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Introduction
Given: A set of directions

Count: Number of integer lattice walks in the �rst quadrant

using these steps.

For instance, given the step set S = fNE;SE;NW;SWg

there are 9 walks of length 3:



Selected step sets and their asymptotic behaviour

S c s � Asymptotic Estimate
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Table: The number of walks grows asymptotically as cns�n.

If we can classify the generating function of a walk as algebraic

or holonomic (satis�es a nice linear ODE) then we will know

the form of its growth.



Tools

Two methods of reasoning (both are interconnected):

Combinatorial: Drift Arguments

Projection onto axis'

`Squeezing' with known cases (Catalan, etc.)

Useful for determining growth factors

Analytic: Uses multivariable generating function

Exploit functional equation for GF

Useful for classifying GF of a walk



Some history and case reduction

Step sets which are subsets of

are a subset of half space problems which have been solved

[Banderier,Flajolet 01] and are not considered.

Also, subsets of

will never leave the origin, so these are also not considered.

In fact, only 79 step sets are considered. Of these 23 are `nice',

and the remaining 56 are `mysterious'.



`Nice' Case



What makes it `nice'?

The step set possesses a vertical symmetry OR
The vector sum of the step set vectors is 0.

All are holonomic (many are algebraic).

([Bousquet-Melou,Mishna 09] and [Bostan,Kauers 09])

The asymptotics are estimated experimentally to great

accuracy. [Bostan,Kauers 09]

Many are susceptible to arguments or reductions which are

largely combinatorial.



Tools - Drift

We take the vector sum of the step set, and consider the

direction of the resulting vector:

7! positive

7! zero

7! negative

This is the direction that walks on these step sets will tend in.

Drift into the quarter plane is called positive and drift out of

the quarter plane is negative. This parameter plays a role in

the asymptotics.



Selected step sets and their asymptotic behaviour

S � c s � Asymptotic Estimate
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Table: The number of walks grows asymptotically as cns�n.



A point of interest

If the drift is negative, take a horizontal projection of the step

set

7! .

From the new GF P (u) = u+ 2
u
, de�ne

� : P 0(� ) = 0 ) � =
p
2:

Then the exponential growth factor is equal to

P (� ) = P (
p
2) =

p
2 +

2p
2
= 2

p
2:



Observations

Non-negative drift implies full exponential growth.

Distinct strategies seem necessary for each case: squeezing

will work with non negative drift.

One strategy allows us to shift our focus to the asymptotics

of a subset of all walks (MPEP) [Janse van Rensburg,Rechnitzer 01].

Negative drift walks share asymptotic properties with

negative drift directed walks �a la Banderier and Flajolet.



`Mysterious' Case



Step Sets with Nonholonomic GFs

GFs in this second category are all conjectured to be

non-holonomic (in t).

First 2 proven non-holonomic by Mishna and Rechnitzer in

'09 using an `Iterated Kernel Method'.

As seen below, this argument utilizes a functional equation

and is largely analytic in nature.



Tools - Generating Functions

The generating function

Q(x; y; t) =
X

n;i;j�0
qijnx

iyjtn

which counts the number of walks of length n ending at (i; j)
satis�es an obvious functional equation. For example, with the

previous step set

we use the step generating function

S(x; y) = xy +
y

x
+

1

xy
+

x

y



A functional equation

Q(x; y; t) = 1 + tS(x; y)Q(x; y; t)
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Example of Iterated Kernel Method

For the step set

Begin with with functional equation:

Q(x; y) = 1+t

�
y

x
+ y + xy + x+

x

y

�
Q(x; y)� ty

x
Q(0; y)� tx

y
Q(x; 0)

Regroup to give the form

K(x; y)Q(x; y) = xy � ty2Q(y; 0)� tx2Q(x; 0)

where K is the kernel

K(x; y) = xy � t
�
y2 + xy2 + x2y2 + x2y + x2

�
:



Example of Iterated Kernel Method

Let Y� be the roots of K(x; y) in y:

Y� =
x

2t (1 + x+ x2)

�
1� tx�

p
1� 2tx� 3t2x2 � 4t2x� 4t2

�
:

De�ne Yn to be Y+ composed with itself n times.

Substituting y = Y1(x) back into the functional equation gives

0 = xY1(x)� tY1(x)
2Q (Y1(x); 0)� tx2Q (x; 0) :

Repeatedly set x = Y1(x) and take an alternating sum to get

Q(x; 0) =
1

x2t

X
n�0

(�1)nYn(x)Yn+1(x)



Example of Iterated Kernel Method

This gives an equation for the generating function of the

number of walks:

W (t) =
1� 2tQ(1; 0)

1� 5t
=

1� 2
P

n�0(�1)nYn(1)Yn+1(1)
1� 5t

If we can show each summand has distinct singularities, we

have shown W is not holonomic.



Example of Iterated Kernel Method

This is achieved by

1) Relating 1=Y� and 1=Y+ (as roots of a quadratic)

In this case
1

Y+(x)
+

1

Y�(x)
=

1

tx
� 1

2) Using (Y� � Y+) (x) = x to �nd a recurrence for 1=Yn

3) explicitly solving the recurrence for 1=Yn

we can then (theoretically) use arguments from Complex

Analysis and Calculus to show an in�nite source of singularities.



Problems with Method

Don't always get convergence in series with Yn (or hard to

show).

Can't always solve for Yn (this fails for the step set

for example).

Usually not easy to �nd singularities of Yn
(MM-AR did walks with 3 steps)



Conclusion



Conclusions

There is a large interplay between Combinatorial and

Analytic arguments

Combinatorial arguments are useful for reducing to simpler

cases and �nding growth factors

Analytic arguments are useful for classifying walk GFs as

algebraic, holonomic, non-holonomic, etc.



Open questions

`Nice' ) holonomic GF. We'd like asymptotic forms

combinatorially. For positive drift, this comes down to

�nding clever lower bounds.

The exponential growth factor of �nite group walks with

-ve drift is predicted by an associated directed walk. Is

there a straightforward transformation?

Two of 56 in�nite group walks are classi�ed as

non-holonomic. The remainder are merely conjectured.

Explicit integral representations of some GFs have been

found by considering this as a BVP [Raschel 11], but the

techniques are quite complicated.
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