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Introduction

A planar lattice path model is a combinatorial class, RS,

de�ned by a region, R � Z2, and direction set
S � f0; 1;�1g � f0; 1;�1g.

For example, Q is the class of walks in the �rst quadrant with

steps from S = f(0; 1); (1;�1); (�1;�1)g.

Figure: A quarter plane walk of length 100 taken on S = .
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Enumeration

Let rS(n) = # of walks of length n with steps from S in R.

Typically, in our regions of interest

rS(n) � ��n
Sn

�; � 2 R+; � � 0:

Goal: Given a model RS, �nd �S.

This is the exponential growth factor, and we write

rS(n) ./ βS.
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Motivation

* In statistical mechanical applications, the exponential

growth is the limiting free energy, linked to the entropy

of the system.

* Although we can estimate �S with series computations,

we prefer an approach that is direct, systematic and
combinatorial.
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Each step set S carries a parameter called the drift. This is the

vector sum of a step set:
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If the drift vector has at most one non-zero component, we call

the drift simple.
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History

* Full plane, WS: trivially enumerated, �S = jSj.

* Half plane, HS: drift dependent, explicit enumerative

formulae and asymptotic growth via singularity analysis of

generating functions.

* Quarter plane, QS: experimental results from series

computations, several enumerative strategies. Some

sporadic cases solved. Work is ongoing.

We prove exponential growth factors for quarter plane models

with simple drift.
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Conjectured exponential growth

S � �
conj
S S � �

conj
S S � �

conj
S

� 4 � 4 � 3

� 6 � 8 � 6

3 5 � 3

4 6 � 3

5 7 � 6

2
p
2 2(1 +

p
2) � 4

2
p
3 2(1 +

p
3) � 4

2
p
6 2(1 +

p
6)

Table: The number of walks of length n has growth qS(n) ./ �
conj
S ,

Bostan and Kauers.



Proving the exponential growth.



Isolating the exponential growth

For S with simple drift,

qS(n) � ��n
Sn

�:

We can isolate the exponential growth of qS(n) by taking

lim
n

1

n
log (��n

Sn
�) = lim

n

log �

n
+ lim

n
log �S + lim

n

� logn

n
= log �S:

If we can bound qS(n) by sequences with the same exponential

growth, we can use this technique to prove the value of �S by

squeezing.
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Upper bounds

A good source of upper bounds is a relaxation of the

constraints.

Recall:

* half plane walks have drift dependent results;

* simple drift can be chosen to lie in y-direction only.

Question: What if we consider the class HS with region

H = fy � 0g?
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Relaxing the constraints

It turns out that hS(n) ./ �
conj
S .

Since qS(n) � hS(n),

�S � �
conj
S :



Lower bounds

We consider introducing restrictions to produce lower bounds,

eg. returning to the origin.

$

� � 3 but � � 2
p
2

The same restriction will not work for all cases, so we are forced

into a case analysis.



Lower bounds: the idea

We can insert new steps into old ones to import exponential

growth.

+ ,! + ,!



Lower bounds

We can reduce to 11 base cases, using the following lemma.

Lemma: Let d(j) be the number of Dyck pre�xes of length

j and let q(i) � ��ii�, where � � 0; �; � 2 R+. Then:

q0(n) =
X
i�0

 
n

i

!
q(i) ./ � + 1; (1)

q00(n) =
X
i�0

 
n
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q(i)d(n� i) ./ � + 2: (2)
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Base cases and their children

Base Case Children

None

None

None

None

Table: A list of base cases and their children



The end results.

S � �S S � �S S � �S

� 4 � 4 � 3

� 6 � 8 � 6

3 5 � 3

4 6 � 3

5 7 � 6

2
p
2 2(1 +

p
2) � 4

2
p
3 2(1 +

p
3) � 4

2
p
6 2(1 +

p
6)

Table: Conjectured values are proven, Johnson and Mishna.



Perspective.



Drift with two components: upper bounds

We can apply our methods to the larger family of sets S with

drift in two directions:

eg. 7! :

When producing upper bounds, we must take care in choosing

which boundary to remove.

Let Hy = fy � 0g and Hx = fx � 0g. Then

hx ./ 1 + 2
p
2 but h

y
./ 4:



Drift with two components: lower bounds

For the same example, , our lemma isn't as helpful for

producing lower bounds. Our only choice of step to remove is ,

giving:

which is a trivial QP model.

This just means that this has to be a base case. We are also

working on another approach to build families in this larger

class of sets S.



Generalisations

There are two generalisations to our methods that immediately

come to mind.

Larger Steps Higher Dimensional Regions

Our upper bounds rely on removing a boundary, and our

lemma relies on taking the shu�e product of some walks. These

are not dependent on step size or lattice dimension.



Larger steps
HP walks on steps of any size are enumerated already, and so

this �rst conjecture is low hanging fruit.

Conjecture: Let S be a set of steps of any size, and let QS be

the quarter plane model on S. Then removing the appropriate

boundary will give a half plane model HS with the same

exponential growth as QS.

Conjecture: Let S be a set of steps of any size, and QS be

the quarter plane model on S with exponential growth �S.

Then if s0 is a step of any size not towards a boundary, or

fs1; s2g is a pair of steps of any size with drift not towards a

boundary, we can apply our Lemma to get

� + 1 � �S[fs0g;

� + 2 � �S[fs1;s2g:



Higher dimensional regions

Conjecture: Let S be a set of small steps in Zd, and let OS

be the �rst orthant model on S. Then removing the

appropriate boundary will give a model O+
S with the same

exponential growth as OS

Conjecture: Let S be a set of steps of any size, and OS be

the �rst orthant model on S with exponential growth �S. Then

if s0 is a step of any size not towards a boundary, or fs1; s2g is
a pair of steps of any size with drift not towards a boundary, we

can apply our Lemma to get

� + 1 � �S[fs0g;

� + 2 � �S[fs1;s2g:



Other future endeavours

* Removing case analysis from the method entirely:

producing an automatic, uni�ed method of producing

lower bounds.

* Extending our method to subexponential factors:

understanding the singular structure of the associated

generating functions, classifying singularities.



THANKS FOR LISTENING!
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