PAGE
61

C++

2Hello World

2Data Types

3Enumeration Types

3Mathematical operations

4cmath library

4comparison operators

4Random number generation

5Character handling functions

5Control Statements

5if... else

5while

6do... while

6for

7switch

8I/O streams

8Reading and Writing to a File

9Reading one character at a time

10Navigating a sequential file

10Random access files

11Passing Streams to Functions

11Formatting stream functions

12Setting and resetting the format state with method flags

13Stream Error states

13Tying an output stream to an input stream

14Functions

14Void Functions

15Passing arguments by values and by reference

15Default Arguments

16Function Overloading

16Function Templates

17Organizing the code in different files

17Storage classes: auto, register, extern, mutable and static

18Scope rules

19Unary scope resolution operator ::

19Namespace

20Arrays

20Static arrays

21Passing arrays to functions

22Character arrays

22Reading character arrays with getline()

22Copying character arrays

23Multidimensional arrays

24Vectors

25Structures

25Hierarchical Structures

25Working with the structure data members

26Classes

27Terminology

27Abstraction

27Encapsulation

27Inheritance

27Polymorphism

27Class scope

27The arrow (->) member selection operator

28Constructors

29const objects, const member functions

30const data members

31Destructors

32Copy constructor

33Friend functions

34The 'this' pointer, cascading function calls

35Static class members

36Inheritance

37Polymorphism and virtual methods

37Abstract classes

38Virtual destructors

39Run-Time Type Identification

40Proxy / wrapper classes

41Class Templates

42Pointers

42constant pointers

43Reference variables

43Passing Pointers to a function

44Pointers and Arrays

44Copying character arrays using pointers

44Arrays of pointers

45Function Pointer

46Dynamic Memory

47cstring String Manipulation Functions

48The 'string' class

49string iterator

49string stream processing

50Operator Overloading

51Operators +, - and <<

52The assignment operator =

53The subscript operator []

54Cast operator

54Prefix and postfix increment operator ++

55Exception Handling

56Unexpected Exceptions

57Stack Unwinding

58Exceptions Inheritance

58Memory allocation failure

59Class auto_ptr

Hello World

#include <iostream> /* Lines beginning with a hash sign (#) are directives for the preprocessor. */

/* This line notifies the preproessor to include in the program the contents of the input/output stream header file <iostream>. */
int main () /* C++ programs begin executing at function main(), even if main is not the first function in the program */
{

 std::cout << "Hello World!\n"; /* cout is declared in the iostream standard file within the std namespace */

 return 0; /* indicates successful termination */
}

On Unix, compile with "g++ hello.cpp -o hello.out" and run with "./hello.out"

Hello World!

Data Types

The following program returns the number of bytes used to store most of the standard data types.

The size may vary on different systems.

#include <iostream>

using std::cout;

using std::endl;

main()

{

 cout << "sizeof(char) = " << sizeof(char) << endl;

 cout << "sizeof(short) = " << sizeof(short) << endl;

 cout << "sizeof(int) = " << sizeof(int) << endl;

 cout << "sizeof(size_t) = " << sizeof(size_t) << endl;

 cout << "sizeof(long) = " << sizeof(long) << endl;

 cout << "sizeof(float) = " << sizeof(float) << endl;

 cout << "sizeof(double) = " << sizeof(double) << endl;

 cout << "sizeof(long double) = " << sizeof(long double) << endl;

 int array[10];

 cout << "sizeof int array[10] = " << sizeof(array) << endl;

 int *ptr;

 cout << "sizeof int *ptr = " << sizeof(ptr) << endl;

 return 0;

}

sizeof(char) = 1

sizeof(short) = 2

sizeof(int) = 4

sizeof(size_t) = 4

sizeof(long) = 4

sizeof(float) = 4

sizeof(double) = 8

sizeof(long double) = 16

sizeof int array[10] = 40

sizeof int *ptr = 4

size_t is an alias for unsigned int on most compilers.

Enumeration Types

Enumeration type - a list of declarations of const int.

enum month { Jan = 31, Feb = 28, Mar = 31};

enum number {b, i, r, d};

// b = 0, i = 1, r = 2, d = 3
enum number {b = 3, i, r = -3, d}
// b = 3, i = 4, r = -3, d = -2
#include <iostream>

using std::cout;

int main()

{

 enum Status { CHILD, ADULT, SENIOR }; // all caps in constants
 // enum Status { CHILD = 0, ADULT = 1, SENIOR = 2}; is equivalent

 Status ticket;

 ticket = CHILD;

 if (ticket == CHILD) // if (ticket == 0) is equivalent
 cout << "Ticket holder is a child\n";

 return 0;

}

Mathematical operations

y += x;

// y = y + x

y -= x;

// y = y - x

y *= x;

// y = y * x

y /= x;

// y = y / x

y %= x;

// y = y % x = reminder of y / x

y ++;

// y = y + 1

y --;

// y = y - 1

y = 2 * (x++)
// y = 2 * x and than x = x + 1

y = 2 * (++x)
// x = x + 1 and than y = 2 * x

double(variable);

// convert int to double

int('3') – int('0')
// convert char to int

atoi("100")

// convert string to integer (ASCII to int)

atol("100")

// convert string to long

atof("100.1")
// convert string to float (type double)

#include <iostream>

using std::cin;

using std::cout;

using std::endl;

using std::dec;

using std::hex;

using std::oct;

#include <iomanip>

using std::setbase;

int main()

{

 int x = 20;

 cout << x << " in hexadecimal is " << hex << x << endl;

 cout << dec << x << " in octal is " << oct << x << endl;

 cout << setbase(10) << x << " in decimal is " << x << endl;

 return 0;

}

20 in hexadecimal is 14

20 in octal is 24

20 in decimal is 20
The stream base value remains the same until changed explicitly.

cmath library

include <cmath>

y = sqrt(x)

// square root for arguments of type double

y = pow (x, n)
// powers for arguments of type double

y = fabs (x)
// absolute value for double

y = ceil (x)
// round up for double

y = floor (x)
// round down for double

y = abs (x)

// absolute value for int

y = labs (x)
// absolute value for long

y = fmod(numerator, denominator) // remainder of division for arguments of type double

#include <iostream>

using std::cout;

using std::endl;

#include <cmath>

main()

{

 cout << sqrt(16) << endl; // 4

 cout << pow(3.0, 2.0) << endl; // 9

 cout << fabs(-3.34) << endl; // 3.34

 cout << ceil(3.34) << endl; // 4

 cout << floor(3.34) << endl; // 3

 cout << abs(-3) << endl; // 3

 cout << fmod(3.34, 3) << endl; // 0.34

 return 0;

}

comparison operators

==

// equal to

!=

// not equal to

<=

// less than or equal to

&&

// and operator

||

// or operator

Random number generation

rand() returns a pseudorandom integer >= 0 and <= RAND_MAX. It will produce the same sequence of numbers each run.

srand(unsigned int) reinitializes the random number generator with a seed, to produce a different sequence each run.

#include <iostream>

using std::cout;

using std::endl;

#include <cstdlib>

using std::rand;

using std::srand;

#include <ctime>

int main()

{

 cout << "RAND_MAX is " << RAND_MAX << endl;

 for (int i; i<10; i++)

 cout << rand() % 10 << " ";

 cout << endl;

 srand((unsigned)time(0));

 for (int i = 0; i<10; i++)

 cout << rand() % 10 << " ";

 cout << endl;

 return 0;

}

RAND_MAX is 32767

8 8 3 5 1 7 0 9 2 6

2 0 2 8 0 5 0 3 1 4

Character handling functions

#include <cctype>

toupper(x);

// Returns the uppercase of x

tolower(X);

// Returns the lowercase of X

isupper(x);

// Returns true if x is an uppercase

islower(x);

// Returns true if x is a lowercase

isalpha(x);

// Returns true if x is a letter of the alphabet

isdigit(x);

// Returns true if x is a digit

isalnum(x)

// Returns true if x is alphanumeric

isspace(x);

// Returns true is x is a blank or newline symbol

Control Statements

if... else

if (X) {...} else if (X) {...} else {...}

#include <iostream>

using std::cout;

main()

{

 int a = 1, b = 3;

 if (a == b)

 {

 cout << "a equal b\n";

 }

 else if (a > b)

 {

 cout << "a is bigger than b\n";

 }

 else

 {

 cout << "a is smaller than b\n";

 }

 return 0;

}

while

while (X) {...}

#include <iostream>

using std::cout;

using std::endl;

main()

{

 int a = 1, b = 3;

 while (a < b)

 {

 cout << a << endl;

 a++;

 }

 return 0;

}

do... while

do {...} while (X)

// will execute at least once before checking the condition
#include <iostream>

using std::cout;

using std::endl;

main()

{

 int a = 1, b = 3;

 do {

 cout << a << endl;

 a++;

 } while (a < b);

 return 0;

}

for

for (n = 1; n < 10; n++) {...}

for (initialize n; While n < 10; increment n after the loop body is executed)

#include <iostream>

using std::cout;

using std::endl;

main()

{

 for (int i = 0; i < 3; i++)

 {

 cout << i << endl;

 }

 return 0;

}

0

1

2

// Demostrating continue and break
#include <iostream>

using std::cout;

using std::endl;

main()

{

 int a = 3, b = 5;

 for (int i = 0; i < 10; i++)

 {

 if (i == a)

 continue; /* stop executing current iteration and go to next iteration */

 if (i == b)

 break; /* The break statement exits any type of loop statement

i.e. while-loop, do-while-loop, for-loop. */

 cout << i << endl;

 }

 return 0;

}

0

1

2

4

switch

#include <iostream>

using std::cout;

using std::endl;

main()

{

 char grade = 'B';

 switch (grade)

 {

 case 'A':

 cout << "Great, you got an 'A'.\n";

 break;

 case 'B':

 cout << "Good, you got a 'B'.\n";

 break;

 default:

 cout << "Study harder next time.\n";

 }

 return 0;

}

Good, you got a 'B'.

I/O streams

Reading and Writing to a File

#include <iostream>

using std::cout;

using std::cin;

using std::cerr;

using std::endl;

using std::ios;

using std::left;

using std::right;

using std::showpoint;

using std::fixed;

#include <iomanip>

using std::setw;

using std::setprecision;

#include <fstream>

using std::ifstream;

using std::ofstream;

main()

{

 // Write to file

 ofstream out_stream("file.dat", ios::out); /* ios::out is the default flag */

 if (!out_stream)

 {

 cerr << "Output file opening failed.\n";

 exit(1);

 }

 cout << "Enter the account, name and balance." << endl

 << "Enter end-of-file to end input.\n? ";

 /* end-of-file:
 ctrl-d on Unix

 ctrl-z (sometimes followed by pressing Enter) on Windows */

 int account;

 char name[20];

 double balance;

 while (cin >> account >> name >> balance)

 {

 out_stream << account << ' ' << name << ' ' << balance << endl;

 cout << "? ";

 }

 out_stream.close(); /* explicit stream closing. The object destructor

 invoked implicitly when main terminates. */

 // Read from file

 ifstream in_stream("file.dat", ios::in);

 if(!in_stream)

 {

 cerr << "Input file opening failed.\n";

 exit(1);

 }

 cout << endl << endl;

 cout << left << setw(10) << "Account" << setw(13) << "Name" << "Balance"

 << endl << fixed << showpoint;

 while (in_stream >> account >> name >> balance)

 cout << left << setw(10) << account << setw(13) << name << setw(7)

 << setprecision(2) << right << balance << endl;

 in_stream.close();

 return 0;

}

Enter the account, name and balance.

Enter end-of-file to end input.

? 100 Carrie 230.007
? 200 Chris 13.9
? ^D
Account Name Balance

100 Carrie 230.01

200 Chris 13.90

Opening an output file with .open():

ofstream out_stream;

out_stream.open("file.dat");

Opening an input file with .open():

ifstream in_stream;

in_stream.open("file.dat");

Checking for file opening success with .fail():

if (out_stream.fail()) { }

File open modes:

ios::out
Open a file for output, discard the file's contents if exist

ios::app
Append all output to the end of the file

ios::ate
Open a file for output and move to the end of the file.

Data can be written anywhere in the file.

ios::in
Open a file for input

ios::truc
Discard the file's contents

ios::binary
Open a file for binary output or input

Reading one character at a time

// Read file "file.dat" and output it to the screen

#include <iostream>

using std::cout;

using std::cin;

using std::cerr;

using std::endl;

#include <fstream>

using std::ifstream;

main()

{

 ifstream in_stream("file.dat");

 if (in_stream.fail())

 {

 cerr << "Input file opening failed.\n";

 exit(1);

 }

 char more;

 in_stream.get(more);

/* .get() doesn't ignore white space like >> does */
 while (!in_stream.eof())
/* .eof() returns true if the eofbit stream's error flag was set by a previous i/o operation. */
 {

 cout.put(more);

 in_stream.get(more);

 }

 in_stream.putback(more);
/* pretend last char wasn't read from the file */
 in_stream.close();

 return 0;

}

cin.get(more, size);
This function extracts characters from the input stream until either (size - 1) characters have been extracted or the delimiting character '\n' is found.

cin.peek(); This function returns the next character from an input stream but does not remove the character from the stream.

Navigating a sequential file

#include <fstream>

using namespace std;

int main(){

 const char* filename = "file.dat";

 //just build a little sample file

 ofstream sampleFile(filename);

 sampleFile << "First line of content\n";

 sampleFile.close();

 //declare a new file object for appending and overwriting...

 fstream file(filename, ios::ate | ios::out | ios::in);

 //mark the current position...

 long changePos = file.tellp();

 //append something else...

 file << "Second line of content\n";

 //overwrite previous contents

 file.seekp(changePos);

 file << "Changed";

 file.close();

 return 0;

}

First line of content

Changed line of content

istream.seekg(long), seek get, the argument is the byte offset in the stream from which the next input is to occur.

ostream.seekp(long), seek put, the argument is the byte offset in the stream from which the next output is to occur.

A second argument can be specified to indicate the seek direction:

ios::beg (the default) for positioning relative to the beginning of the stream

ios::cur for positioning relative to the current position in the stream

ios::end for positioning relative to the end of the stream

istream.tellg() returns the current position of the get pointer

ostream.tellp() returns the current position of the put pointer

Warning: if the inserted content is bigger than the content it is supposed to replace, it will overwrite the subsequent file content.

Random access files

When writing an integer number to a file, instead of using the statment file << number;

which for a four-byte integer could print as few digits as one or as many as 11, we can use the statement

file.write(reinterpret_cast< const char * >(&number), sizeof(number));

which writes the binary version to the integer's four bytes.

// Reading a writing fix-length characters

#include <iostream>

using std::cin;

using std::cout;

using std::endl;

int main()

{

 char buffer[20];

 cout << "Enter a sentence: ";

 cin.read(buffer, 20);

 cout << "You entered: ";

 /* .gcount() reports the number of characters read by the last input operation */

 cout.write(buffer, cin.gcount());

 cout << endl;

 return 0;

}

Enter a sentence: 24 billion chickens in 2003

You entered: 24 billion chickens

// Creating random access file with fixed-length records

#include <fstream>

using namespace std;

#include <iostream>

using std::cerr;

using std::ios;

class clients

{

 public:

 int accountNo;

 char name[30];

 double balance;

};

int main(){

 // won't open fstream with input mode if doesn't exist, so create one

 fstream file1("file.dat", ios::out); file1.close();

 fstream file("file.dat", ios::in | ios::out | ios::binary);

 if (!file) { cerr << "File could not be opened\n"; exit(1); }

 clients client1 = {1, "Bill Gates", 100.01};

 clients client2;

 // records are sorted in file by account number

 file.seekp((client1.accountNo - 1) * sizeof(clients));

 //ostream.write() outputs a fixed number of bytes to the stream

 file.write(reinterpret_cast< const char * >(&client1), sizeof(clients));

 file.seekg(0);

 //istream.read() reads a fixed number of bytes from the stream

 file.read (reinterpret_cast< char * >(&client2), sizeof(clients));

 cout << client2.accountNo << ' ' << client2.name << ' ' << client2.balance

 << endl;

 file.close();

 return 0;

}

1 Bill Gates 100.01

Passing Streams to Functions

#include <iostream>

using std::cout;

using std::ostream;

void output(ostream& out_stream = cout)

{

 out_stream << "cout is an object of type ostream.\n";

 out_stream << "ofstream is a derived class of ostream.\n";

 out_stream << "open a file stream before passing it to a function.\n";

 out_stream << "streams must be call-by-reference.\n";

}

main()

{

 output();

 return 0;

}

Formatting stream functions

cout.setf(ios::fixed);

// these command set numbers to money format

cout.setf(ios::showpoint);
// setf is set flag

cout.precision(ios::2);
// ios is input or output stream

	Flag
	Meaning

	ios::fixed
	if this flag is set, floating point numbers are not written in e-notation (Setting this flag automatically unsets the flag ios::scientific.)

	ios::scientific
	If this flag is set, floating point numbers are written in e-notation. (Setting this flag automatically unsets the flag ios::fixed.)

If neither ios::fixed or ios::scientific is set, them the system decides how to output each number.

	ios::showpoint
	If this flag is set, a decimal point and trailing zeros are always shown for floating-point numbers. If it is not set, a number with all zeros after the decimal point might be output without the decimal point and following zeros.

	ios::showpos
	If this flag is set, a plus sign is output before positive integer values.

	ios::right
	If this flag is set and some field-width value is given with a call to the member function width, then the next item output will be at the right end of the space specified by width. In other words, any extra blanks are placed before the item output. (Setting this flag automatically unset the flag ios::left.)

	ios::left
	

	ios::showbase
	If this flag is set, the base of a number is output ahead of it: a leading 0 for octals; a leading 0x for hexadecimals. This setting is reset with noshowbase.

cout << hex << showbase << 20 <<endl;

	ios::internal
	Indicate that a number's sign should be left justified in a field and a number's magnitude should be right justified in that same field (i.e., padding characters appear between the sign and the number).

	ios::skipws
	skip white space characters on an input stream. This setting is reset with noskipws.

	ios::boolalpha
	set the output stream to display bool values as the strings "true" or "false" instead of the default 1 or 0. This setting is reset with noboolalpha.

cout.width(4);

// the output ‘7’ is printed at the right of a screen space with a width of 4.

cout << 7;

#include <iomanip.h>

// input / output manipulators

cout << setw(4) << 7;

// set width, act as .width(4)

cout << setprecision(2) << 10.3;
// act like the member function ‘precision’ above.

cout << setfill('0') << setw(4) << 4 << endl; // 0004

// the function setfill() specifies the fill character that is displayed when the field is wider than the output

Setting and resetting the format state with method flags

The method flags without an argument returns the current format settings as a fmtflags data type.

With a fmtflags argument, it sets the format state as specified by the argument and returns the prior state settings.

#include <iostream>

using std::cout;

using std::endl;

using std::hex;

using std::showbase;

using std::scientific;

using std::ios_base;

#include <iomanip>

using std::setbase;

int main()

{

 int x = 20;

 ios_base::fmtflags originalFormat = cout.flags();

 cout << showbase << hex << scientific;

 cout << x << endl;

 cout.flags(originalFormat);

 cout << x << endl;

 return 0;

}

0x14

20

Stream Error states

eofbit is set for an input stream after end-of-file is encountered.

failbit is set for a stream when a format error occurs. usually, recovering from such errors is possible.

badbit is set for a stream when an error occurs that results in the loss of data.

goodbit is set for a stream if none of the bits eofbit, failbit or badbit is set for the stream.

rdstate returns the error state of the stream.

clear is used to restore a stream's state to "good", so that I/O may proceed on that stream.

cin.clear(); sets goodbit for the stream.

cin.clear(ios::failbit); sets the error flag failbit.

#include <iostream>

using std::cin;

using std::cout;

using std::endl;

int main()

{

 int x;

 cout << "Before a bad input operation:"

 << "\ncin.rdstate(): " << cin.rdstate()

 << "\n cin.eof(): " << cin.eof()

 << "\n cin.fail(): " << cin.fail()

 << "\n cin.bad(): " << cin.bad()

 << "\n cin.good(): " << cin.good()

 << "\n\nExpects and integer, but enter a character: ";

 cin >> x;

 cout << endl;

 cout << "After a bad input operation:"

 << "\ncin.rdstate(): " << cin.rdstate()

 << "\n cin.eof(): " << cin.eof()

 << "\n cin.fail(): " << cin.fail()

 << "\n cin.bad(): " << cin.bad()

 << "\n cin.good(): " << cin.good() << endl << endl;

 cin.clear();

 cout << "After cin.clear()"

 << "\n cin.fail(): " << cin.fail()

 << "\n cin.good(): " << cin.good() << endl;

 return 0;

}

Before a bad input operation:

cin.rdstate(): 0

 cin.eof(): 0

 cin.fail(): 0

 cin.bad(): 0

 cin.good(): 1

Expects and integer, but enter a character: a

After a bad input operation:

cin.rdstate(): 4

 cin.eof(): 0

 cin.fail(): 1

 cin.bad(): 0

 cin.good(): 0

After cin.clear()

 cin.fail(): 0

 cin.good(): 1

Tying an output stream to an input stream

istream in;

ostream out;

in.tie(out);
After the statements above the streams in and out are tied, which means that the ostream out is flushed whenever an input operation is attempted on the istream in. To untie the streams call in.tie(0);
The standard I/O cin and cout are tied by default.

Functions

#include <iostream>

using std::cout;

using std::endl;

double total_cost(int number_par, double price_par);
/* function prototype

double total_cost(int, double); This is an alternative form for the function prototype.

The compiler ignores variable names in the prototype. It only records variable type and number.

If the function definition precedes the main() part, the program will work without the function prototype. */

int main()

{

int number = 3;

double price = 2.5;

double bill = total_cost (number, price);

//function call

cout << bill << endl;

return 0;

//after a return command the function terminates!
}

//function definition:

double total_cost(int number_par, double price_par)
//function heading
{

//function body:

double total = number_par * price_par;

return (total +1);

cout << "A statement after the return command won't be executed.";

}

7.5

Argument: An expression that is passed to a function or subroutine (number, price).

Formal Parameter: An abstract representation of a parameter expected to be passed to a method or function

(number_par, price_par).

Void Functions

Void functions return no value. The return statement doesn’t contain an expression.

You don’t have to have a return statement before the closing bracket } at the end of a void function.

#include <iostream>

using std::cout;

using std::endl;

void total_cost(int, double);
int main()

{

int number = 3;

double price = 2.5;

total_cost (number, price);

return 0;

}

void total_cost(int number_par, double price_par)

{

double total = number_par * price_par;

cout << total << endl;

}

7.5

Passing arguments by values and by reference

#include <iostream>

using std::cout;

using std::endl;

/* Call-by-value: the arguments are plugged in for the formal parameters */
void callByValue(int x)

{

 x = 2;

 cout << "within callByValue x = " << x << endl;

}

/* Call-by-reference: the parameters are plugged in for the arguments */

void callByReference(int &x)

{

 x = 3;

 cout << "within callByReference x = " << x << endl;

}

int main ()

{

 int x = 1;

 cout << "within main() x = " << x << endl;

 callByValue(x);

 cout << "within main() x = " << x << endl;

 callByReference(x);

 cout << "within main() x = " << x << endl;

 return 0;

}
within main() x = 1

within callByValue x = 2

within main() x = 1

within callByReference x = 3

within main() x = 3

A function that receives a variable by value creates its own new copy of this variable.

A function that receives a variable by reference uses the same variable and thus preserves memory space.

To create a memory-efficient call-by-reference function that won't modify its argument by mistake declare the function parameter as const: callByReference(const int &x);
Default Arguments

When a program omits an argument for a parameter with a default argument in a function call,

the compiler rewrites the function call and inserts the default value.

Defaut arguments must be the rightmost arguments in a function's parameter list.

#include <iostream>

using std::cout;

using std::endl;

// function prototype that specifies default arguments

void defArg (int x1, int x2, int x3 = 5);

int main()

{

 defArg(1,2,3);

 defArg(1,2);

 return 0;

}

void defArg (int x1, int x2, int x3)

{

 cout << "x1 = " << x1 << ", "

 << "x2 = " << x2 << ", "

 << "x3 = " << x3 << endl;

}

x1 = 1, x2 = 2, x3 = 3

x1 = 1, x2 = 2, x3 = 5

Function Overloading

Function overloading is commonly used to create several functions of the same name that perform similar tasks, but on different data types. these functions can differ in the number, types or order of their arguments.

#include <iostream>

using std::cout;

using std::endl;

int square (int x) /* function square for int values */
{

 return x * x;

}

double square (double x) /* function square for double values */
{

 return x * x;

}

int main ()

{

 cout << square (2);

 cout << endl;

 cout << square (2.5);

 cout << endl;

 return 0;

}

4

6.25

Function Templates

Function templates are special functions that can operate with generic types. This allows us to create a function template whose functionality can be adapted to more than one type or class without repeating the entire code for each type.

#include <iostream>

using namespace std;

template <class T>

T GetMax (T a, T b) {

 return (a>b?a:b);

}

int main () {

 int i=5, j=6, k;

 long l=10, m=5, n;

 char o='o', p='p', q;

 k = GetMax(i,j);

 n = GetMax(l,m);
 q = GetMax(o,p);

 cout << k << endl;

 cout << n << endl;

 cout << q << endl;

 return 0;

}

6

10

p

If the generic type T is not used as a parameter to GetMax(), the desired return type needs to be specified:
 k = GetMax<int>(i,j);

Organizing the code in different files

header file/Interface file (file_name.h):

#ifndef FILENAME_H

// if not defined

#define FILENAME_H
// puts FILENAME_H in a list so if a second

// command to include this file in the same program

// occurs, the variables declared between #ifndef and

// #endif will not be defined twice.

function prototypes, classes definition

#endif

#pragma once
// an alternative, non-standard but widely supported preprocessor directive designed to cause the current source file to be included only once in a single compilation.

Implementation file (file_name.cpp):

#include “file_name.h”

function definitions and classes implementation

static functions

// define local functions to the implementation file

Application file (main.cpp):

#include “file_name.h”

main() function

Storage classes: auto, register, extern, mutable and static

Local variables are of automatic storage class by default. The storage class specifier auto explicitly declares variables of automatic storage class. They exist only in the nearest enclosing pair of curly braces within the body of the function in which the definition appears.

Global variables are declared outside any class or function definition (including the main() function).

Global variables and global functions can be referenced by any function that follows their declaration or definition in the source file. Global variables also are accessible to functions in other files; however, the global variables must be declared in each file in which they are used. e.g., extern int myvar;
The specifier static restricts the scope of a global variable or function to the file in which it is defined.

Local static variables are known only in the function in which they are declared, but they retain their values when the function returns to its caller. All numeric static variables are initialized to 0 if not explicitly initialized.

The storage class specifier register suggests that the compiler maintain the variable in one of the computer's hardware registers rather than in memory. If intensely used variables are maintained in hardware registers, the overhead of repeatedly loading the variables from memory into the registers and storing the results back into memory is eliminated.

The compiler might ignore the register declaration. For example, there might not be a sufficient number of registers available for the compiler to use.

Scope rules

#include <iostream>

using std::cout;

using std::endl;

void useLocal(void);

void useStaticLocal(void);

void useGlobal(void);

int x = 1; // global variable

int main()

{

 int x = 5; // local variable to main

 {

 int x = 7;

 cout << "local x in main's inner scope is " << x << endl;

 }

 cout << "local x in main's outer scope is " << x << endl;

 useLocal(); // useLocal has local x

 useStaticLocal(); // useStaticLocal has static local x

 useGlobal(); // useGlobal uses global x

 useLocal(); // useLocal reinitializes its local x

 useStaticLocal(); // static local x retains its prior value

 useGlobal(); // global x also retains its value

 cout << "\nlocal x in main is " << x << endl;

 return 0;

}

void useLocal(void)

{

 int x = 25;

 cout << "\nlocal x is " << x << " on entering useLocal";

 x++;

 cout << "\nlocal x is " << x << " on exiting useLocal" << endl;

}

void useStaticLocal(void)

{

 static int x = 50;

 cout << "\nlocal static x is " << x << " on entering useStaticLocal";

 x++;

 cout << "\nlocal static x is " << x << " on exiting useStaticLocal" << endl;

}

void useGlobal(void)

{

 cout << "\nglobal x is " << x << " on entering useGlobal";

 x++;

 cout << "\nglobal x is " << x << " on exiting useGlobal" << endl;

}

local x in main's inner scope is 7

local x in main's outer scope is 5

local x is 25 on entering useLocal

local x is 26 on exiting useLocal

local static x is 50 on entering useStaticLocal

local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal

global x is 2 on exiting useGlobal

local x is 25 on entering useLocal

local x is 26 on exiting useLocal

local static x is 51 on entering useStaticLocal

local static x is 52 on exiting useStaticLocal

global x is 2 on entering useGlobal

global x is 3 on exiting useGlobal

local x in main is 5

Unary scope resolution operator ::

It is possible to declare local and global variables of the same name. C++ provides the unary scope resolution operator (::) to access a global variable when a local variable of the same name is in scope.

#include <iostream>

using namespace std;

int number = 7; // global variable named number

int main()

{

 double number = 10.5; // local variable named number

 cout << "Local double value of number = " << number

 << "\nGlobal int value of number = " << ::number << endl;

 return 0;

}

Local double value of number = 10.5

Global int value of number = 7

Namespace

#include <iostream>

using namespace std;

namespace Example

{

 int x1 = 3;

 void printValues();

 namespace Inner // nested namespace

 {

 int x2 = 4;

 }

}

namespace // unnamed namespace

{

 int x3 = 5;

}

Int main()

{

 cout << "x1 = " << Example::x1 << "\t"

 << "x2 = " << Example::Inner::x2 << "\t"

 << "x3 = " << x3 << endl;

 Example::printValues();

 return 0;

}

void Example::printValues()

{

 cout << "In printValues():\n"

 << "x1 = " << x1 << "\t"

 << "x2 = " << Inner::x2 << "\t"

 << "x3 = " << x3 << endl;

}

x1 = 3
x2 = 4
x3 = 5

In printValues():

x1 = 3
x2 = 4
x3 = 5

Arrays

An array is a series of elements of the same type placed in contiguous memory locations. To refer to a particular element, we specify it's location by an index number. The indexing of an array starts with 0.

#include <iostream>

using namespace std;

int main ()

{

 int a[] = {1, 2, 3, 4};

 cout << "a[0] = " << a[0] << endl

 << "a[1] = " << a[1] << endl

 << "a[2] = " << a[2] << endl

 << "a[3] = " << a[3] << endl;

 return 0;

}

a[0] = 1

a[1] = 2

a[2] = 3

a[3] = 4

Declaring an array:

 int a[4]; // 4 is the array size

Warning:

 Referring to an element out of range , as in a[4] = 1; won't cause compilation errors but can cause serious runtime errors.

Initializing arrays:

 If the array size is omitted, the compiler sets the array size by counting the number of elements in the initializer list:

 int a[] = {1, 2, 3, 4}; // is equivalent to int a[4] = {1, 2, 3, 4};

 int a[10] = {1, 2, 3, 4}; // a[4] to a[9] are initialized to 0.

 However, arrays with no initializers are not initialized.

Changing the value of an array element:

 a[2] = 7;

 a[2]++; // equivalent to a[2] = a[2] + 1

Traversing an array:

 for (int i = 0; i < size; i++)

 cout << a[i];

Static arrays

A program initializes static local array when their declarations are first encountered. If a static array is not initialized explicitly by the programmer, each element of the array is initialized to zero by the complier.

#include <iostream>

using namespace std;

void staticArray()

{

 static int a[3]; /* initializes elements to 0 first time the function is called */
 for (int i = 0; i < 3; i++) {

 a[i]++;

 cout << a[i] << " ";

 }

}

void automaticArray()

{

 int a[3] = {0, 0, 0}; /* initializes elements every time the function is called */
 for (int i = 0; i < 3; i++) {

 a[i]++;

 cout << a[i] << " ";

 }

}

int main ()

{

 cout << "First call:";

 cout << "\n static array: "; staticArray();

 cout << "\n automatic array: "; automaticArray();

 cout << "\nSecond call:";

 cout << "\n static array: "; staticArray();

 cout << "\n automatic array: "; automaticArray();

 cout << endl;

 return 0;

}

First call:

 static array: 1 1 1

 automatic array: 1 1 1

Second call:

 static array: 2 2 2

 automatic array: 1 1 1

Passing arrays to functions

To pass an array argument to a function, specify the name of the array without any brackets.

You normally pass the size of the array as well, so that the function can process the specific number of elements in the array.

C++ passes arrays to functions by reference, since the value of the name of the array is the address in the computer's memory of the first element of the array. Therefore, when the called function modifies array elements in its function body, it is modifying the actual elements of the array in their original memory locations.

Although entire arrays are passed by reference, individual array elements are passed by value, just as simple variables are.

If the function should not modify the array, use the type qualifier const in the function head:
int myFunction (const int myArray[], int size)

An attempt to modify the array elements within the function will result in a compiler error.

#include <iostream>

using namespace std;

void modifyArray(int[], int);

int main()

{

 const int arraySize = 5;

 int a[arraySize] = {0, 1, 2, 3, 4};

 cout << "Original array:\n";

 for (int i = 0; i < arraySize; i++)

 cout << a[i] << " ";

 modifyArray (a, arraySize);

 cout << "\nAfter sending the array as a parameter to a function:\n";

 for (int i = 0; i < arraySize; i++)

 cout << a[i] << " ";

 cout << endl;

 return 0;

}

void modifyArray(int b[], int sizeOfArray)

{

 for (int i = 0; i < sizeOfArray; i++)

 b[i]++;

}

Original array:

0 1 2 3 4

After sending the array as a parameter to a function:

1 2 3 4 5

Character arrays
The next two statements are equivalent:

char string1[] = "turtle";

char string1[] = {'t', 'u', 'r', 't', 'l', 'e', '\0'};

char string2[20]; // string2 is capable of storing 19 characters and a terminating null character.

// After filling an array the null character should be added at the end in order to turn it into a string.

#include <iostream>

using namespace std;

int main ()

{

 char a[20], b[20];

 cout << "Enter some text:\n";

 cin >> a >> b;

 cout << a << b << endl;

 return 0;

}

Enter some text:

do be do to you!

dobe

cin reads character from the keyboard until the first white space is encountered.

Typing a very long string with no white space can insert data beyond the end of the array.

With cin >> variable, anything after the variable that is read in will still be available for the next input, including the return that you pressed to make the line of data available to the program. This can cause the next cin operation to misbehave. The member function: cin.ignore(100, ‘\n’);
 reads and discards up to 100 characters that the user may enter, or until he press ‘\n’, whichever occurs first. The delimiter gets discarded as well.
Reading character arrays with getline()

The cin.getline() function reads the entire line into the character array, including white space.

It takes 3 arguments: a character array, a length and a delimiter.

It stops reading characters when it encounters the delimiter character or the end-of-file indicator, or when the number of characters read equals the given length - 1. A null character is inserted at the end of the line. The delimiter character is discarded.

#include <iostream>

using namespace std;

int main ()

{

 char a[20];

 cout << "Enter some text: ";

 cin.getline(a, 20, '\n');

 cout << a << endl;

 return 0;

}

Enter some text: do be do to you!
do be do to you!

Copying character arrays

#include <iostream>

using std::cout;

using std::endl;

main()

{

 char str1[10];

 char str2[] = "Hello World";

 for (int i = 0; (str1[i] = str2[i]) != '\0'; i++)

 ; // do nothing in body

 cout << str2 << endl;

 return 0;

}

Hello World

Multidimensional arrays
int a[2][3];
// a[0][0], a[0][1], a[0][2]

// a[1][0], a[1][1], a[1][2]

#include <iostream>

using namespace std;

void printArray(const int[][3], int);

int main ()

{

 int size = 2;

 int a1[2][3] = {{1, 2, 3}, {4, 5, 6}};

 int a2[2][3] = {1, 2, 3, 4, 5};

 /* If there are not enough initializers for a given row, the remaining elements are initialized to 0 */
 cout << "Values in array a1 by row are:\n";

 printArray(a1, size);

 cout << "Values in array a2 by row are:\n";

 printArray(a2, size);

 return 0;

}

void printArray(const int a[][3], int size)

{

 for (int i=0; i < size; i++)

 {

 for (int j=0; j<3; j++)

 cout << a[i][j] <<' ';

 cout << endl;

 }

}

Values in array a1 by row are:

1 2 3

4 5 6

Values in array a2 by row are:

1 2 3

4 5 0

Vectors

The standard library class template 'vector' introduces a more robust type of array with capabilities of determining the array size, comparing arrays, copying arrays, initializing one array with the values of another array, etc.

#include <iostream>

#include <vector>

using namespace std;

void outputVector (const vector<int> &);

void inputVector (vector<int> &);

int main()

{

 vector<int> myVector1(5); // 5-element vector
 vector<int> myVector2(3); // 3-element vector
 cout << "Enter 8 integers: ";

 inputVector(myVector1);

 inputVector(myVector2);

 cout << "My first vector: ";

 outputVector(myVector1);

 cout << "My second vector: ";

 outputVector(myVector2);

 if (myVector1 != myVector2) // array comparison
 cout << "The 2 vectors are not equal.\n";

 cout << "myVector3 is initialized with vector1: ";

 vector<int> myVector3 (myVector1); // array initialization
 outputVector(myVector3);

 cout << "myVector1 is assigned myVector2: ";

 myVector1 = myVector2; // array assignment
 outputVector(myVector1);

 myVector1[2] = 7; /* possible, but out-of-bound indices are not checked */
 myVector1.at(2) = 8; /* out-of-bound indices are checked before assignment */
 return 0;

}

void outputVector(const vector<int> &myVector)

{

 for (int i=0; i < myVector.size(); i++)

 cout << myVector[i] << " ";

 cout << endl;

}

void inputVector(vector<int> &myVector)

{

 for (int i=0; i < myVector.size(); i++) // array size check

 cin >> myVector[i];

}

Enter 8 integers: 1 2 3 4 5 6 7 8

My first vector: 1 2 3 4 5

My second vector: 6 7 8

The 2 vectors are not equal.

myVector3 is initialized with vector1: 1 2 3 4 5

myVector1 is assigned myVector2: 6 7 8

vector<int> myVector;
// declaring a vector with no known size

myVector.push_back(42);
// adding a new element at the end of the vector
Structures

Hierarchical Structures

// structure definition:
struct Date

{

 int day;

 int month;

 int year;

};

struct PersonInfo

{

 double height;

 Date birthday;

};

int main()

{

 PersonInfo person1;

 person1.height = 6.1;

/* . is the dot operator */
 person1.birthday.day = 1;

 person1.birthday.month = 3;

 person1.birthday.year = 2000;

}
Working with the structure data members

struct myStruct

{

 int data_member_1;

 char data_member_2;

} obj3, obj4; /* you can declare new myStruct objects here */

void set_object(myStruct&);

myStruct return_object(int, char);

int main()

{

 myStruct obj1;

 obj1.data_member_1 = 1;

 obj1.data_member_2 = 'A';

 myStruct obj2 = {2, 'B'};

 obj3 = obj1;

 set_object(obj4);

 myStruct obj5;

 obj5 = return_object(5, 'E');

}

void set_object(myStruct& object) // call-by-reference

{

 object.data_member_1 = 4;

 object.data_member_2 = 'D';

}

myStruct return_object(int number, char character) // call-by-value

{

 myStruct temp;

 temp.data_member_1 = number;

 temp.data_member_2 = character;

 return temp;

}

Classes

#include <iostream>

using namespace std;

// class prototype

class myClass

{

 public:

 void set_private();
// class member function prototype

 int get_private();

 int public_data;

 private:

// Private data members can be accessed

 int private_data; // only by the class member functions

};

int main()

{

 myClass obj1; // obj1 is an instance of class myClass

 // Setting a public data member

 cout << "Enter a public number: "; // . is a dot operator

 cin >> obj1.public_data; // it is used with class instances

 // Setting private data member with the help of an accessor function:

 obj1.set_private();

 // The public data is accessed directly, the private data - only indirectly:

 int publicData = obj1.public_data;

 int privateData = obj1.get_private();

 cout << "The public data member of obj1 is " << publicData << endl;

 cout << "The private data member of obj1 is " << privateData << endl;

 return 0;

}

// Member functions definitions for class myClass:

void myClass::set_private()

// :: is a scope resolution operator

{

// it is used with class names

 cout << "Enter a private number: ";

 cin >> private_data;

}

int myClass::get_private()

{

 return private_data;

}

/* Declaring data members with access specifier 'private' is known as data hiding.

The data member is encapsulated (hidden) in the object and can be accessed only by member functions of the object's class.

Example: a Clock class represents the time of day as a private int data member 'time' that stores the number of seconds since midnight. However, getTime member function will return a formatted string with hours, minutes and seconds. */

Enter a public number: 3
Enter a private number: 2
The private data member of class1 is 3

The private data member of class1 is 2

Terminology

Abstraction

Information about an object (its properties) can be accessed in a manner that isolates how data is stored from how it is accessed and used.

Encapsulation

The information about an object and functions that manipulate the information (its methods) are stored together.

Inheritance

Classes can inherit properties and methods from one or more parent classes.

Polymorphism

A child class can redefine a method already defined in the parent class.

Class scope

Class data members and member functions belong to that class's scope.

Within a class's scope, class members are accessible by the class's member functions and can be references by name. Outside a class's scope, class members are referenced through an object name.

Variables declared in a member function have block scope and are known only to that function. If a member function defines a variable with the same name as a variable with class scope, the class-scope variable is hidden by the block-scope variable in the block scope. Such a hidden variable can be accessed by preceding the variable name with the class name followed by the scope resolution operator (::). Hidden global variables can be accessed with the unary scope resolution operator.
The arrow (->) member selection operator

Accessing class members:

The dot member selection operator is preceded by an object name.

The arrow member selection operator is preceded by a pointer to an object.

#include <iostream>

using namespace std;

class myClass

{

 public:

 void printX(int x) { cout << x << endl; }; // inline method definition

};

int main()

{

 myClass obj1;

 myClass &classRef = obj1; // create a reference to obj1

 myClass *classPtr = &obj1; // create a pointer to obj1

 obj1.printX(1);

 classRef.printX(2);

 classPtr->printX(3);

 return 0;

}
Constructors

a constructor is a member function of a class that has the same name as the class.

A constructor is called automatically when an object of the class is declared. Constructors are used to initialize objects.

class myClass

{

 public:

 myClass(double balance);

 myClass(); // overloading the method above

 private:

 double balance;

};

int main()

{

 myClass obj1(20.5);

 /* These declaration cause a call to the default constructor: */

 myClass obj2; // myClass obj2(); wouldn't work

 myClass obj3 = myClass();

 return 0;

}

myClass::myClass(double bal)

{

 balance = bal;

}

myClass::myClass() // This is the default constructor.

{

 balance = 0;

}

const objects, const member functions

An instance of a class can be declared constant:

const myClass x;

The compiler disallows member function calls for const objects unless the member functions themselves are also declared const. This is true even for 'get' member functions that do not modify the object.

To declare a const function, put const at the end of the member function prototype and header:

int getFunc(int myParameter) const;

The constructor is an exception to the above rule. The const declaration is not allowed for constructors and destructors. However, the constructor can still be used to initialize a const object, even if that involves invoking other non-const member functions.

#include <iostream>

#include <cstring>

using namespace std;

class myClass

{

 public:

 myClass(double balance);

 double getValue() const;

 private:

 double balance;

};

int main()

{

 const myClass obj1(20.5);

 cout << obj1.getValue() << endl;

 return 0;

}

myClass::myClass(double bal)

{

 balance = bal;

}

double myClass::getValue() const
{

 return balance;

}

20.5

A const member function can be overloaded with a non-const member function. The compiler chooses which member function to use based on the class instance on which the function is invoked.

const data members

const data members and data members that are references must be initialized using member initializers. Other data members can be initialized that way too.

#include <iostream>

using namespace std;

class myClass

{

 public:

 myClass(int, int);

 double getValue() const;

 private:

 int nonConst;

 const int myConst;

};

int main()

{

 const myClass obj1(30, 2);

 cout << obj1.getValue() << endl;

 return 0;

}

myClass::myClass(int c, int d) : nonConst(c), myConst(d)

{} // constructor with two initializers and an empty body
double myClass::getValue() const

{

 return myConst;

}

2

Destructors

A destructor is a member function of a class that is called automatically when an object of the class goes out of scope.
If an object of the class type is a local variable for a function, then the destructor is automatically called as the last action before the function call ends. Destructors are used to eliminate any dynamic variables that have been created by the object.

#include <iostream>

#include <cstring>

using namespace std;

class myClass

{

 public:

 void getName();

 ~myClass();

 char *value;

};

int main()

{

 myClass myName;

 myName.getName();

 cout << myName.value << endl;

 return 0;

}

void myClass::getName()

{

 cout << "Enter you name: ";

 char input[100];

 cin.getline(input, 100);

 int max_length = strlen(input);

 value = new char(max_length+1);

 strcpy (value, input);

}

myClass::~myClass() // Destructor

{

 delete [] value;

}

Enter you name: Jean-Luc Piccard
Jean-Luc Piccard

Copy constructor

A copy constructor is a constructor that has one call-by-reference const parameter that is of the same type as the class.

The copy constructor for a class is called automatically in three instances:

1. When a class object is being defined and is initialized by another object of the same type.

2. When a function returns a value of the class type.

3. Whenever an argument of the class type is “plugged in” for a call-by-value parameter.

Any class that uses pointers and the new operator should have a copy constructor.

If a class has a pointer as a member variable, that pointer is copied in a call-by-value function to a new object, which is local to that function (so we have 2 pointers but both points to the same address). As the function terminates, the object will be destroyed by the destructor and the value the pointer is pointing to will become undefined.

#include <iostream>

#include <cstring>

using namespace std;

class myClass

{

 public:

 myClass(char[] = "Randy");

 myClass(const myClass &);

 ~myClass();

 char *value;

};

int main()

{

 myClass myName;

 myClass yourName = myName;

 myName.value[0] = 'D';

 cout << "myName = " << myName.value << endl;

 cout << "yourName = " << yourName.value << endl;

 return 0;

}

myClass::myClass(char string[]) // constructor

{

 int max_length = strlen(string);

 value = new char(max_length+1);

 strcpy (value, string);

}

myClass::myClass(const myClass &obj) // copy constructor

{

 int size = strlen(obj.value);

 value = new char[size+1];

 strcpy(value, obj.value);

}

myClass::~myClass() // destructor

{

 delete [] value;

}

myName = Dandy

yourName = Randy

Without the copy constructor the output is:

myName = Dandy

yourName = Dandy

Friend functions

A class can allow non-member functions and other classes to access its own private data, by making them as friends.

To make a function a friend of a class, list the function prototype in the class definition, preceded by the keyword 'friend'.

To make classB a friend of classA, granting all functions in classB direct access to private members of classA, list classB as a friend class inside the definition of classA: friend class classB;

#include <iostream>

using namespace std;

class myClass

{

 friend bool equal(myClass objA, myClass objB);

 public:

 myClass(int v);

 int getValue() const;

 private:

 int value;

};

bool equal_non_friend(myClass objA, myClass objB);

/* both functions equal() and equal_non_friend() compare the int value of two objects of class myClass;

equal() is a friend function of class myClass and has access to the private members of its objects . equal_non_friend() doesn't. */
int main()

{

 myClass objA(5), objB(8);

 cout << equal(objA, objB) << endl;

 cout << equal_non_friend(objA, objB) << endl;

 return 0;

}

myClass::myClass(int v): value(v) {} // constructor with initializer

int myClass::getValue() const

{

 return value;

}

bool equal(myClass objA, myClass objB) // a friend function

{

 return(objA.value == objB.value);

}

bool equal_non_friend(myClass objA, myClass objB) // non-friend function

{

 return(objA.getValue() == objB.getValue());

}

0

0

The 'this' pointer, cascading function calls

The 'this' pointer is a predefined pointer that points to the calling object.

#include <iostream>

using namespace std;

class Test

{

 public:

 Test(int = 0); // default constructor

 void printValue() const;

 private:

 int value;

};

int main()

{

 Test obj(5);

 obj.printValue();

 return 0;

}

Test::Test(int v): value(v) {} // initialize value to v

void Test::printValue() const

{

 cout << value << " ";

 cout << this->value << " ";

 cout << (*this).value << endl;

}

5 5 5

One use of the 'this' pointer is to enable cascading function calls:

#include <iostream>

using namespace std;

#include <iomanip>

using std::setfill;

using std::setw;

class Time

{

 public:

 Time &setHour(int);

 Time &setMinute(int);

 Time &setSecond(int);

 void printTime() const;

 private:

 int hour;

 int minute;

 int second;

};

int main()

{

 Time t;

 t.setHour(6).setMinute(5).setSecond(31).printTime();

 /* t.setHour(6) is evaluated first, and it returns a reference to object t.

 The remaining expressing is then interpreted as

 t.setMinute(5).setSecond(31).printTime(); */

 return 0;

}

Time &Time::setHour(int h)

{

 hour = (h >= 0 && h < 24) ? h : 0; // validate hour

 return *this;

}

Time &Time::setMinute(int m)

{

 minute = (m >= 0 && m < 60) ? m : 0; // validate minute

 return *this;

}

Time &Time::setSecond(int s)

{

 second = (s >= 0 && s < 60) ? s : 0;

 return *this;

}

void Time::printTime() const

{

 cout << setfill('0') << setw(2) << hour

 << ":" << setw(2) << minute

 << ":" << setw(2) << second << endl;

}

06:05:31

Static class members

Normally, each object of a class has its own copy of every data member. A static data member is shared between all class objects. This saves memory space and enables the class to have a variable which is independent of any specific object of that class. A class's static data members and static member functions exist and can be used even if no objects of that class have been instantiated.

#include <iostream>

using namespace std;

class Employee

{

 public:

 Employee(char*);

 static int printCount();

 private:

 static int count;

 char *name;

};

// define and initialize static data member at file scope

int Employee::count = 0;

int main()

{

 Employee::printCount();

 Employee obj1("Barak Obama");

 obj1.printCount();

 Employee obj2("George Bush");

 Employee::printCount();

 return 0;

}

Employee::Employee(char *n)

{

 name = n;

 count++;

}

int Employee::printCount()

{

 cout << "Number of objects: " << count << endl;

}

Number of objects: 0

Number of objects: 1

Number of objects: 2

Inheritance

A derived class automatically has all the member variables and functions that the base class has, and can have additional member variables and member functions.

#include <iostream>

using std::cout;

using std::endl;

class B // Base Class
{

 public:

 B();

 B(int);

 int access_b1() { return b1; };

 protected:

 int b1;

 private:

 int b2;

};

class D: public B // D is a Derived Class of base class B

{

 public:

 D();

 D(int, double);

 double access_d() { return d; };

 protected:

 double d;

};

main()

{

 B base;

 D derived;

 return 0;

}

B::B(): b1(0) {}

B::B(int new_b1): b1(new_b1) {}

D::D(): d(0) {}

D::D(int new_b1, double new_d): B(new_b1), d(new_d) {}

A protected member is the same as a private member to any other class except a class derived from the base class.

A base class protected member is inherited by the derived class as a private member of the derived class.

When a member function is redefined you must list its prototype in the class definition.

If you want to override a member function, the redefinition must be the same name and parameter list as the function member it replaces. Otherwise, the original function is inherited and you would get a function name overloading.

The derived class constructor invokes it's direct base class's constructor either explicitly (via a base-class member initializer) or implicitly (calling the base class's default constructor).

With constructors, the base class constructor executes first.

With destructors, the derived class destructor executes first.

A base class may be inherited through public, protected or private inheritance. The use of protected and private inheritance is rare. When deriving from a protected base class, public and protected members of the base class become protected members of the derived class. When deriving from a private base class, public and protected members of the base class become private members of the derived class.

Polymorphism and virtual methods

Polymorphism is the ability of objects belonging to different classes (a base class and a derived class) to respond to methods of the same name, each one according to the right class-specific behaviour.

In other words, it is the run-time binding of a pointer to a method.

#include <iostream>

using std::cout;

class B // Base Class

{

 public:

 virtual void whoami() { cout << "Base Class\n"; }

};

class D: public B // Derived Class

{

 public:

 void whoami() { cout << "Derived Class\n"; }

};

main()

{

 B base;

 D derived;

 B* Bptr = &base;
/* Base class pointer points to base class object */

 Bptr->whoami();

// B::whoami is invoked

 D* Dptr = &derived;
/* Derived class pointer points to derived class object */

 Dptr->whoami();

// D::whoami is invoked

 Bptr = &derived;
/* Base class pointer points to derived class object */

 Bptr->whoami();

// D::whoami is invoked (because B::whoami is virtual)

 return 0;

}

Base Class

Derived Class

Derived Class

The method whoami in class B is overridden by a method with the same name in class D.

In compile-time binding (static binding), the data type of the pointer resolves which method is invoked.

If B::whoami() was not declared virtual, compile-time binding would cause Bptr->whoami() to invoke the base class function.

In run-time binding (dynamic binding), the type of the object pointed to resolves which method is invoked.

A method to be bound at run-time must be flagged using the keyword virtual. A virtual method may not be static.

The keyword virtual has to appear in the method declaration, but not in its definition if this occur outside the class declaration.

Aiming a derived-class pointer at a base-class object is not allowed without an explicit cast. Such an assignment would leave the derived-class-only members undefined on the base-class object.
Abstract classes

An abstract class is a class that provides common behavior across a set of subclasses but is not itself designed to have instances. An abstract class contains pure virtual methods:

class AC // Abstract Class

{

 public:

 virtual void f() = 0;

 ...

};

Objects may not be created for an abstract class. To be used, it must have derived classes that implement its undefined methods.

Abstract classes are a means of expressing program design requirements within C++.

Virtual destructors

Constructors may not be virtual but destructors may be. This need for virtual destructors is best explained through an example:

#include <iostream>

using std::cout;

class B

{

 public:

 B()

 {

 ptrB = new char[5];

 cout << "B allocates 5 bytes\n";

 }

 ~B()

 {

 delete[] ptrB;

 cout << "B frees 5 bytes\n";

 }

 private:

 char* ptrB;

};

class D: public B

{

 public:

 D()

 {

 ptrD = new char[1000];

 cout << "D allocates 1000 bytes\n";

 }

 ~D()

 {

 delete[] ptrD;

 cout << "D frees 1000 bytes\n";

 }

 private:

 char* ptrD;

};

main()

{

 B* Bptr = new D;

 delete Bptr;

 return 0;

}

B allocates 5 bytes

D allocates 1000 bytes

B frees 5 bytes

The problem is that B's destructor is nonvirtual, which means that the system must bind Bptr at compile time. Because *Bptr is of type B*, Bptr is bound to B's data members and methods, including constructors and destructors. The solution is the make B::~B a virtual destructor. Destructors should be virtual whenever two conditions are met: 1) Constructors for the base and the derived class dynamically allocate separate storage 2) The program dynamically allocates a class object.

Run-Time Type Identification

The dynamic_cast operator performs safe type conversion at run time for classes with virtual functions.

Its principal use is to perform safe cast from a base class to a derived class.

Dptr* ptr = dynamic_cast < Dptr* > (Bptr)

dynamic_cast performs a special checking during runtime to ensure that the cast yields a valid complete object of the requested class. If it doesn't, the expression returns a zero.

class Book {

 public:

 virtual void print_title() {}

};

class Textbook: public Book {

 public:

 void print_title() {}

 void print_level() {}

};

void print_book_info(Book* book_ptr) {

 if(Textbook* ptr = dynamic_cast <Textbook*> (book_ptr))

 {

 ptr->print_title();

 ptr->print_level();

 }

 else book_ptr -> print_title();

}

The typeid operator provides a program with the ability to retrieve the actual type of the object referred to by a pointer or a reference. This operator, along with the dynamic_cast operator, are provided for runtime type identification (RTTI) support in C++.

#include <iostream>

using std::cout;

using std::endl;

#include <typeinfo>

class B { virtual void f(){} };

class D : public B {};

int main () {

 int * a,b;

 a=0; b=0;

 if (typeid(a) != typeid(b))

 {

 cout << "a and b are of different types:\n";

 cout << "a is: " << typeid(a).name() << endl;

 cout << "b is: " << typeid(b).name() << endl;

 }

 B* Bptr = new B;

 B* Dptr = new D;

 // Dptr is a pointer for type B...

 cout << (typeid(Dptr) == typeid(B*)) << endl; // True

 // ...but it points to an object of type D

 cout << (typeid(*Dptr) == typeid(B)) << endl; // False

 cout << "Bptr is: " << typeid(Bptr).name() << endl;

 cout << "Dptr is: " << typeid(Dptr).name() << endl;

 cout << "*Bptr is: " << typeid(*Bptr).name() << endl;

 cout << "*Dptr is: " << typeid(*Dptr).name() << endl;

 return 0;

}

a and b are of different types:

a is: Pi

b is: i

1

0

Bptr is: P1B

Dptr is: P1B

*Bptr is: 1B

*Dptr is: 1D

Proxy / wrapper classes

Separating interface from implementation helps hiding the implementation details from the clients. However, the clients can still see the class s private data members. By providing clients with a proxy/wrapper class of the original class, the original class can be totally hidden from the clients.
#include <iostream>

using std::cout;

using std::endl;

class Imp // Implementation class

{

 public:

 Imp(int v) : value(v) {} // constructor with initializer

 void setValue(int v) { value = v; }

 int getValue() const { return value; }

 private:

 int value;

};

class Interface

{

 public:

 Interface(int v) : ptr(new Imp(v)) {}

 void setValue(int v) { ptr->setValue(v); }

 int getValue() const { return ptr->getValue(); }

 ~Interface() { delete ptr; }

 private:

 Imp *ptr;

};

main()

{

 Interface i(5);

 i.setValue(10);

 cout << i.getValue() << endl;

 return 0;

}

10

The reason the wrapper class wraps around a pointer instead of a member object is: if a class only has a pointer pointing to another class, the header file of the other class is not required to be included in Interface.h (only in Interface.cpp). You can simply declare that class as a data type with a forward class declaration, e.g. class Imp;
Class Templates

The following generic class can build an array with objects of any type

#include <iostream>

using std::cout;

using std::endl;

template < class T, int size > /* a template with one type parameter and one nontype parameter */

class Stack

{

 public:

 Stack();

 void push(T);

 private:

 T items[size];

 int top;

};

template < class T, int size >
Stack < T, size > :: Stack()

{

 top = -1;

}

template < class T, int size >
void Stack < T, size > :: push(T item)

{

 items[++top] = item;

}

main()

{

 Stack <int, 100> s;
// declaring an object of the Stack template type

 s.push(3);

 return 0;

}

A template can be overridden for specific types. For example, with the Employee class type:

template<>

class Stack<Employee>

{

...

}

A template can have friend functions, friend template functions, friend classes and friend template classes:

template<class T>

class A {

 /* A non-template function may be a friend to all template class instantiations: */

 friend int f1();

 /* A template function may be a friend to a template class when sharing the same template arguments

 (e.g., f<int> will be friend with A<int> only, f<char> will be friend with A<char>, etc.): */

 friend int f2(T);

 friend int f3<T>();

 /* a friend function may be defined as a function template within the class template.

 In this case all instantiations of the template function will be friends to all instantiations of the template class: */

 template<class U> friend int f4();

 /* All functions of a non-template class may be friends: */

 friend class B;

 /* a specific function of a class can be friend: */

 friend class B::f();

 /* A class template may be a friend with another class template when sharing the same template arguments: */

 friend class B<T>;

};

Pointers

A pointer is a variable that contains a memory address. The memory address can point to another variable that contains a value.

int *ptr;
// Pointer declaration. ptr will point to a variable of type int. * is the dereferencing operator.

int var = 3;

ptr = &var;
// ptr now points to the address of variable var. & is the address operator.

*ptr = 5;
// sets the value in the memory address pointed to by ptr to 5. Hence now var equal 5.

#include <iostream>

using std::cout;

using std::endl;

main()

{

 int *ptr, var = 3;

 ptr = &var;

 cout << "var = " << var << endl;

 cout << "*ptr = " << *ptr << endl;

 *ptr = 5;

 cout << "When we assign *ptr = 5 \n";

 cout << "var = " << var << endl;

 cout << "ptr = " << ptr << endl;

 cout << "&var = " << &var << endl;

 cout << "&*ptr = " << &*ptr << endl;

 cout << "*&ptr = " << *&ptr << endl;

 ptr = NULL;

 cout << "\nWhen we assign ptr = NULL: \n";

 cout << "ptr = " << ptr << endl;

 return 0;

}

var = 3

*ptr = 3

When we assign *ptr = 5:

var = 5

ptr = 0xffbffb00

&var = 0xffbffb00

&*ptr = 0xffbffb00

*&ptr = 0xffbffb00

When we assign ptr = NULL:

ptr = 0

The * operator in front of a pointer variable produces the variable it points to.

The & operator in front of an ordinary variable produces the address of that variable;

that is, produces a pointer that points to the variable.

constant pointers

A pointer can be declared constant. Such a pointer will always point to the same memory location. The data in this memory location can be modified. Pointers that are declared const must be initialized when they are declared. If the program tries to modify the pointer, the compiler will generate an error message.

int * const ptr = &x;

Reference variables

#include <iostream>

using std::cout;

using std::endl;

int main ()

{

 int x = 2;

 int &y = x; /* y is an alias (or a reference) for x */
 y = 5;

 cout << "x = " << x << endl << "y = " << y << endl;

 return 0;

}

x = 5

y = 5

References variables must be initialized in their declarations and cannot be reassigned as aliases to other variables.

Passing Pointers to a function

Passing a pointer as an argument to a function is a pass-by-reference.

#include <iostream>

using std::cout;

using std::endl;

void square(int *);

main ()

{

 int x = 5;

 square(&x);

 cout << x << endl;

 return 0;

}

void square (int *x)

{

 *x = *x * *x;

}

25

A function receiving an address as an argument must define a pointer parameter to receive the address.

void function (int *x)
// x is passed by reference, the pointer to x is passed by value

void function (int &*x)
// the pointer to x is passed by reference and can be modified

Pointers and Arrays

Given int array[10], the following two statements are equivalent

(because the name of an array is equivalent to the address of its first element):

int *ptr = array;

int *ptr = &array[0];

ptr++ will increment the pointer value according to the data type size it points to.
#include <iostream>

using std::cout;

using std::endl;

main()

{

 int array[5] = {1, 2, 3, 4, 5};

 int *ptr = array;

 cout << ptr[1] << endl; // pointers can be subscripted like arrays

 cout << *(++ptr) << endl; // you can do arithmetic on pointers

 cout << *(array + 2) << endl; // array elements can be referenced like pointers

 // but don't try *(array++); can't assign a pointer value to an int array type

 return 0;

}

2

2

3

Copying character arrays using pointers

The following two declarations create a character array (string ending with '\0'):

char str[] = "Hello World"; // sizeof(str) = 12, str is an array

char *str = "Hello World"; // sizeof(str) = 4, str is a pointer

#include <iostream>

using std::cout;

using std::endl;

void copy(char *str1, char *str2);

main()

{

 char str1[20];

 char *str2 = "Hello World";

 copy(str1, str2);

 cout << str1 << endl;

 return 0;

}

void copy(char *str1, char *str2) {

 for (; (*str1 = *str2) != '\0'; str1++, str2++)

 ;

}

Hello World

Arrays of pointers

Arrays may contain pointers. A common use of such a data structure is to form a string array:

char *zoo[4] = {"Giraffe", "Lion", "Hippopotamus", "Hyena"};

This data type is more flexible than a double array like zoo[4][20], as it can take strings of any length without wasting memory.

Function Pointer

A pointer to a function contains the address of the function in memory.

#include <iostream>

using std::cout;

using std::endl;

int square(int);

int cube(int);

int ptrFunc(int, int (*)(int));

main()

{

 cout << ptrFunc(2, square) << endl;

 return 0;

}

int square(int x)

{

 return x*x;

}

int cube(int x)

{

 return x*x*x;

}

int ptrFunc(int x, int (*func)(int))

{

 return func(x);

}

4

#include <iostream>

using std::cout;

using std::endl;

int square(int);

int cube(int);

int ptrFunc(int, int (*)(int));

main()

{

 // Array of pointers to functions:

 int (*f[])(int) = {square, cube};

 cout << (*f[0])(3) << endl;

 return 0;

}

int square(int x)

{

 return x*x;

}

int cube(int x)

{

 return x*x*x;

}

int ptrFunc(int x, int (*func)(int))

{

 return func(x);

}

9

Dynamic Memory

Until now, in all our programs, we have only had as much memory available as we declared for our variables, having the size of all of them to be determined in the source code, before the execution of the program. But, what if we need a variable amount of memory that can only be determined during runtime? For example, in the case that we need some user input to determine the necessary amount of memory space.

The answer is dynamic memory, for which C++ integrates the operators new and delete.

The 'new' operator produces a new nameless variable of a specified type and returns a pointer that points to this new variable.

int *p = new int;

The 'delete' operator eliminates a dynamic variable and free the memory it occupied.

delete p;

The pointer itself is not deleted; rather the space it pointed to is deleted. p is now a dangling pointer, i.e., it is undefined.

To amend this you can assign p = NULL;

#include <iostream>

using namespace std;

main()

{

 int *p;

 p = new int(3);

 cout << *p << endl;

 delete p;

 p = NULL;

 return 0;

}

3

// Using a Dynamic Array

#include <iostream>

using namespace std;

/* with typedef you can assign a name to a type definition and than use the type name to declare variables: */
typedef int *intPtr;
// Define a pointer type

main()

{

 intPtr p;

// Declare a pointer variable

 p = new int[5];

// Create a dynamic array

 for (int i=0; i < 5; i++)

 {

 p[i] = i;

 cout << p[i] << " ";

 }

 cout << endl;

 delete []p;

 p = NULL;

 return 0;

}

0 1 2 3 4

cstring String Manipulation Functions

The prototypes for the following pointer-based string manipulation functions are in the header file <cstring>.

char *strcpy(char *s1, char *s2)

Copies s2 into s1 and returns the value of s1 (but doesn’t check if there’s enough space).

char *strncpy(char *s1, char *s2, size_t n)

Copies at most n characters of s2 into s1 and returns the value of s1 (but doesn’t check if there’s enough space).

unsigned int strlen(const char *s)

Returns the lengh of the string (doesn’t count the '\0').

// using strlen, strcpy and strncpy

#include <iostream>

using namespace std;

#include <cstring>

using std::strcpy;

using std::strncpy;

int main ()

{

 char x[] = "24 billion chickens in 2003";

 char y[35];

 char z[15];

 int len = strlen(x);

 cout << "The string length in array x is " << len << endl;

 strcpy(y, x);

 cout << y << endl;

 strncpy(z, x, 14);

 z[14] = '\0';

 cout << z << endl;

 return 0;

}

The string length in array x is 27

24 billion chickens in 2003

24 billion chi

char *strcat(char *s1, const char *s2)

Appends s2 to s1 (doesn’t check for space).

char *strncat(char *s1, const char *s2)

Appends at most n characters of s2 to s1 (doesn’t check for space).

int strcmp(const char *s1, const char *s2)

Compares the two strings. returns 0 if they are equal, which converts to false.

For every character strcmp performs string1 – string2: it returns more than 0 if s1 > s2 or less than 0 if s1 < s2.

int strncmp(const char *s1, const char *s2, size_t n)

Compares up to n characters of the two strings.

char *strtok(char *token, const char *sentence)

Breaks s1 into tokens according to the delimiter in s2. Multiple calls to strtok are required to get all the tokens.

The function saves (in a static variable) a pointer to the next character following the token, and returns a pointer to the current token. Subsequent calls to strtok contain NULL as the first argument. The NULL argument indicates that the call should continue tokenizing from the location in sentence saved by the last call to strtok. If no tokens remain, strtok returns a NULL. The original string is not preserved.

// Using strtok()

#include <iostream>

using namespace std;

#include <cstring>

using std::strtok;

int main ()

{

 char x[] = "24 billion chickens in 2003";

 char *ptr;

 cout << x << endl;

 ptr = strtok(x, " ");

 while (ptr != NULL)

 {

 cout << ptr << endl;

 ptr = strtok(NULL, " ");

 }

 return 0;

}

24 billion chickens in 2003

24

billion

chickens

in

2003

The 'string' class

#include <string>

using std::string;

string s;

// default constructor creates empty string object s1.

string s(“word”);

// creates a string object with data “word”.

s = "word";

s = 'c';

// but string s('c') or string s = 'c' is a compilation error

string s(4, 'x')

// s == "xxxx"

string s3 (s2);

// creates the string s3 which is a copy of string s2

s2 = s1;

// copying

s3 = s1 + s2;

// concatenation

s1 += s2;

// append s2 to s1

cin >> str;

// input is delimited by white space

getline(ifstream, str)
// input is delimited by a newline

str.length()

// returns str length. equivalent to str.size()

str[2] = ‘g’;

// changes the 2nd cell of the string str to g.

str.at(2) = ‘g’;

// as above, and also produce an error message if ‘2’ is an illegal index number.

str.empty();

// returns true if phrase is an empty string.

str1 == str2;

// returns 1 if true, 0 if false

str1.compare(str2)
// returns 0 if strings are equivalent, a positive number if str1 is greater than str2

str1.compare(start1, end1, str2, start2, end2) // compare str1 elements start1-end1 to str2 elements start2-end2

str1.compare(start1, end1, str2); // compare str1 elements start1-end1 to str2

str.find(str1);

// returns index of the first occurrence of str1 in str. if str not found, string::pos is returned

str.find(str1, pos);
// as above, but start the search at position pos.

str.rfind(str1);

// finds the last occurrence of str1 in str (reverse find)

str.find_first_of(str1, pos);
// finds first instance of any character in str1 in str, starting search at pos.

str.find_last_of(str1, pos);

str.find_first_not_of(str1, pos);
// finds first instance of any character not in str1 in str.

str.substr(position, length);
// returns substring of calling object starting at position for length characters.

str.assign(str1, start, length);
// assign length number of character from str1 to str, starting at start position

str.append(str1, start, length);

str.insert(pos, str1);

// inserts str1 into str beginning at position pos.

str.insert(pos, str1, start1, len1); // inserts substring of str defined by start1 and length len1 into str at position pos

str.remove(pos, len);

// removes substring of length len, starting at position pos.

str.replace(pos, len, str1);
// replaces substring at pos to pos+lenght-1 with str1

str.replace(pos, len, str1, pos1, len1); // replaces substring in str with substring in str1 specified by pos1 and len1

str.erase(pos);

// removes all character from and including pos through the end of str

str1.swap(str2)

// swaps str1 and str2

str.capacity()

// the number of characters that can be stored in str without allocation more memory.

str.max_size()

// the largest possible size a string can have

str.resize(new_size)
// adding null characters to str

string::npos

// a static constant indicating "to the end of the string" or a function failure

str.data();

// returns a non-null-terminated const char* (a character array)

str.c_str();

// returns a null-terminated const char* (a cstring)

string iterator

Iterators provide access to individual character with syntax that is similar to pointer operations.

#include <iostream>

#include <string>

using namespace std;

int main ()

{

 string str ("Test string");

 string::iterator it;

 for (it=str.begin() ; it < str.end(); it++)

 cout << *it;

 return 0;

}

Test string

string::begin() returns an iterator referring to the first character in the string.

string::end() returns an iterator referring to the last character in the string.

string::const_iterator cannot modify the string

string::rbegin() returns string::reverse_iterator referring to the last character in the string.

#include <iostream>

#include <string>

using namespace std;

int main ()

{

 string str ("now step live...");

 string::reverse_iterator rit;

 for (rit=str.rbegin() ; rit < str.rend(); rit++)

 cout << *rit;

 return 0;

}

...evil pets won

string stream processing

ostringstream provides an interface to manipulate strings as if they were output streams.

#include <iostream>

using std::cout;

using std::endl;

#include <string>

using std::string;

#include <sstream>

using std::ostringstream;

int main ()

{

 ostringstream outputString;

 string str1 = "in-memory I/O ";

 outputString << str1 << 3 << endl;

 cout << outputString.str(); // str() returns a copy of the string
 return 0;

}

in-memory I/O 3

istringstream object inputs data from a sting in memory to program variables.

#include <iostream>

using std::cout;

using std::endl;

#include <string>

using std::string;

#include <sstream>

using std::istringstream;

int main ()

{

 string str = "24 billion chickens";

 istringstream inputString(str);

 string str1, str2;

 int x;

 inputString >> x >> str1 >> str2;

 cout << x << ' ' << str1 << ' ' << str2 << endl

 << inputString.good() << endl;

 /* good() Checks if the state of the stream is good for i/o operations. False (0) means the stream is empty. */
 return 0;

}

24 billion chickens

0

Operator Overloading

Built-in operators such as + and [] may be overloaded so that they extend beyond primitive built-in data types to apply to classes as well. For example, the + operator can be extended beyond ints and floats so that it applies to Strings for concatenation.

Given two class objects 'cost' and 'tax', Instead of using the function call:: total = add(cost, tax)
we can use total = cost + tax, if we overload the + operator by changing the function name from 'add' to 'operator +'.

At least one argument of the overloaded operator must be a class type. This prevents programmers from changing how operators work on fundamental types. One can't create a new operator or change the parity of an operator (e.g., treat a unary operator that takes a single argument as a binary one).

total = cost + 25; The system first checks if the + operator has been overloaded for the combination of the class object and an integer. If it finds none, it looks for a constructor that takes a single integer argument and uses it to convert the integer 25 to a value of the class type. To prevent such implicit conversion, the constructor may be preceded by the keyword 'explicit'.

Operators +, - and <<

// Operator overloading of binary operator + by a friend function

// Operator overloading of binary operator - by a member function

// Operator overloading of the output stream operator <<

#include <iostream>

using std::cout;

using std::endl;

using std::ostream;

class myClass

{

 friend myClass operator +(const myClass&, const myClass&);

 friend ostream& operator <<(ostream&, myClass);

 public:

 myClass();

 myClass(int);

 int getValue() const;

 myClass operator -(const myClass&) const;

 private:

 int value;

};

int main()

{

 myClass objA(5), objB(8);

 // The following two statements are equivalent:

 cout << objA + objB << '\t';

 cout << operator + (objA, objB) << '\t';

 cout << objA + 5 << '\t';

 // The following two statements are equivalent:

 cout << objB - objA << '\t';

 cout << objB.operator - (objA) << endl;

 return 0;

}

myClass::myClass(int v): value(v) {} // constructor with initializer

int myClass::getValue() const

{

 return value;

}

myClass operator + (const myClass& objA, const myClass& objB)

{

 myClass temp(0);

 temp.value = objA.value + objB.value;

 return(temp);

}

ostream& operator << (ostream& out_stream, myClass obj)

{

 out_stream << obj.getValue();

 return out_stream;

}

/* Operator member functions are called only when the left operand of a

binary operator is an object of the class, or when the single operand of

a unary operator is an object of the class. */

myClass myClass::operator - (const myClass& obj) const

{

 return(myClass(value - obj.value));

}

13 13 10 3 3

The assignment operator =
// Assignment operator =() overloading

#include <iostream>

using std::cout;

using std::endl;

// this class implements a dynamic array

class myClass

{

 public:

 myClass(int = 10); // constructor

 myClass(const myClass &); // copy constructor

 const myClass &operator =(const myClass &); // assignment operator

 private:

 int size;

 int *ptr;

};

int main()

{

 myClass objA(5); // calls constructor

 myClass objB = objA; // calls copy constructor

 myClass objC;

 objC = objA; // calls assignment operator

 return 0;

}

// constructor

myClass::myClass(int arraySize): size(arraySize)

{

 cout << "constructor called\n";

 ptr = new int[size];

 for (int i=0; i < size; i++)

 ptr[i] = 0;

}

// copy constructor

myClass::myClass(const myClass &obj): size(obj.size)

{

 cout << "copy constructor called\n";

 ptr = new int[size];

 for (int i=0; i < size; i++)

 ptr[i] = obj.ptr[i];

}

// assignment operator overloading

const myClass &myClass::operator = (const myClass& obj)

{

 cout << "assignment operator called\n";

 if (&obj != this) // avoid self assignment

 {

 if (size != obj.size)

 {

 delete [] ptr;

 size = obj.size;

 ptr = new int [size];

 }

 for (int i = 0; i < size; i++)

 ptr[i] = obj.ptr[i];

 }

 return *this;

}

constructor called

copy constructor called

constructor called

assignment operator called

The overloaded assignment operator performs much the same function as the copy constructor by allowing one object to be copied into another. The crucial difference is that, unlike the copy constructor, operator=() assumes that the target object is already built, and already has memory allocated. Thus, it must first delete the allocated memory space before allocating a new memory of the proper size.

If you don't overload the assignment operator for a class, the compiler will substitute member-wise copying whenever assignments occur between two objects of that class. As is the case with copy construction, this situation can result in aliasing. Thus, it's a good idea to include an overloaded assignment operator, especially when dynamic storage is being pointed to by the object.

The subscript operator []

// Subscript operator [] overloading

#include <iostream>

using std::cout;

using std::endl;

// this class implements a dynamic array

class myClass

{

 public:

 myClass(int = 10);

 int &operator[] (int);

 int operator[] (int) const;

 private:

 int size;

 int *ptr;

};

int f(const myClass& obj) { return obj[0]; }

int main()

{

 myClass obj(5);

 obj[0] = 5; // provokes non-const method

 cout << f(obj) << endl; // provokes const method

 return 0;

}

int &myClass::operator [] (int subscript) // non-const

{

 cout << "This method returns a modifiable lvalue\n";

 return ptr[subscript];

}

int myClass::operator [] (int subscript) const // const

{

 cout << "This method returns a const rvalue\n";

 return ptr[subscript];

}

myClass::myClass(int arraySize): size(arraySize)

{

 ptr = new int[size];

 for (int i=0; i < size; i++)

 ptr[i] = 0;

}

This method returns a modifiable lvalue

This method returns a const rvalue

5

Cast operator

Overloaded cast operator functions can be defined to convert objects of user-defined types into fundamental types or into objects of other user-defined types. The compiler can call these functions implicitly to create temporary objects.

#include <iostream>

using std::cout;

using std::endl;

class myClass

{

 public:

 myClass(double v): value(v) {};

 operator int() const { return int(value); };
// cast operator

 private:

 double value;

};

int main()

{

 myClass obj(5);

 cout << int(obj) << endl;
// no need to overload the << operator!

 return 0;

}

Prefix and postfix increment operator ++

#include <iostream>

using std::cout;

using std::endl;

using std::ostream;

#include <iomanip>

using std::setw;

using std::setfill;

class Clock

{

 friend ostream& operator << (ostream&, Clock);

 public:

 Clock(int h = 0, int m = 0): hour(h), min(m) {};

 Clock operator ++ (); // ++c

 Clock operator ++ (int); // c++

 private:

 Clock tick();

 int hour;

 int min;

};

int main()

{

 Clock c(7,3);

 cout << c++ << endl;

 cout << c << endl;

 cout << ++c << endl;

 return 0;

}

ostream& operator << (ostream& out_stream, Clock c)

{

 out_stream << setfill('0') << setw(2) << c.hour << ':' << setw(2) << c.min;

 return out_stream;

}

Clock Clock::tick()

{

 ++min;

 if (min == 60) { hour++; min = 0; }

 if (hour == 25) hour = 1;

 return *this;

}

// the prefix increment operator returns the object by reference

Clock Clock::operator ++()

{

 return tick();

}

// the postfix increment operator returns a copy of the object by value

Clock Clock::operator ++(int n)

{

 Clock c = *this;

 tick();

 return c;

}

07:03

07:04

07:05

Exception Handling

#include <iostream>

using std::cout;

using std::cerr;

using std::endl;

class string

{

 public:

 enum { minSize = 1, maxSize = 1000 };

 string(int);

 private:

 char * s;

};

string::string(int size)

{

 if (size < minSize || size > maxSize)

 throw size;

 s = new char[size];

 if (s == 0)

 throw "Out of memory";

}

void f(int n)

{

 try {

 string str(n);

 /* if an exception was raised, the rest of the code in the try block won't be executes */

 }

 catch (char* errMsg) {

 cerr << errMsg << endl;

 abort();

 }

 catch (int k) {

 cerr << "Out of range error: " << k << endl;

 f(string::maxSize);

 }

 /* if an exception was raised, this code will be executed after the exception has been handled.

 If the exception wasn't handled, the program will terminate. */

}

main()

{

 f(1001);

 return 0;

}

Out of range error: 1001

An exception may be rethrown by using the statement throw; within the catch block.

By doing so, the exception handler defers the exception handling or a portion of it to another exception handler.

Unexpected Exceptions

A function may specify exceptions that it may throw:

void f() throw(t1, t2, t3);

state that f() may throw exceptions of type t1, t2 and t3, exceptions derived from these types if the type is a class, and no others.

When the throw statement is missing in the declaration, an exception of any type can be thrown.

Placing throw() – an empty exception specification – after a function's parameter list states that the function does not throw exceptions.

If a function throws an exception that does not belong to a specified type on the throw list, function unexpected is invoked.

The function unexpected() calls the function most recently supplied as an argument to set_unexpected(). If set_unexpected() has not yet been called, unexpected() calls terminate().

The function terminate() calls the function most recently supplied as an argument to set_terminate(). If set_terminate() has not yet been called, terminate() calls abort(), which ends the program.

abort() immediately exits the program with no calls to the normal termination functions (which means that destructors for global and static objects might not be called).

You can use set_unexpected() and set_terminate() to register functions you define to be called by unexpected() and terminate().

Each of these functions has as its argument type and its return type a pointer to function with a void return type and no arguments.

// The following example calls unexpected directly, which then calls the unexpected_handler.

#include<exception>

#include<iostream>

using namespace std;

void unfunction()

{

 cout << "I'll be back." << endl;

 terminate();

}

int main()

{

 unexpected_handler oldHand = set_unexpected(unfunction);

 unexpected();

}

I'll be back.

terminate called without an active exception

Abort

A terminate handler, as well as an unexpected handler, may not return to its caller.

Stack Unwinding

When an exception is thrown and control passes from a try block to a handler, the C++ run time calls destructors for all automatic objects constructed since the beginning of the try block. This process is called stack unwinding. The automatic objects are destroyed in reverse order of their construction.

If an exception is thrown during construction of an object consisting of subobjects or array elements, destructors are only called for those subobjects or array elements successfully constructed before the exception was thrown. A destructor for a local static object will only be called if the object was successfully constructed.

If during stack unwinding a destructor throws an exception and that exception is not handled, the terminate() function is called.

When an exception is thrown but not caught in a particular scope, an attempt is made to catch the exception in the next outer try...catch block.

#include<iostream>

using std::cout;

using std::endl;

#include<stdexcept>

using std::runtime_error;

void function2() throw (runtime_error) {

 throw runtime_error("runtime error in function2");

}

void function1() throw (runtime_error) {

 function2();

}

int main()

{

 try {

 function1();

 }

 catch (runtime_error &error) {

 cout << "Exception occurred: " << error.what() << endl;

 }

 return 0;

}

Exception occurred: runtime error in function2

An exception could preclude the operation of code that would normally release a resource, thus causing a resource leak. One technique to resolve this problem is to initialize a local object to acquire the resource. When an exception occurs, the destructor for that object will be invoked and can free the resource.

Exceptions Inheritance

Various exception classes can be derived from a common base class. If a catch handler catches a reference to an exception object of a base-class type, it also can catch a reference to its derived-class type.

#include <iostream>

using std::cout;

using std::endl;

#include <stdexcept>

using std::runtime_error;

class DerivedClass : public runtime_error

{

 public:

 DerivedClass::DerivedClass()

 : runtime_error("attempted to divide by zero") {}

};

main()

{

 try {

 throw DerivedClass();

 }

 catch (runtime_error &B) {

 cout << "Exception occured: " << B.what() << endl;

 }

 return 0;

}

Exception occurred: attempted to divide by zero

Memory allocation failure

The C++ standard specifies that, when operator new fails, it throws a bad_alloc exception (defined in header file <new>).

However, some compilers are not compliant with the standard and use the version of new that returns 0 on failure. Other compilers support it only if the <new> header file is included.

#include <iostream>

using std::cout;

using std::endl;

#include <new>

using std::bad_alloc;

main()

{

 double *ptr[50];

 try {

 for (int i = 0; i < 50; i++) {

 ptr[i] = new double[200000000];

 cout << "Allocated 200000000 double in ptr[" << i << "]\n";

 }

 }

 catch (bad_alloc &b) {

 cout << "Exception occured " << b.what() << endl;

 }

 return 0;

}

Allocated 100000000 double in ptr[0]

Allocated 100000000 double in ptr[1]

Exception occured St9bad_alloc

The C++ standard specifies that compilers can continue to use a version of new that returns 0 upon failure. The syntax is

double *ptr = new(nothrow) double[100000000];

The function set_new_handler invokes a a user function that is to be called when operator new fails in its attempt to allocate memory. The function takes as its argument a pointer to a function that takes no arguments and returns void. This provides the programmer with a uniform approach to handling all new failures.

#include <iostream>

using std::cout;

using std::cerr;

using std::endl;

#include <new>

using std::set_new_handler;

#include <cstdlib>

using std::abort;

void newHandler()

{

 cerr << "newHandler was called\n";

 abort();

}

main()

{

 double *ptr[50];

 set_new_handler(newHandler);

 for (int i = 0; i < 50; i++) {

 ptr[i] = new double[200000000];

 cout << "Allocated 200000000 double in ptr[" << i << "]\n";

 }

 return 0;

}

Allocated 100000000 double in ptr[0]

Allocated 100000000 double in ptr[1]

newHandler was called

Abort

The new-handler function should do one of the following:

1. Make more memory available by deleting other dynamically allocated memory (or telling the user to close other applications) and return to operator new to attempt to allocate memory again.

2. Throw a bad_alloc exception or an exception derived from bad_alloc.

3. Call function abort or exit to terminate the program.

Class auto_ptr

If an exception occurs after successful memory allocation but before the delete statement executes, a memory leak could occur. The C++ standard provides class template auto_ptr in header file <memory> to deal with this situation.

 // Example 1(a): Original code without auto_ptr

void f()

{

 T* pt(new T);

 /*...more code...*/

 delete pt;

} // if f() never executes the delete statement, either because of an early return or because of an exception thrown during execution of the function body, then the allocated object is not deleted and we have a classic memory leak.

 // Example 1(b): Safe code, with auto_ptr

void f()

{

 auto_ptr<T> pt(new T);

 /*...more code...*/

} // pt's destructor is called as it goes out of scope, and the object is deleted automatically

Finally, using an auto_ptr is just about as easy as using a built-in pointer, and to "take back" the resource and assume manual ownership again, we just call release():

// Using an auto_ptr

#include <memory>

using std::auto_ptr;

void g()

{

 T* pt1 = new T;

// right now, we own the allocated object

 auto_ptr<T> pt2(pt1);
// pass ownership to an auto_ptr

 // use the auto_ptr the same way we'd use a simple pointer

 *pt2 = 12; // same as "*pt1 = 12;"

 pt2->SomeFunc(); // same as "pt1->SomeFunc();"

 assert(pt1 == pt2.get()); // use get() to see the pointer value

 T* pt3 = pt2.release(); // use release() to take back ownership

 // delete the object ourselves, since now no auto_ptr owns it any more

 delete pt3;

}
Threads

Void *thread_function(void *thread_ID) { /* code to run in thread */ }

pthread_t mythread;

int thread_ID = 123;

int val = pthread_create (&mythread, NULL, thread_function, (void *)&thread_ID);

printf("val %d\n",val);
pthread_exit (void *status);
// explicit termination;

// thread will terminate when the function returns
A shared global variable x can be protected by a mutex as follows:

int x;

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER; // initialize such or as follows:
pthread_mutex_init(&mut, NULL);
pthread_mutex_lock(&mut);

/* operate on x */

pthread_mutex_unlock(&mut);

pthread_mutex_t count_lock;

pthread_cond_t count_nonzero;

unsigned count;

decrement_count()

{

 pthread_mutex_lock(&count_lock);

 while (count == 0)

 pthread_cond_wait(&count_nonzero, &count_lock);

 count = count - 1;

 pthread_mutex_unlock(&count_lock);

}

increment_count()

{

 pthread_mutex_lock(&count_lock);

 if (count == 0)

 pthread_cond_signal(&count_nonzero);

 count = count + 1;

 pthread_mutex_unlock(&count_lock);

}

sem_t mutex;

// define a semaphore object (a mutex is a binary semaphore)

sem_init (&mutex, 0, 1); // 1 is an initial value to set the semaphore to

sem_wait (&mutex); // If the value of the semaphore is negative, the calling process blocks

/* operate on x */

sem_post (&mutex); // It increments the value of the semaphore and wakes up a blocked process waiting on the semaphore, if any.

sem_wait() decrements (locks) the semaphore pointed to by sem. If the semaphore's value is greater than zero, then the decrement proceeds, and the function returns, immediately. If the semaphore currently has the value zero, then the call blocks until either it becomes possible to perform the decrement (i.e., the semaphore value rises above zero), or a signal handler interrupts the call.

sem_trywait() is the same as sem_wait(), except that if the decrement cannot be immediately performed, then call returns an error instead of blocking.

To compile a program that uses pthreads and posix semaphores, use

g++ -o filename filename.c -pthread

