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Introduction
Given: A set of directions S � f0; 1;�1g2 n f(0; 0)g.

S = , n = 7.

A lattice path or walk on S of length n, beginning at the
origin, is a sequence of points fp0; p1; :::; png such that

� p0 = (0; 0);

� pi � pi�1 2 S:
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Motivation

Goal: An asymptotic expression for the number of walks w(n)
from the class W of length n

w(n) � c�nns:

Why: Walks e�ciently model many phenomena in physics,
chemistry and probability. Asymptotic expressions are linked
closely with properties of these phenomena.



Self Avoiding Walks (SAW) - The Holy Grail

Sequences with the extra restriction

pi 6= pj for i 6= j

S = , n = 11

These model linear polymers in solution, and an asymptotic
expression is very interesting for chemists. Empirically

w(n) � c�nn


where � = 2:638, 
 = 11=32. No proof is yet known!



Singularity analysis

Example: Dyck paths

, n = 8.

The number of Dyck paths of length 2n is d(n) = 1
n+1

�2n
n

�
and

the class D has the generating function

X
n�0

d(n)t2n =

1�p1� 4t

2t
;

with asymptotic expression d(n) � 4np
�n3

.
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Directed Paths

Restricting S � f1g � f0; 1;�1g gives a subset of SAW which
increase to the right at every step

S = , n = 8

These model some queuing theory problems and, in a
probabilistic relative, sums of discrete random variables. These
are solved:

W (t) =
1

1� 3t
; w(n) = 3n:



Partially Directed Paths

Taking S � and enforcing self-avoidance gives another subset
of SAW.

These sometimes correspond to Atomic Force Microscopy
(AFM) experiments on linear polymers (as do directed paths).

W (t) =
1 + t

1� 2t� t2
; w(n) � c(1 +

p
2)nns:



Self Intersecting Walks



An Easy Place to Start

Let W be the class of unrestricted walks with steps from

then w(n) = jSjn and hence

W (t) =
X
n�0

w(n)tn =
1

1� jSjt :



Walks In The Half Plane

To add a boundary, restrict the points to the half plane y � 0.

n = 9, S =

These model polymers interacting with a boundary, and can
give information about adsorbption. Moreover, these will
provide enumerative bounds on problems which are restrictions
or relaxations of this one.



Enumeration

We de�ne the horizontal projection

P (y) = S(1; y):

7!
Then we get the bijection

So it su�ces in this case to study directed paths in y � 0.
These are called directed meanders.
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S is a weighted subset of f1g � f1; 0;�1g.

S = n = 9

We seek f(n), the number of walks of length n from the class F
of directed meanders.

Good news: Explicit enumeration and asymptotic expressions
known.
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The kernel method

Banderier and Flajolet give explicit generating function results
for directed meanders by using the kernel method, which:

* relies on an inventory of the step set; and

* gives a generating function which is algebraic, and a
simple modi�cation of the full plane model's rational GF.
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simple modi�cation of the full plane model's rational GF.



Our Example

For the set of steps

we have the inventory

P (y) = 2y +
2

y

from which we de�ne the kernel

K(y; t) = y � tyP (y) = y � 2ty2 � 2t:



The Result

Theorem: (Banderier/Flajolet) The generating function for a
directed meander is given by

F (t) =
1� y(t)

1� tP (1)
:

Where y(t) is the solution to K(y; t) = 0 which is analytic at 0.



Our Example

So, y � 2ty2 � 2t = 0 has solutions

y1(t) =
1�p1� 16t2

4t
; y2(t) =

1 +
p
1� 16t2

4t
;

of which y1(t) is analytic at 0. Then

F (t) =
2t� 1 +

p
1� 16t2

2t(1� 4t)
;

from which we may �nd the asymptotic expression

f(n) � C
4np
�n

:



The Quarter Plane



Walks In The Quarter Plane

We add another boundary by restricting the previous half plane
case to x � 0 and consider q(n), the number of walks of length
n in the class Q.

S = ; n = 16

Physical interpretation: a polymer or particle interacting with
two boundaries, such as the corner of a container.



Recap

* Whole plane model: easy, solved explicitly with a
rational GF.

* Half plane model: solved explicitly via the bijection,
algebraic GF.

* Quarter plane model: more complicated, certain families
are explicit, a lot of unknowns, cases that are known are
series extractions of rational functions.

Goal (long term): An analytic theory similar to that of directed
paths.

Goal (short term): Asymptotic expressions.
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and

and notice that re
ections across y = x give equivalent models.

Removing previous cases, trivial models and symmetries ) 79
non-equivalent quarter plane models.
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Tools

We use a two variable inventory of S

S(x; y) =
X
s2S

xs1ys2 :

And de�ne the kernel analogously to the directed models

K(x; y; t) = xy � xytS(x; y):



The kernel

De�ne a group G(S) of birational transformations of the plane
preserving the kernel

K(g(x; y)) = K(x; y) for g 2 G(S):

Taking S as

note that g(x; y) = (y; x) is in G(S). Generally,
g = (�(x; y); �(x; y) where �; � rational.

For 23 cases, jG(S)j <1 and for the remaining 56 G(S) is an
in�nite group. This is tied to enumerative results.
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Previous Work

Working with the kernel:

- Orbit Sums Method: A series extraction of a rational
series (Bousquet-M�elou/Mishna 10) (22 cases).

- Iterated Kernel Method (Mishna/Rechnitzer 09).

- Elliptic curve method (Fayolle/Raschel 10).

Other approaches:

- Bijections (Young tableaux, formal languages)

- Individual case analyses (Kreweras and Gessel walks).

- Guess and check (Bostan/Kauers 10) : Gives (likely)
asymptotic development for �nite group cases.
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Selected step sets and their asymptotic behaviour

S � c s � Asymptotic Estimate
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Table: The number of walks grows asymptotically as cns�n.



The Exponential Growth Factor

Despite some success in sporadic cases, �nding explicit GFs for
every step set is too hard.

Recall: The exponential growth factor � = 1
�
, so bounding �

will bound �.

Naively: q(n) � w(n) = jSjn, and q(n) � c�nns for some � and
s. Taking lim 1

n
log of both gives

log(�) � log jSj ) � � jSj:
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Our example

We can apply this method to our example

to get an upper bound which is tight with the experimental
results.

However, consider the step set

Experiments tell us that the associated � = 2
p
2, so we need

something better.
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Bounding The Exponential Growth

Observation: The interaction with the x-axis is what matters.
By removing the y-axis as a boundary, we relax the problem
and �nd

q(n) � f(n):

Knowing
q(n) � c�nns and f(n) � k
nnt;

we can take lim 1
n
log on both sides to get

� � 
:
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A Negative Drift Example

Take S as shown below with the associated directed meander.

7!

From the inventory P (y) = y + 2
y
, we �nd

F (t) =
2t� 1 +

p
1� 8t2

2t(1� 3t)
:

Which has a dominant singularity at the branch point t = 1
2
p
2
,

as desired.
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In�nite group cases

Taking the horizontal projection provides a tight
(experimentally) upper bound for all �nite group cases. What
about in�nite groups?

Consider the step set

with exponential growth � = 2(1 +
p
2).

Moral: We can use this to bound the dominant singularity on
IG step sets, as long as we use more care in choosing the
direction of projection.
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Idea: Manipulate stopping conditions to �nd sub-models with
the same exponential growth.

So, what if we look at walks returning to the origin?
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The origin

Take as an example the step set which we call the trident

and consider the walks returning to the origin of length 2n.

T (2n) = Cn

nX
k=0

 
n

2k

!
Ck:

Now, Cn � 4n, and
P

k�0
� n
2k

�
Ck =Mn, the nth Motzkin

number, with Mn � 3n, giving

T (n)~22n
p
3
2n

= (2
p
3)2n:
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Problema

This is misleading. Not all step sets are going to be easy to
enumerate like this.

Next, Look at the pair of step sets

and

Walks to the origin on both step sets are equinumerous, so the
upward drift version needs a larger lower bound.
How can we �x this?
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Bootstrapping

One of the solved sporadic cases is

;

which is known to have exponential growth factor 3n.

Inserting a step at any point gives some of the walks on the
upward trident,

T (n) �
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3n = 4n:

We can similarly add the steps to bootstrap to

;

as long as the walk on the inserted steps is a meander.
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Recap

* Simpli�cations and relaxations can directly and
indirectly provide methods for proving harder problems.

Allowing walks to self intersect provides a bound (albeit
too large) on the egf of SAW.

We need to add boundaries to make something interesting.
Two boundary case still uses ad-hoc methods, and an
analytic theory, similar to the single boundary case, is
desirable.



Future Work

Other methods of counting: interleaving meanders of paired
steps. Take

as an example. Then

q(n) =
X
k�0

 
n

k

!
HnVn�k:

The theory on directed meanders comes from a more general
theory of walks on S � f1g � Z with jSj <1. More boundaries
is harder.

Question: Is there an analogous theory for these undirected
models, two boundary models?
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THANKS FOR LISTENING!
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