Analytic Combinatorics of Walks with Small Steps in the Quarter Plane

Sam Johnson
(joint work with Marni Mishna)

Simon Fraser University

May 8, 2012

Introduction

Given: A set of directions $\mathcal{S} \subseteq\{0,1,-1\}^{2} \backslash\{(0,0)\}$.

Introduction

Given: A set of directions $\mathcal{S} \subseteq\{0,1,-1\}^{2} \backslash\{(0,0)\}$. $\stackrel{\leftrightarrows}{\longleftrightarrow}$

$$
\mathcal{S}=\mathbb{Z}, n=7
$$

Introduction

Given: A set of directions $\mathcal{S} \subseteq\{0,1,-1\}^{2} \backslash\{(0,0)\}$.

$$
\stackrel{\leftrightarrows}{\swarrow \downarrow}
$$

$$
\mathcal{S}=\mathbb{X}, n=7
$$

A lattice path or walk on \mathcal{S} of length n, beginning at the origin, is a sequence of points $\left\{p_{0}, p_{1}, \ldots, p_{n}\right\}$ such that

$$
* \quad p_{0}=(0,0)
$$

Introduction

Given: A set of directions $\mathcal{S} \subseteq\{0,1,-1\}^{2} \backslash\{(0,0)\}$.

$$
\stackrel{\leftrightarrows \downarrow}{\swarrow \downarrow}
$$

$$
\mathcal{S}=\mathbb{X}, n=7
$$

A lattice path or walk on \mathcal{S} of length n, beginning at the origin, is a sequence of points $\left\{p_{0}, p_{1}, \ldots, p_{n}\right\}$ such that

$$
\begin{array}{ll}
* & p_{0}=(0,0), \\
* & p_{i}-p_{i-1} \in S .
\end{array}
$$

Motivation

Goal: An asymptotic expression for the number of walks $w(n)$ from the class \mathcal{W} of length n

$$
w(n) \sim c \beta^{n} n^{s} .
$$

Why: Walks efficiently model many phenomena in physics, chemistry and probability. Asymptotic expressions are linked closely with properties of these phenomena.

Self Avoiding Walks (SAW) - The Holy Grail

Sequences with the extra restriction

$$
p_{i} \neq p_{j} \text { for } i \neq j
$$

$$
\mathcal{S}=\overleftrightarrow{\uplus}, n=11
$$

These model linear polymers in solution, and an asymptotic expression is very interesting for chemists. Empirically

$$
w(n) \sim c \mu^{n} n^{\gamma}
$$

where $\mu=2.638, \gamma=11 / 32$. No proof is yet known!

Singularity analysis

Example: Dyck paths

The number of Dyck paths of length $2 n$ is $d(n)=\frac{1}{n+1}\binom{2 n}{n}$ and the class \mathcal{D} has the generating function

$$
\sum_{n \geq 0} d(n) t^{2 n}=
$$

Singularity analysis

Example: Dyck paths

The number of Dyck paths of length $2 n$ is $d(n)=\frac{1}{n+1}\binom{2 n}{n}$ and the class \mathcal{D} has the generating function

$$
\sum_{n \geq 0} d(n) t^{2 n}=\frac{1-\sqrt{1-4 t}}{2 t}
$$

with asymptotic expression $d(n) \sim \frac{4^{n}}{\sqrt{\pi n^{3}}}$.

Directed Paths

Restricting $\mathcal{S} \subseteq\{1\} \times\{0,1,-1\}$ gives a subset of SAW which increase to the right at every step

These model some queuing theory problems and, in a probabilistic relative, sums of discrete random variables. These are solved:

$$
W(t)=\frac{1}{1-3 t}, \quad w(n)=3^{n}
$$

Partially Directed Paths

Taking $\mathcal{S} \subseteq \vDash$ and enforcing self-avoidance gives another subset of SAW.

These sometimes correspond to Atomic Force Microscopy (AFM) experiments on linear polymers (as do directed paths).

$$
W(t)=\frac{1+t}{1-2 t-t^{2}}, \quad w(n) \sim c(1+\sqrt{2})^{n} n^{s}
$$

Self Intersecting Walks

An Easy Place to Start

Let \mathcal{W} be the class of unrestricted walks with steps from

then $w(n)=|\mathcal{S}|^{n}$ and hence

$$
W(t)=\sum_{n \geq 0} w(n) t^{n}=\frac{1}{1-|S| t}
$$

Walks In The Half Plane

To add a boundary, restrict the points to the half plane $y \geq 0$.

These model polymers interacting with a boundary, and can give information about adsorbption. Moreover, these will provide enumerative bounds on problems which are restrictions or relaxations of this one.

Enumeration

We define the horizontal projection

$$
P(y)=S(1, y)
$$

Then we get the bijection

Enumeration

We define the horizontal projection

$$
P(y)=S(1, y)
$$

Then we get the bijection

So it suffices in this case to study directed paths in $y \geq 0$. These are called directed meanders.

Directed Meanders

\mathcal{S} is a weighted subset of $\{1\} \times\{1,0,-1\}$.

We seek $f(n)$, the number of walks of length n from the class \mathcal{F} of directed meanders.

Directed Meanders

\mathcal{S} is a weighted subset of $\{1\} \times\{1,0,-1\}$.

We seek $f(n)$, the number of walks of length n from the class \mathcal{F} of directed meanders.

Good news: Explicit enumeration and asymptotic expressions known.

The kernel method

Banderier and Flajolet give explicit generating function results for directed meanders by using the kernel method, which:

* relies on an inventory of the step set; and

The kernel method

Banderier and Flajolet give explicit generating function results for directed meanders by using the kernel method, which:

* relies on an inventory of the step set; and
* gives a generating function which is algebraic, and a simple modification of the full plane model's rational GF.

Our Example

For the set of steps

$$
\langle\Downarrow
$$

we have the inventory

$$
P(y)=2 y+\frac{2}{y}
$$

from which we define the kernel

$$
K(y, t)=y-t y P(y)=y-2 t y^{2}-2 t
$$

The Result

Theorem: (Banderier/Flajolet) The generating function for a directed meander is given by

$$
F(t)=\frac{1-y(t)}{1-t P(1)}
$$

Where $y(t)$ is the solution to $K(y, t)=0$ which is analytic at 0 .

Our Example

So, $y-2 t y^{2}-2 t=0$ has solutions

$$
y_{1}(t)=\frac{1-\sqrt{1-16 t^{2}}}{4 t}, \quad y_{2}(t)=\frac{1+\sqrt{1-16 t^{2}}}{4 t}
$$

of which $y_{1}(t)$ is analytic at 0 . Then

$$
F(t)=\frac{2 t-1+\sqrt{1-16 t^{2}}}{2 t(1-4 t)}
$$

from which we may find the asymptotic expression

$$
f(n) \sim C \frac{4^{n}}{\sqrt{\pi n}}
$$

The Quarter Plane

Walks In The Quarter Plane

We add another boundary by restricting the previous half plane case to $x \geq 0$ and consider $q(n)$, the number of walks of length n in the class \mathcal{Q}.

Physical interpretation: a polymer or particle interacting with two boundaries, such as the corner of a container.

Recap

* Whole plane model: easy, solved explicitly with a rational GF.

Recap

* Whole plane model: easy, solved explicitly with a rational GF.
* Half plane model: solved explicitly via the bijection, algebraic GF.

Recap

* Whole plane model: easy, solved explicitly with a rational GF.
* Half plane model: solved explicitly via the bijection, algebraic GF.
* Quarter plane model: more complicated, certain families are explicit, a lot of unknowns, cases that are known are series extractions of rational functions.

Recap

* Whole plane model: easy, solved explicitly with a rational GF.
* Half plane model: solved explicitly via the bijection, algebraic GF.
* Quarter plane model: more complicated, certain families are explicit, a lot of unknowns, cases that are known are series extractions of rational functions.

Goal (long term): An analytic theory similar to that of directed paths.

Recap

* Whole plane model: easy, solved explicitly with a rational GF.
* Half plane model: solved explicitly via the bijection, algebraic GF.
* Quarter plane model: more complicated, certain families are explicit, a lot of unknowns, cases that are known are series extractions of rational functions.

Goal (long term): An analytic theory similar to that of directed paths.

Goal (short term): Asymptotic expressions.

Case Reduction

Let's only consider distinct cases.
We can throw out subsets of

$$
\lambda_{\operatorname{ard}} k
$$

Case Reduction

Let's only consider distinct cases.
We can throw out subsets of

$$
\lambda_{\operatorname{ard}} k
$$

and notice that reflections across $y=x$ give equivalent models.

Case Reduction

Let's only consider distinct cases.
We can throw out subsets of

$$
\overleftrightarrow{\swarrow} \quad \text { and } \quad \stackrel{\downarrow}{\downarrow}
$$

and notice that reflections across $y=x$ give equivalent models.

Removing previous cases, trivial models and symmetries $\Rightarrow 79$ non-equivalent quarter plane models.

Tools

We use a two variable inventory of \mathcal{S}

$$
S(x, y)=\sum_{s \in \mathcal{S}} x^{s_{1}} y^{s_{2}}
$$

And define the kernel analogously to the directed models

$$
K(x, y, t)=x y-x y t S(x, y)
$$

The kernel

Define a group $G(S)$ of birational transformations of the plane preserving the kernel

$$
K(g(x, y))=K(x, y) \text { for } g \in G(\mathcal{S})
$$

The kernel

Define a group $G(S)$ of birational transformations of the plane preserving the kernel

$$
K(g(x, y))=K(x, y) \text { for } g \in G(\mathcal{S})
$$

Taking \mathcal{S} as

note that $g(x, y)=(y, x)$ is in $G(S)$. Generally, $g=(\alpha(x, y), \beta(x, y)$ where α, β rational.

The kernel

Define a group $G(S)$ of birational transformations of the plane preserving the kernel

$$
K(g(x, y))=K(x, y) \text { for } g \in G(\mathcal{S})
$$

Taking S as

note that $g(x, y)=(y, x)$ is in $G(\mathcal{S})$. Generally, $g=(\alpha(x, y), \beta(x, y)$ where α, β rational.

For 23 cases, $|G(S)|<\infty$ and for the remaining $56 G(S)$ is an infinite group. This is tied to enumerative results.

Previous Work

Working with the kernel:

- Orbit Sums Method: A series extraction of a rational series (Bousquet-Mélou/Mishna 10) (22 cases).

Previous Work

Working with the kernel:

- Orbit Sums Method: A series extraction of a rational series (Bousquet-Mélou/Mishna 10) (22 cases).
- Iterated Kernel Method (Mishna/Rechnitzer 09).

Previous Work

Working with the kernel:

- Orbit Sums Method: A series extraction of a rational series (Bousquet-Mélou/Mishna 10) (22 cases).
- Iterated Kernel Method (Mishna/Rechnitzer 09).
- Elliptic curve method (Fayolle/Raschel 10).

Previous Work

Working with the kernel:

- Orbit Sums Method: A series extraction of a rational series (Bousquet-Mélou/Mishna 10) (22 cases).
- Iterated Kernel Method (Mishna/Rechnitzer 09).
- Elliptic curve method (Fayolle/Raschel 10).

Other approaches:

- Bijections (Young tableaux, formal languages)

Previous Work

Working with the kernel:

- Orbit Sums Method: A series extraction of a rational series (Bousquet-Mélou/Mishna 10) (22 cases).
- Iterated Kernel Method (Mishna/Rechnitzer 09).
- Elliptic curve method (Fayolle/Raschel 10).

Other approaches:

- Bijections (Young tableaux, formal languages)
- Individual case analyses (Kreweras and Gessel walks).

Previous Work

Working with the kernel:

- Orbit Sums Method: A series extraction of a rational series (Bousquet-Mélou/Mishna 10) (22 cases).
- Iterated Kernel Method (Mishna/Rechnitzer 09).
- Elliptic curve method (Fayolle/Raschel 10).

Other approaches:

- Bijections (Young tableaux, formal languages)
- Individual case analyses (Kreweras and Gessel walks).
- Guess and check (Bostan/Kauers 10): Gives (likely)
asymptotic development for finite group cases.

Selected step sets and their asymptotic behaviour

S	δ	c	s	β	Asymptotic Estimate
	0	$\frac{2}{\pi}$	-1	4	$\frac{2}{\pi} \cdot \frac{4^{n}}{n}$
\downarrow	$+$	$\frac{\sqrt{3}}{\Gamma\left(\frac{1}{2}\right)}$	$-\frac{1}{2}$	3	$\frac{\sqrt{3}}{\Gamma\left(\frac{1}{2}\right)} \cdot \frac{3^{n}}{\sqrt{n}}$
	+	$\frac{\sqrt{5}}{2 \sqrt{2} \Gamma\left(\frac{1}{2}\right)}$	$-\frac{1}{2}$	5	$\frac{\sqrt{5}}{2 \sqrt{2} \Gamma\left(\frac{1}{2}\right)} \cdot \frac{5^{n}}{\sqrt{n}}$
\swarrow	-	$\frac{24 \sqrt{2}}{\pi}$	-2	$2 \sqrt{2}$	$\frac{24 \sqrt{2}}{\pi} \cdot \frac{(2 \sqrt{2})^{n}}{n^{2}}$
	-	$\frac{\sqrt{8}(1+\sqrt{2})^{\frac{7}{2}}}{\pi}$	-2	$2(1+\sqrt{2})$	$\frac{\sqrt{8}(1+\sqrt{2})^{\frac{7}{2}}}{\pi} \cdot \frac{(2(1+\sqrt{2}))^{n}}{n^{2}}$

Table: The number of walks grows asymptotically as $c n^{s} \beta^{n}$.

The Exponential Growth Factor

Despite some success in sporadic cases, finding explicit GFs for every step set is too hard.

The Exponential Growth Factor

Despite some success in sporadic cases, finding explicit GFs for every step set is too hard.

Recall: The exponential growth factor $\beta=\frac{1}{\rho}$, so bounding β will bound ρ.

The Exponential Growth Factor

Despite some success in sporadic cases, finding explicit GFs for every step set is too hard.

Recall: The exponential growth factor $\beta=\frac{1}{\rho}$, so bounding β will bound ρ.

Naively: $q(n) \leq w(n)=|S|^{n}$, and $q(n) \sim c \beta^{n} n^{s}$ for some β and s.

The Exponential Growth Factor

Despite some success in sporadic cases, finding explicit GFs for every step set is too hard.

Recall: The exponential growth factor $\beta=\frac{1}{\rho}$, so bounding β will bound ρ.

Naively: $q(n) \leq w(n)=|S|^{n}$, and $q(n) \sim c \beta^{n} n^{s}$ for some β and s. Taking $\lim \frac{1}{n} \log$ of both gives

$$
\log (\beta) \leq \log |\mathcal{S}| \Rightarrow \beta \leq|\mathcal{S}|
$$

Our example

We can apply this method to our example

to get an upper bound which is tight with the experimental results.

Our example

We can apply this method to our example

to get an upper bound which is tight with the experimental results. However, consider the step set

Our example

We can apply this method to our example

to get an upper bound which is tight with the experimental results. However, consider the step set

Experiments tell us that the associated $\beta=2 \sqrt{2}$, so we need something better.

Selected step sets and their asymptotic behaviour

S	δ	c	s	β	Asymptotic Estimate
	0	$\frac{2}{\pi}$	-1	4	$\frac{2}{\pi} \cdot \frac{4^{n}}{n}$
\downarrow	$+$	$\frac{\sqrt{3}}{\Gamma\left(\frac{1}{2}\right)}$	$-\frac{1}{2}$	3	$\frac{\sqrt{3}}{\Gamma\left(\frac{1}{2}\right)} \cdot \frac{3^{n}}{\sqrt{n}}$
	+	$\frac{\sqrt{5}}{2 \sqrt{2} \Gamma\left(\frac{1}{2}\right)}$	$-\frac{1}{2}$	5	$\frac{\sqrt{5}}{2 \sqrt{2} \Gamma\left(\frac{1}{2}\right)} \cdot \frac{5^{n}}{\sqrt{n}}$
\swarrow	-	$\frac{24 \sqrt{2}}{\pi}$	-2	$2 \sqrt{2}$	$\frac{24 \sqrt{2}}{\pi} \cdot \frac{(2 \sqrt{2})^{n}}{n^{2}}$
	-	$\frac{\sqrt{8}(1+\sqrt{2})^{\frac{7}{2}}}{\pi}$	-2	$2(1+\sqrt{2})$	$\frac{\sqrt{8}(1+\sqrt{2})^{\frac{7}{2}}}{\pi} \cdot \frac{(2(1+\sqrt{2}))^{n}}{n^{2}}$

Table: The number of walks grows asymptotically as $c n^{s} \beta^{n}$.

Bounding The Exponential Growth

Observation: The interaction with the x-axis is what matters. By removing the y-axis as a boundary, we relax the problem and find

$$
q(n) \leq f(n)
$$

Bounding The Exponential Growth

Observation: The interaction with the x-axis is what matters. By removing the y-axis as a boundary, we relax the problem and find

$$
q(n) \leq f(n)
$$

Knowing

$$
q(n) \sim c \beta^{n} n^{s} \text { and } f(n) \sim k \gamma^{n} n^{t}
$$

Bounding The Exponential Growth

Observation: The interaction with the x-axis is what matters. By removing the y-axis as a boundary, we relax the problem and find

$$
q(n) \leq f(n)
$$

Knowing

$$
q(n) \sim c \beta^{n} n^{s} \text { and } f(n) \sim k \gamma^{n} n^{t}
$$

we can take $\lim \frac{1}{n} \log$ on both sides to get

$$
\beta \leq \gamma
$$

A Negative Drift Example

Take \mathcal{S} as shown below with the associated directed meander.

A Negative Drift Example

Take \mathcal{S} as shown below with the associated directed meander.

From the inventory $P(y)=y+\frac{2}{y}$, we find

$$
F(t)=\frac{2 t-1+\sqrt{1-8 t^{2}}}{2 t(1-3 t)}
$$

A Negative Drift Example

Take \mathcal{S} as shown below with the associated directed meander.

From the inventory $P(y)=y+\frac{2}{y}$, we find

$$
F(t)=\frac{2 t-1+\sqrt{1-8 t^{2}}}{2 t(1-3 t)}
$$

Which has a dominant singularity at the branch point $t=\frac{1}{2 \sqrt{2}}$, as desired.

Infinite group cases

Taking the horizontal projection provides a tight (experimentally) upper bound for all finite group cases. What about infinite groups?

Infinite group cases

Taking the horizontal projection provides a tight (experimentally) upper bound for all finite group cases. What about infinite groups?

Consider the step set

with exponential growth $\beta=2(1+\sqrt{2})$.

Infinite group cases

Taking the horizontal projection provides a tight (experimentally) upper bound for all finite group cases. What about infinite groups?

Consider the step set

with exponential growth $\beta=2(1+\sqrt{2})$.
Moral: We can use this to bound the dominant singularity on IG step sets, as long as we use more care in choosing the direction of projection.

Lower Bounds

Unfortunately, finding lower bounds isn't quite so nice.

Lower Bounds

Unfortunately, finding lower bounds isn't quite so nice.
Idea: Manipulate stopping conditions to find sub-models with the same exponential growth.

Lower Bounds

Unfortunately, finding lower bounds isn't quite so nice.
Idea: Manipulate stopping conditions to find sub-models with the same exponential growth.

So, what if we look at walks returning to the origin?

The origin

Take as an example the step set which we call the trident

and consider the walks returning to the origin of length $2 n$.

The origin

Take as an example the step set which we call the trident

and consider the walks returning to the origin of length $2 n$.

$$
T(2 n)=C_{n}
$$

The origin

Take as an example the step set which we call the trident

and consider the walks returning to the origin of length $2 n$.

$$
T(2 n)=C_{n} \sum_{k=0}^{n}\binom{n}{2 k} C_{k}
$$

The origin

Take as an example the step set which we call the trident

and consider the walks returning to the origin of length $2 n$.

$$
T(2 n)=C_{n} \sum_{k=0}^{n}\binom{n}{2 k} C_{k} .
$$

Now, $C_{n} \sim 4^{n}$, and $\sum_{k \geq 0}\binom{n}{2 k} C_{k}=M_{n}$, the nth Motzkin number, with $M_{n} \sim 3^{n}$.

The origin

Take as an example the step set which we call the trident

and consider the walks returning to the origin of length $2 n$.

$$
T(2 n)=C_{n} \sum_{k=0}^{n}\binom{n}{2 k} C_{k} .
$$

Now, $C_{n} \sim 4^{n}$, and $\sum_{k \geq 0}\binom{n}{2 k} C_{k}=M_{n}$, the nth Motzkin number, with $M_{n} \sim 3^{n}$.

$$
T(n) \sim 2^{2 n} \sqrt{3}^{2 n}=(2 \sqrt{3})^{2 n}
$$

Problema

This is misleading. Not all step sets are going to be easy to enumerate like this.

Problema

This is misleading. Not all step sets are going to be easy to enumerate like this.
Next, Look at the pair of step sets

Problema

This is misleading. Not all step sets are going to be easy to enumerate like this.
Next, Look at the pair of step sets

Walks to the origin on both step sets are equinumerous, so the upward drift version needs a larger lower bound.
How can we fix this?

Bootstrapping

One of the solved sporadic cases is

which is known to have exponential growth factor 3^{n}.

Bootstrapping

One of the solved sporadic cases is

which is known to have exponential growth factor 3^{n}. Inserting a \uparrow step at any point gives some of the walks on the upward trident,

$$
T(n) \geq \sum_{i=0}^{n}\binom{n}{i} w(n) \sim \sum_{i=0}^{n}\binom{n}{i} 3^{n}=4^{n}
$$

Bootstrapping

One of the solved sporadic cases is

which is known to have exponential growth factor 3^{n}. Inserting a \uparrow step at any point gives some of the walks on the upward trident,

$$
T(n) \geq \sum_{i=0}^{n}\binom{n}{i} w(n) \sim \sum_{i=0}^{n}\binom{n}{i} 3^{n}=4^{n}
$$

We can similarly add the steps \leftrightarrow to bootstrap to

as long as the walk on the inserted steps is a meander.

Recap

* Simplifications and relaxations can directly and indirectly provide methods for proving harder problems. Allowing walks to self intersect provides a bound (albeit too large) on the egf of SAW.
We need to add boundaries to make something interesting. Two boundary case still uses ad-hoc methods, and an analytic theory, similar to the single boundary case, is desirable.

Future Work

Other methods of counting: interleaving meanders of paired steps. Take

as an example. Then

$$
q(n)=\sum_{k \geq 0}\binom{n}{k} H_{n} V_{n-k}
$$

Future Work

Other methods of counting: interleaving meanders of paired steps. Take

as an example. Then

$$
q(n)=\sum_{k \geq 0}\binom{n}{k} H_{n} V_{n-k}
$$

The theory on directed meanders comes from a more general theory of walks on $\mathcal{S} \subseteq\{1\} \times \mathbb{Z}$ with $|\mathcal{S}|<\infty$. More boundaries is harder.

Question: Is there an analogous theory for these undirected models, two boundary models?

THANKS FOR LISTENING!

References

C. Banderier and P. Flajolet, Basic analytic combinatorics of directed lattice paths.
M. Bousquet-Mélou, M. Mishna, Walks with small steps in the quarter plane.
A. Bostan, M. Kauers, Automatic Classification of Restricted Lattice Walks.
M. Mishna, A. Rechnitzer, Two non-holonomic lattic walks in the quarter plane.

