D. Delete

U. Modify

_V Variable

SUM, COUNT, AVG, MAX, MIN

SUM.UNQ Remove duplicates

.AO(1) Ascending Order, 1st to order by

.DO(2) Descending Order

