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Outline

PART I: Complex numbers and R2

• Complex numbers C; extending the real numbers R

• Rotations in R2 (and Rotations in R3)

• Complex numbers as vectors and rotations in R2

PART II: Quaternions and R3

• Extending C; ‘hyper-complex numbers’ → quaternions

• Quaternions as vectors and rotations in R3

• Some calculations with quaternions

• Quaternions and vector analysis

Quaternions in physics, computer graphics, ...

These slides, and more notes;

www.sfu.ca/∼rpyke --> Presentations --> Quaternions
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PART I: The story of the complex numbers

(starting in the 16th Century)

The ‘problems’ with the real numbers R..... (why do we need ‘more’

numbers?)

Algebra: Extending (enlarging) numbers

Natural numbers N→ Rational numbers Q→ Real numbers R

N ⊂ Q ⊂ R

Roots of equation (solving equations);

(There’s also ‘topological’ reasons for extending Q to R....)
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Factorization Theorem:

Every polynomial p(x) ∈ R(x) (i.e., with real coefficients) can

be factored into linear terms and irreducible quadratic terms;

p(x) = al1(x)l2(x) · · · lk(x)q1(x)q2(x) · · · qm(x)

li(x) linear, qj(x) irreducible quadratic;

q(x) = ax2 + bx + c, b2 − 4ac < 0 ; no roots

We factor polynomials by finding roots;

roots of p(x) ←→ linear factor

So, if there are no roots then are no (linear) factors.

An irreducible quadratic; q(x) = x2 + 1 (cannot be factored)
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q(x) = x2 + 1

Introduce a new number, i, such that q(i) = 0;

q(x) = x2 + 1 = (x + i)(x− i)

But of course, i is not a real number; let’s call it an imaginary number.

So we “add” this new number i to the real numbers. And so all these

other numbers are (automatically) added too;

2i, −i, 1 + 2i, ... (using addition and multiplication)

Complex numbers (denoted by C) are numbers of the form

z = a + ib

where a, b are real numbers, and i is an ’imaginary’ number that

satisfies i2 = −1 (i =
√
−1)

We call a the real part and b the imaginary part

Fundamental Theorem of Algebra:

Every polynomial p(x) ∈ C(x) (and hence in R(x)) has a root,

and hence can be completely factored (into linear terms).

Adding that one new number i has ‘completed’ the real numbers (in

this algebraic sense). Now develop calculus in C... (f : C → C

Complex Variables; Math 322)
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The Geometric Representation of Complex Numbers

(Wessel, Argand, Gauss,... 1799-1830)

The complex plane: Complex numbers as vectors

z = a + ib; ↔ z⃗ = (a, b); (vectors ∼ points in R2)

Vectors? The origins of vector analysis....

A vector is a quantity that describes direction and magnitude

(e.g. displacement, velocity, orientation, ....)

Just numbers (quantitites) was inadequate for a description of Nature

and geometry (Leibniz, 1679, ...)

Adding vectors; the parallelogram law

(beginning with ancient Greeks and common by early 18th century)
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Complex algebra: Addition and multiplication of complex numbers

(2− 3i) + (4 + 5i) =

(2− 3i)(4 + 5i) =

Addition of complex numbers in the complex plane;

Complex numbers behave just like vectors in R2 !

z = a + ib; z⃗ = (a, b)
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Polar form of complex numbers (better for multiplication of complex

numbers...)

z = r(cos θ + i sin θ) = reiθ, r = |z| =
√
a2 + b2

(θ is called the argument of z, |z| is the modulus of z)

Example:

z = 2 + 2
√
3 i

= 4e iπ/3
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Multiplication of complex numbers in polar form:

z = r(cos θ1 + i sin θ1), w = s(cos θ2 + i sin θ2),

r = |z|, s = |w| ; the ’lengths’ of z and w

zw = [r(cos θ1 + i sin θ1)] [s(cos θ2 + i sin θ2)]

= rs{[(cos θ1 cos θ2 − sin θ1 sin θ2]

+ i[cos θ1 sin θ2 + cos θ2 sin θ1]}

= rs(cos(θ1 + θ2) + i sin(θ1 + θ2))

(Remember this! The angle (argument) of the resulting product is

the sum of the two angles)

Complex multiplication is a rotation!

(and a stretching/compression)
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Rotations in 2 dimensions

How to mathematically represent rotations?.....
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Matrices and matrix algebra

A matrix is an array of numbers that represents a function

(or transformation); M : Rn → Rn

Mv or M(v) = w

Example:

M =

 3 −2
4 1

 , v =

 2

−1

 ; Mv =

 3 −2
4 1


 2

−1

 =

 8
7

 = w

M moves v to w (transformation of vectors....)
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Some special transformations;

Dk : R2 → R2 is stretching/compression by k

Rθ : R2 → R2 is rotation counterclockwise by angle θ;

Dk is represented by the matrix Ak =

 k 0

0 k


Rθ is represented by the matrix Mθ =

 cos θ − sin θ

sin θ cos θ



Examples: A2 =

 2 0

0 2

 , Mπ/4 =

 1/
√
2 −1/

√
2

1/
√
2 1/

√
2



Check:

Mπ/4

 1
0

 =

 1/
√
2

1/
√
2



Mπ/4

 1
1

 =

 0√
2



We are interested in the rotation matrices here in this lecture
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Representation of complex numbers as matrices

z = a + ib ; Az =

 a −b
b a



This is a ‘good’ representation of complex numbers as matrices since;

Az1 + Az2 = Az1+z2 (preserves addition)

Az1Az2 = Az1z2 (preserves multiplication)

Examples;

1 ;

 1 0

0 1



i ;

 0 −1
1 0



2 + 3i ;

 2 −3
3 2



z = cos θ + i sin θ = eiθ ;

 cos θ − sin θ

sin θ cos θ

 = Rθ (formerly Mθ)

The last example is an honest to goodness rotation matrix!

That is, we can think of unit complex numbers as rotations in R2
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Summary: Complex numbers as vectors and rotations in

R2

Identification of complex numbers with vectors in R2:

z = a + ib −→ vz = (a, b)

v = (a, b) −→ zv = a + ib

Identification of (unit) complex numbers with rotations in R2:

w = cos θ + i sin θ = eiθ ←→ Aw = Rθ =

 cos θ − sin θ

sin θ cos θ



Representing rotation of vectors with complex multiplication:

v = (a, b), Rθ; ṽ = Rθv (rotate vector v to ṽ)

ṽ = vwz; w = eiθ (the rotation), z = a + ib (the vector)

Multiplication of complex numbers (wz) corre-
sponds to a rotation of the vector (ṽ = vwz)

Composition of rotations in R2 (Rθ2 ◦ Rθ1 =
Rθ2+θ1) corresponds to multiplication of com-
plex numbers (= Aw2w2)
(remember the polar form! r = s = 1)
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PART II: Quaternions and Rotations in 3 dimensions

Rotations in R3 are very complicated!!
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Rotation by 30o about the axis v = (0,1,1);

R =


cos θ −(1/

√
2) sin θ (1/

√
2) sin θ

(1/
√
2) sin θ 1

2 + (1/
√
2) cos θ 1

2 − (1/
√
2) cos θ

(1/
√
2) sin θ 1

2 − (1/
√
2) cos θ 1

2 + (1/
√
2) cos θ



=


0.8660 −0.3536 0.3536

0.3536 0.9330 0.0670

0.3536 0.0670 0.9330



Vector formula for rotation R(θn) of r by θ around (unit) vector n;

R(θn)r = r + (sin θ)(n× r) + 2(sin2
θ

2
)n× (n× r)

(So, don’t necessarily need a matrix to represent a rotation)
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Some facts about rotations in R3

• Every motion of the sphere that keeps the centre fixed is a rotation

about some axis through the centre.

(That is, every rotation about a point is a rotation about an axis!)

• Every rotation can be realized by a sequence of rotations about

three orthogonal axis.

• Any sequence of rotations (about various axis through the origin)

results in a rotation about an axis.
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Composition of rotations results in a rotation

What is the relation between the two rotations (their axis n1,n2 and

angles θ1, θ2) and the axis n3 and angle θ3 of the resultant rotation?

(Rodriques, 1847; Euler, Hamilton,....)

Answer;

cos
θ3
2

= cos
θ1
2
cos

θ2
2
− sin

θ1
2
sin

θ2
2
n1 · n2

sin
θ3
2
n3 = cos

θ1
2
sin

θ2
2
n2 + cos

θ2
2
sin

θ1
2
n1 + sin

θ1
2
sin

θ2
2
n1 × n2

If we seek to represent rotations inR3 by (hyper-
complex) numbers, a complicated multiplication
rule is needed....
(since these numbers will represent rotations, and their products will

represent the composition of rotations)
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Quaternions: Extending C ?

Why? C is algebraically and topologically closed...

But what about vectors and rotations in R3? Are there ‘numbers’

that can represent those?

Will these new numbers still enjoy the properties of distribution,

associativity, commutativity?....

Hamilton (1847): Is there a 3-dimensional version of complex

numbers? Add another imaginary number j;

q = a + ib + jc, a, b, c ∈ R, i2 = j2 = −1

But ij = ??

!!! Add a fourth imaginary number k ;

q = q = a + ib + jc + kd, a, b, c, d ∈ R, i2 = j2 = k2 = 1

These numbers, quaternions, is the ‘only’ way to extend the complex

numbers (Frobenius’ Theorem, 1878). But there are octonions....

So, not only did the introduction of j and k lead to a ‘good’ ex-

tension of C, it was (later) realized that they (the quaternions) also

represented rotations in R3
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Quaternions

Hamilton’s algebraic approach to quaternions:

Quaternions (denoted by H) are numbers of the form

q = a + ib + jc + kd

= [a, v] where v = ib + jc + kd = (b, c, d), notation!

where a, b, c, d are real numbers, and the i, j,k are ’imaginary’ num-

bers that satisfy the following multiplication rules;

i2 = j2 = k2 = −1
ij = k, ji = −k
ki = j, ik = −j
jk = i, kj = −i

a is the real part and v is the imaginary part of the quaternion.

Note the similarity with the cross product ; i× j = k, etc

Example

If q = 4 + 6i + 8j + 9k and p = 3 + 2i + 6j + 7k, then

qp = −111 + 28i + 24j + 75k, pq = −111 + 24i + 72j + 35k

and

p + q = q + p = 7 + 8i + 14j + 16k

More generally, if q = [a,v], p = [α,w], then

qp = [aα− v ·w, aw + αv + v ×w]

We see that H is not commutative!! (but it is associative)

20



Inverses and the non-cummutativity of quaternions

The conjugate of q = a + ib + jc + kd is

q̄ = a− ib− jc− kd

The norm (or modulus) |q| of q is

|q|2 = a2 + b2 + c2 + d2

If q ̸= 0, then the inverse of q is defined as,

q−1 =
q̄

|q|2

in the sense that

q q−1 = q−1q = 1

BUT, the expression
p

q
is ambiguous because of the non-communtabilty

of quaternion multiplication!

p

q
= p q−1 OR q−1p (similar as for matrices.....)

Stoke’s / Cayley’s notation;

p q−1 = p
q = p/q =

q−1p = q\p =
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Tait’s geometric approach to quaternions

For (Peter Guthrie) Tait, a quaternion q was a ‘ratio’ of two 3 di-

mensional vectors v,w ∈ R3;

q = “
v

w
”

By which we mean

v = qw

That is, q ‘changes’ w into v.

How does one change one vector into another?

First, there is a scaling (length of v vs length of w).

Then, there is a rotation.

How many parameters are needed to accomplish this (in 3 dimen-

sions)?
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Review

Complex numbers as vectors and rotations in R2

Identification of complex numbers with vectors in R2:

z = a + ib −→ vz = (a, b)

v = (a, b) −→ zv = a + ib

Identification of (unit) complex numbers with rotations in R2:

w = cos θ + i sin θ = eiθ ←→ Aw = Rθ =

 cos θ − sin θ

sin θ cos θ



Representing rotation of vectors with complex multiplication:

v = (a, b), Rθ; ṽ = Rθv (rotate vector v to ṽ)

ṽ = vwz; w = eiθ, z = a + ib

Multiplication of complex numbers (wz) corresponds to a rotation of the vector

(ṽ = vwz)

Composition of rotations in R2 (Rθ2 ◦Rθ1 = Rθ2+θ1) corresponds to

multiplication of complex numbers (= Aw2w2)
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Quaternions as vectors and rotations in R3

Identification of (pure) quaternions with vectors in R3:

q = ib + jc + kd = [0,v] −→ vq = (b, c, d)

v = (b, c, d) −→ qv = ib + jc + kd = [0,v]

Identification of (unit) quaternions with rotations R3:

R = R(n, θ) is rotation about the unit vector n = (n1, n2, n3) by

angle θ. This rotation is represented by the unit quaternion pR;

pR = cos
θ

2
+ n1 sin

θ

2
i + n2 sin

θ

2
j + n3 sin

θ

2
k

which we write more compactly as

pR = [ cos
θ

2
, n sin

θ

2
]

Conversely, any unit quaternion (and these can always be written as

[ cos 1
2θ, n sin 1

2θ ], ∥n∥ = 1 ), represents a rotation in R3 (given by

n and θ).

Representing rotation of vectors with quaternion multiplication:

If v̄ = Rv, then qv̄ is given by;

qv̄ = [0, v̄] = (pR) qv (pR)
−1

where (pR)
−1 = [cos 1

2θ, −n sin 1
2θ].

⋆ ⋆ ⋆ Composition of rotations in R3 corresponds to multiplication

of quaternions; pR1R2 = (pR1) (pR2)
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Some example computations with quaternions

Quaternion multiplication replicates rotation of vectors

Use quaternion multiplication to determine the vector r̄ that

is rotation of the vector r = (1, 1, 1) around the axis v = (0, 1, 1)

by the angle θ

Solution:

Let r̂ = ( 1√
3
, 1√

3
, 1√

3
), v̂ = (0, 1√

2
, 1√

2
).

pR = [cos
θ

2
, r̂ sin

θ

2
] = cos

θ

2
+ 0i+

1√
2
sin

θ

2
j+

1√
2
sin

θ

2
k

(pR)
−1 = [cos

θ

2
, −r̂ sin θ

2
] = cos

θ

2
+ 0i− 1√

2
sin

θ

2
j− 1√

2
sin

θ

2
k

qr̂ = [0, r̂] = 0 +
1√
3
i+

1√
3
j+

1√
3
k

pRqr̂ = − 2√
6
sin

θ

2
+

1√
3
cos

θ

2
i+ (

1√
3
cos

θ

2
+

1√
6
sin

θ

2
)j+ (

1√
3
cos

θ

2
− 1√

6
sin

θ

2
)k

pRqr̂(pR)
−1 = 0 + (

1√
3
cos2

θ

2
− 2√

12
sin2 θ

2
)i+ (

2√
12

sin2 θ

2
+

1√
3
cos2

θ

2
+

2√
6
cos

θ

2
sin

θ

2
)j

+(
2√
12

sin2 θ

2
+

1√
3
cos2

θ

2
− 2√

6
cos

θ

2
sin

θ

2
)k

= 0 +
1√
3
cos θi+ (

1√
3
+

1√
6
sin θ)j+ (

1√
3
− 1√

6
sin θ)k

So the (normalized) axis of rotation of the quaternion pRqr̂(pR)
−1 is

ˆ̄r = (
1√
3
cos θ, (

1√
3
+

1√
6
sin θ), (

1√
3
− 1√

6
sin θ))

We regain the rotated vector; r̄ =
√
3 ˆ̄r = (cos θ, 1 + 1√

2
sin θ, 1− 1√

2
sin θ).

We verify this via matrix multiplication;

[T ]r =

 cos θ −(1/
√
2) sin θ (1/

√
2) sin θ

(1/
√
2) sin θ (1 + cos θ)/2 (1− cos θ)/2

−(1/
√
2) sin θ (1− cos θ)/2 (1 + cos θ)/2


 1
1
1

 =


cos θ

1√
2
sin θ + 1

− 1√
2
sin θ + 1


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Quaternion multiplication corresponds to composition

of rotations

Let R1 be rotation around the x-axis by 90o, R2 be rotation

around the y-axis by 90o, and r = (1, 1, 0).

(a) Find the matrix R of the composition R2R1 (that is, rotate

about x-axis then rotate about y-axis). Compute Rr.

(b) Find the quaternions q1 and q2 associated to the rotations

R1 and R2 respectively. Then compute q2q1.

(c) Compute (q2q1)qr(q2q1)
−1 and confirm that this agrees with

your answer above for Rr.

(a) R =

 0 0 1
0 1 0
−1 0 0


 1 0 0
0 0 −1
0 1 0

 =

 0 1 0
0 0 −1
−1 0 0

 , Rr =

 1
0
−1



(b) q1 = [
1√
2
,

1√
2
(1, 0, 0)], q2 = [

1√
2
,

1√
2
(0, 1, 0)], q2q1 = [

1

2
,
1

2
(1, 1,−1)]

Note that q2q1 =

[
1

2
,

√
3

2

(
1√
3
,
1√
3
,− 1√

3

)]
which corresponds to rotation around n =(

1√
3
, 1√

3
,− 1√

3

)
by 120o.

(c) Recall (see p.75 Altman) the formula for rotation R(θn) of r by θ around (unit)
vector n;

R(θn)r = r+ (sin θ)(n× r) + 2(sin2 θ

2
)n× (n× r)

Taking θ = 120o and n =
(

1√
3
, 1√

3
,− 1√

3

)
, we compute

n× r =

(
1√
3
,− 1√

3
, 0

)

n× (n× r) =
(
−1

3
,−1

3
,−2

3

)
r+ (sin θ)(n× r) + 2(sin2 θ

2
)n× (n× r) = (1, 1, 0) + (

1

2
,−1

2
, 0) + (−1

2
,−1

2
,−1) = (1, 0,−1)
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This corroborates that our answer in (b) is the correct rotation quaternion. We verify;

q2q1 =

[
1

2
,

√
3

2

(
1√
3
,
1√
3
,− 1√

3

)]

(q2q1)
−1 =

[
1

2
,

√
3

2

(
− 1√

3
,− 1√

3
,
1√
3

)]
qr = [0, (1, 1, 0)]

(q2q1)qr = [−1, (1, 0, 0)]
(q2q1)qr(q2q1)

−1 = [0, (1, 0,−1)]

Miscellaneous calculations

(1) Let v be a unit vector in R3 and r another vector.

The (unit) quaternion qv = [0,v] represents both the vector v and

the rotation about v by π. Let r̄ be rotation of r about this v by π.

Show that the vector r̄ in the pure quaternion qr̄ = [0, r̄] defined

by the conjugation

qr̄ = [0, r̄] = qvqrq
−1
v

is the reflection of r through v in the plane P = span{v, r}, which
is precisely the same as rotation of r about v by π. (Make a sketch!)

Answer:

qvqrq
−1
v = [0,v][0, r][0,−v]

[0,v][r · v,v × r]

= [−v · (v × r), (r · v)v + v × (v × r)]

= [0, (r · v)v + v × (v × r)] since v × r is ⊥ to v

= [0, projvr+ v × (v × r)]

Now, v × (v × r) lies in the plane P and is orthogonal to v. Make a sketch of these vectors to see
that the sum projvr+ v × (v × r) is just the reflection of r across the line spanv.
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(2) Find an expression for qvqrq
−1
v for arbitrary quaternions, i.e.,

qv = [a,v], qr = [b, r].

Answer:

qvqrq
−1
v =

=
1

a2 + |v|2
[a,v] [b, r] [a,−v]

=
1

a2 + |v|2
[a,v][ba+ r · v, ar− bv + v × r]

=
1

a2 + |v|2
[a(r · v) + ba2 − a(v · r) + bv · v − v · (v × r),

a2r− (ab)v + a(v × r) + (ab)v + (r · v)v + a(v × r)− b(v × v) + v × (v × r)]

=
1

a2 + |v|2
[ ba2 + bv · v, a2r+ 2a(v × r) + (r · v)v + v × (v × r)]

This agrees with the vector formula for rotation R(θn) of r by θ around (unit) vector n (that is,
when a = cos θ

2 , b = 0,v = sin θ
2n);

R(θn)r = r+ (sin θ)(n× r) + 2(sin2
θ

2
)n× (n× r)

Our formula above reads

[0, cos2
θ

2
r+ 2 cos

θ

2
sin

θ

2
(n× r) + sin2

θ

2
(r · n)n+ sin2

θ

2
n× (n× r)]

Re-writing the vector part as;

cos2
θ

2
r+ sin2

θ

2
((n× r)× n+ (r · n)n) +

sin θ(n× r) + 2 sin2
θ

2
n× (n× r)

Now use that
(n× r)× n+ (r · n)n = r
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The struggle of vector analysis; 1850 - 1900

“I believe that a struggle for existence is just commencing be-

tween the different methods and notations of multiple algebra,

especially between the ideas of Grassman and of Hamilton”

W. Gibbs, 1888.

Vectors/Matrices Quaternions

(linear algebra)

Gibbs (1839-1903 US) Hamilton (1805-1865 Ireland)

Heaviside (1850-1925 England) Tait (1831-1901 Scotland)

Grassman (1809-1877 Germany) B. Peirce (1809-1880 US)

Maxwell (1831-1879 Scotland) Maxwell

... ...

Some differences:

The ’vector product’ × is not associative, but quaternion multi-

plication is (both are non-commutative).
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Vector analysis with Quaternions

v(t) = (v1(t), v2(t), v3(t)) : R→ R3,

q(t) = qv(t) = [0,v(t)] = v1(t)i + v2(t)j + v3(t)k : R→ H;

then
d

dt
qv(t) = q̇v = qv̇(t), v̇(t) = (v̇1(t), v̇2(t), v̇3(t))

d2

dt2
qv(t) = q̈v = qv̈(t), v̈(t) = (v̈1(t), v̈2(t), v̈3(t))

Cross product/ dot product: v,w ∈ R3; qv = [0,v], qw = [0,w]

qv×w = [0,v ×w] =
1

2
(qvqw − qwqv) ≡

1

2
[ qvqw ]

qv·w = [v ·w,0] = −qvqw −
1

2
[qvqw]

Newton’s equations; F = ma;

qF = mqa = mq̈v

Rigid body dynamics; dL
dt = τ = r× F;

q̇L = qτ =
1

2
[qrqF]

Divergence/Curl: q(x, y, z) = [0, V(x, y, z)]; quaternion field

Quaternion ‘divergence’ operator; Q∇ = [ 0, ∇ ]

Q∇ q = [−∇ ·V, ∇×V ]

Maxwell’s equations: qE = [0,E], qB = [0,B], qρ = [ρ, 0];

Q∇ qE = −qρ − q̇B

And more..... quaternionic Julia and Mandelbrot sets!
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