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PART I: Complex numbers and R?

e Complex numbers C; extending the real numbers R
e Rotations in R* (and Rotations in R?)

e Complex numbers as vectors and rotations in R?

PART II: Quaternions and R?

e [Extending C; ‘hyper-complex numbers’ — quaternions
e (Quaternions as vectors and rotations in R?
e Some calculations with quaternions

e (uaternions and vector analysis
Quaternions in physics, computer graphics, ...

These slides, and more notes;
www.sfu.ca/~rpyke --> Presentations --> Quaternions



PART I.  The story of the complex numbers
(starting in the 16th Century)

The ‘problems’ with the real numbers R..... (why do we need ‘more’
numbers?)

Algebra: Extending (enlarging) numbers

Natural numbers N — Rational numbers Q — Real numbers R
NcCcQCCR
Roots of equation (solving equations);

(There’s also ‘topological” reasons for extending Q to R.....)
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Factorization Theorem:

FEvery polynomial p(x) € R(x) (i.e., with real coefficients) can
be factored into linear terms and irreducible quadratic terms;

p(x) = ali(@)la(x) - - - k(7)1 () qa(2) - - - g ()
li(x) linear, g;(x) irreducible quadratic;

q(z) = ar*+bxr +c, b¥*—4dac<0; 1o roots

We factor polynomials by finding roots;
roots of p(z) <— linear factor

So, if there are no roots then are no (linear) factors.

An irreducible quadratic; ¢(z) = z*+ 1 (cannot be factored)



q(z) = 2* +1

Introduce a new number, 4, such that ¢(i) = 0;
qz) =2+ 1= (x+1)(z — 1)

But of course, 7 is not a real number; let’s call it an imaginary number.

So we “add” this new number ¢ to the real numbers. And so all these
other numbers are (automatically) added too;

20, —1, 1421, ... (using addition and multiplication)

Complex numbers (denoted by C) are numbers of the form
z=a+1b

where a, b are real numbers, and i is an 'imaginary’ number that

satisfies i’ = —1 (i=/—1)

We call a the real part and b the imaginary part

Fundamental Theorem of Algebra:

FEvery polynomial p(x) € C(x) (and hence in R(x)) has a root,
and hence can be completely factored (into linear terms).

Adding that one new number ¢ has ‘completed’ the real numbers (in
this algebraic sense). Now develop calculus in C... (f : C — C
Complex Variables; Math 322)



The Geometric Representation of Complex Numbers
(Wessel, Argand, Gauss,... 1799-1830)

The complex plane: Complex numbers as vectors

z=a+ib; « Z=(a,b); (vectors ~ points in R?)

Vectors? The origins of vector analysis....

A vector is a quantity that describes direction and magnitude

(e.g. displacement, velocity, orientation, ....)
Just numbers (quantitites) was inadequate for a description of Nature
and geometry (Leibniz, 1679, ...)

Adding vectors; the parallelogram law
(beginning with ancient Greeks and common by early 18th century)



Complex algebra: Addition and multiplication of complex numbers

(2—3i)+(44+51) =

(2 —3i)(4+5i) =

Addition of complex numbers in the complex plane;

Complex numbers behave just like vectors in R?!

z=a+1ib; Z=(a,b)



Polar form of complex numbers (better for multiplication of complex
numbers...)

z =(a,b)

|| - .
+b=|z| sinB

|
|

S

v
x

a=|z|cos 6

z=r(cosf +isinf) = re?, r=|z| =+Va®+ b

(0 is called the argument of z, |z| is the modulus of z)

Example:

z = 24 2V3i
46i7r/3



Multiplication of complex numbers in polar form:

z=r(cosbth +isinf), w = s(cosby+ isinbs),
r=|z|, s=|wl|; the lengths’ of z and w

zw = [r(cosfy + isin6)] [s(cos by + isinhy)]

= rs{|(cos 0y cos Oy — sin Oy sin O]
+  4[cos by sin Oy 4 cos Oy sin Oy }

= rs(cos(0y + 62) + isin(0; + 6-))

(Remember this! The angle (argument) of the resulting product is
the sum of the two angles)

Complex multiplication is a rotation!
(and a stretching/compression)
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Rotations in 2 dimensions

How to mathematically represent rotations?.....
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Matrices and matrix algebra

A matrix is an array of numbers that represents a function
(or transformation); M : R" — R"

Mv or M(v) = w

Example:
3 —2 2 3 —2 2
M_LL S —1]’MV 4 1”—1]_{

M moves v to w (transformation of vectors....)

11



Some special transformations;

D;. : R? — R? is stretching/compression by k
Ry : R? — R? is rotation counterclockwise by angle ;

E 0
0 k

cosf —sinb

Dy, is represented by the matrix Ay = {

Ry is represented by the matrix My =

sinf  cos®

i e[ [0

Check:

We are interested in the rotation matrices here in this lecture
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Representation of complex numbers as matrices

a —b

2 = a+1b; A, =
b «a

This is a ‘good’ representation of complex numbers as matrices since;

A, + A, = A, 4., (preserves addition)

A A, = A, (preserves multiplication)
Examples;
o
1 .
10 1
2|0 -1
110
o _a
2 ;
+ 31 3 2
2z = cosf+isinf = e ; cosf —sinb _ Ry (formerly Mpy)
- B " sing@  cos@| e

The last example is an honest to goodness rotation matrix!
That is, we can think of unit complex numbers as rotations in R?
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Summary: Complex numbers as vectors and rotations in

R2

Identification of complex numbers with vectors in R?:

z=a+ib — v,=(a,b)
v=(a,b) — zy=a+ib

Identification of (unit) complex numbers with rotations in R?:

0 cosf) —sinf

w=cosh+isinf =e’ = A,=Ry =

sinf  cos0

Representing rotation of vectors with complex multiplication:

v = (a,b), Rp; v = Ryv (rotate vector v to v)

V=vu.,;, w=¢e" (therotation), z =a+ib (the vector)

Multiplication of complex numbers (wz) corre-
sponds to a rotation of the vector (v = wvy;)

Composition of rotations in R’ (R@2 o R@l —
Ry, 1p,) corresponds to multiplication of com-

plex numbers (= Ayuw,)
(remember the polar form! r = s = 1)

14



PART II: Quaternions and Rotations in 3 dimensions

Rotations in R? are very complicated!!

=]

Rotation about the positive
x-axis through an angle #

L A

| 0 0
0 cosf) —sinf
0 sin @ cosf

Rotation about the positive

cos# 0 siné
. o 1 0
y-axis through an angle ¢ —sin@ 0 cosf

—sinf 0
Rotation about the positive :::g z:)s 6 0
z-axis through an angle 6

0 0 |
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Rotation by 30° about the axis v = (0,1,1);

cos 6 —(1/+/2)sin 6 (1/4/2)sin 6
R = | (1/v2)sinf L+ (1/v2)cos 35— (1/v/2)cosb
| (1/v2)sing 3 —(1/v/2)cos 5+ (1/v/2)cosd

0.8660 —0.3536  0.3536
= 0.3536  0.9330  0.0670
0.3536  0.0670  0.9330

Vector formula for rotation R(6n) of r by 6 around (unit) vector n;
0
R(fn)r = r+ (sind)(n x r) + 2(sin* 2)n X (n xr)

(So, don’t necessarily need a matrix to represent a rotation)
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Some facts about rotations in R?

e Every motion of the sphere that keeps the centre fixed is a rotation

about some axis through the centre.
(That is, every rotation about a point is a rotation about an axis!)

Cl

e Every rotation can be realized by a sequence of rotations about
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e Any sequence of rotations (about various axis through the origin)

results in a rotation about an axis.
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Composition of rotations results in a rotation

What is the relation between the two rotations (their axis ny, ng and
angles 01, 6) and the axis ng and angle 03 of the resultant rotation?
(Rodriques, 1847; Euler, Hamilton,....)

Answer:
05 01 0 . 01 . O
COS— = COS— COS— — 8ln — sin —ny - Ny
9 9 "9 27 9
.03 @1.92+ 92.91+.01.92X
SIn —n = COS—SIn—1m COS—SsIn —nm SInn — S1n —n n
99 9" 9 ? o> gt I R

If we seek to represent rotations in R> by (hyper-
complex) numbers, a complicated multiplication

rule is needed....
(since these numbers will represent rotations, and their products will
represent the composition of rotations)
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Quaternions: Extending C 7

Why? C is algebraically and topologically closed...

But what about vectors and rotations in R3? Are there ‘numbers’
that can represent those?

Will these new numbers still enjoy the properties of distribution,
associativity, commutativity?....

Hamilton (1847): Is there a 3-dimensional version of complex
numbers? Add another imaginary number j;

g=a+ib+jc, abceR, P=j=—1
But ij = 77

" Add a fourth imaginary number k;
g=qg=a+ib+jc+kd, abc,deR, *=j7=k*=1

These numbers, quaternions, is the ‘only’” way to extend the complex
numbers (Frobenius” Theorem, 1878). But there are octonions....

So, not only did the introduction of j and k lead to a ‘good’ ex-
tension of C, it was (later) realized that they (the quaternions) also
represented rotations in R

19



Quaternions

Hamilton’s algebraic approach to quaternions:

Quaternions (denoted by H) are numbers of the form

qg = a-+ib+ jc+ kd
= la, v] where v=1ib+jc+kd = (b,c,d), notation!

where a, b, ¢, d are real numbers, and the i, j, k are 'imaginary’ num-
bers that satisfy the following multiplication rules;

2 = 2-K2=—1

ij = k, ji=—-k

ki = j, ik=—]

jk =1, kj=—i
a is the real part and v is the imaginary part of the quaternion.
Note the similarity with the cross product; i x j =k, etc

Example

Ifq=44+6i+8+9% and p=3+2i+6j+ 7k, then
gp = —111 + 28i + 24j + 75k, pq = —111 + 24i + 72j + 35k

and
pt+q=q+p="7+8+ 14 + 16k

More generally, if ¢ = |a,v], p=[a, W], then

qp = lac — v - W, aw + av + Vv X W]

We see that H is not commutative!! (but it is associative)

20



Inverses and the non-cummutativity of quaternions

The conjugate of ¢ = a + 1b + jc + kd is
g=a—ib— jc—kd
The norm (or modulus) |q| of ¢ is

q|* = a® + b° + & + &

If ¢ # 0, then the inverse of ¢ is defined as,

- q
q 1:72

in the sense that

BUT, the expression Pis ambiguous because of the non-communtabilty

of quaternion multiplication!

q

b pgt OR ¢ p (similar as for matrices.....)

Stoke’s / Cayley’s notation;

pg ="t =plg =

¢ 'p = q\p =

21



Tait’s geometric approach to quaternions

For (Peter Guthrie) Tait, a quaternion ¢ was a ‘ratio’ of two 3 di-
mensional vectors v, w € R?;

By which we mean
V = qW

That is, ¢ ‘changes” w into v.
How does one change one vector into another?
First, there is a scaling (length of v vs length of w).

Then, there is a rotation.

How many parameters are needed to accomplish this (in 3 dimen-
sions)?

22



Review

Complex numbers as vectors and rotations in R?

Identification of complex numbers with vectors in R?:

z=a+ib — v,=(a,b)

v=(a,b) — 2zy=a+ib

Identification of (unit) complex numbers with rotations in R?:

0 cosf) —sind

w=cosO+isinf=e" +«— A,=Ry =

| —

sinf  cosd

Representing rotation of vectors with complex multiplication:

v = (a,b), Ryp; Vv = Ryv (rotate vector v to v)

V=V, w=e", z=a+1b

Multiplication of complex numbers (wz) corresponds to a rotation of the vector

(V= vy,)

Composition of rotations in R? (R92 o Ry, = R92+91) corresponds to

multiplication of complex numbers (= Ay, )
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Quaternions as vectors and rotations in R’

Identification of (pure) quaternions with vectors in R?:

q=1ib+jc+kd = [0,v] — v,=(b,c,d)
v=(bc,d — g¢gy=1b+jc+kd=0,V]

Identification of (unit) quaternions with rotations R?:

R = R(n,0) is rotation about the unit vector n = (ny, ns, ng) by
angle 6. This rotation is represented by the unit quaternion pg;

0 0 0 0

—cos—+nysin—1+nygsin—j+ n3sin —k
PR 9 1 5 2 2J 3 9

which we write more compactly as

0 0

PR = [0082, n81n2]

Conversely, any unit quaternion (and these can always be written as
[cos 30, nsinif], ||n| =1), represents a rotation in R? (given by

n and 6).

Representing rotation of vectors with quaternion multiplication:

If v = Rv, then ¢y is given by;

g = [0, V] = (pr)av (pr) ™"

where (pg)~! = [cos 20, —nsin 16)].

x % x Composition of rotations in R® corresponds to multiplication
of quaternions;  pr,r, = (Pr,) (PR,)
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Olinde Rodrigues’ Paper of 1840
on Transformation Groups

JEREMY J. GRAY

Communicated by M. KLINE

In this article I wish to draw attention to a paper of OLINDE RODRIGUES
which has been almost forgotten, and which is perhaps the first treatment of the
subject of groups of motions. | shall proceed by discussing (1) The Contents, (2)
The Context, and (3) The Significance of the paper.

1. The Contents of RODRIGUES’s paper

In 1840 OLINDE RODRIGUES (1794-1851) published “Des lois géométrigues
qui régissent les déplacements d'un systéme solide dans Tespace, et de la variation
des coordonnées provenant de ces déplacements considérés indépendamment des
causes qui peuvent les produire” in LIOUVILLE’s Journal de Mathématiques,
Volume 5. 380-440.

It 1s this paper which will be discussed. In it, as the title indicates, he studied
the motions (déplacements) of a rigid body (systéme solide) in three dimen-
sional space independently of any dynamical considerations. He began by giving
a complete description of motions in synthetic terms, establishing successively
that a body is fixed in space once three non-collinear points have been
determined; that if two points are fixed the motion is a rotation about an axis
through those points; that translations when composed give a translation which
is independent of the order of composition and can be found by the ‘loi du
polygone des translations’ (p.383) and that a translation is equal to an in-
finitesimal rotation about an axis perpendicular to the direction of the trans-
lation but situated at an infinite distance. RODRIGUES described the resultant as
a rotation ‘d'une amplitude infiniment petite autour d’un axe fixe infiniment
éloigné et normal a la direction de cette translation’ (p. 381). This last observation
allowed him to consider translations as a special class of infinitesimal rotations.

Archive for History of the FExact Sciences, Vol 21, 1980
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Some example computations with quaternions

Quaternion multiplication replicates rotation of vectors

Use quaternion multiplication to determine the vector r that
is rotation of the vector r = (1,1,1) around the azis v = (0,1,1)
by the angle 0

Solution:
111 N 11
Let r = (73, V3 %), vV = (0, V2 ﬁ)
| 0 . . 0] 0+0,+ 1 0. L 1 9k
= J[cos =, rsin=] = cos—= + 0i sm sin
0 0 0 1 0 1 0
(pr)! = [COSQ’ —f'sini] = cos§+0i \/Esm —j— \/§Sin§k
0, 1] 0+ ! i+ ! j + ! k
r = , T = —=1 5 5
! NERRVERE
2 ,9+1 0,+(1 9+1 ,0),+(1 0 1 'Q)k
s = ———=sin-+ —=cos =i+ (—=cos - + —=sin - —— o8 = — —=sin =
Prd V62T BT T T T N T T e T 2
5 0 2 L0, 2 0 . 0

1 2 0
—1 <92 2 . .
& = 0+ (—=cos” = — sin® —)i + sin“ — + —— cos” — + — cos — sin —
Prds (Pr) (B g~ ym i T (s g T g eos g 7 5 v g sin gl

H—= +—= - - — k
(\/_281n 5 \/gcos 5 \/600528111 )
1 1
= 0+ cos 0i + sinf)j + — —sinf)k
TR (gt i+ (g = g
So the (normalized) axis of rotation of the quaternion prg:(pg)~" is
= (zcost, (- ), (= 0)
cos sin sin
70 (54 5 (5= 75
We regain the rotated vector; T = /3t = (cosf, 1+ f sinfd, 1 — \/5 sin 6).
We verify this via matrix multiplication;
cos 0 —(1/3/2)sinf (1/y/2)sin6 1 cos
[Tlr = | (1/v2)sinf (1+cosb)/2 (1 —cos)/2 = | Jzsinf+1
—(1/v/2)sinf (1 —cosf)/2 (14 cosf)/2 —%sin@—kl
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Quaternion multiplication corresponds to composition
of rotations

Let Ry be rotation around the x-axis by 90°, Ry be rotation
around the y-azis by 90°, and r = (1, 1,0).

(a) Find the matriz R of the composition RyRy (that is, rotate
about x-axis then rotate about y-axis). Compute Rr.

(b) Find the quaternions q; and qs associated to the rotations
Ry and Ry respectively. Then compute qoq;.

(c) Compute (q2q1)qe(q2q1) ™t and confirm that this agrees with
your answer above for Rr.

0O 0 1 1 0 0 0o 1 0 1
(a) R= 0O 1 0 0 0 —-1] = 0 0 -1, Rr= 0
-1 0 O 0O 1 0 -1 0 0 -1
0) a1 =55 =(LO0L @ =[7=, =010 =[5 5111
q1 = \/— \/— y Q2 = \/57 2 P q2q1 = 272 5 Ly
1 1 1 1
Note that ¢goqq = | =, \/_ —, , which corresponds to rotation around n =
2 V3 V3 V3
1 1 1 o
(Y0 s —7a) by 1207

(c) Recall (see p.75 Altman) the formula for rotation R(fn) of r by § around (unit)
vector n;

R(n)r = r+ (sinf)(n x r) + 2(sin? Z)n X (nxr)

Taking 0 = 120° and n = (%, %, —%), we compute

1 1

X - 77_770

e <\/§ \/5)

1 1 2

nx(nxr) = <—,—,—>

33 3

1 1 1 1
r+(sin9)(nxr)+2(sin22)nx(nxr) = (1,1,0)4—(5,—5,0)—#(—57—5, 1) (1,0,

27



This corroborates that our answer in (b) is the correct rotation quaternion. We verify;

1 V31 1 1
QR = l2, 5 <3,3,—3>]
. 1 V3 1 1 1
(q2q1) = [2, 5 (—3,—373”
¢ = [0,(1,1,0)]
(2¢)g = [—1,(1,0,0)]
(201)q:(@21) ™" = [0,(1,0,—1)]

Miscellaneous calculations

(1) Let v be a unit vector in R? and r another vector.

The (unit) quaternion ¢, = [0, v] represents both the vector v and
the rotation about v by 7. Let r be rotation of r about this v by .

Show that the vector T in the pure quaternion ¢z = [0, T| defined
by the conjugation

¢ = [0,7] = ¢veqy”

is the reflection of r through v in the plane P = span{v,r}, which
is precisely the same as rotation of r about v by 7. (Make a sketch!)

Answer:

][0, x][0, =]

QVQI‘C];1 = v
,v][r-v,v Xr]
V-

(vxr), (r-v)v+vx(vxr)]

0, (r-v)v+vx(vxr) sincevxris L tov

[0
[0
= [-
[
[0, proj,r+ v x (v Xxr)]

Now, v x (v x r) lies in the plane P and is orthogonal to v. Make a sketch of these vectors to see
that the sum proj,r+ v X (v x r) is just the reflection of r across the line spany.
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(2) Find an expression for ¢yqrqy ! for arbitrary quaternions, i.e.,
Qv — [CL,V},C]I‘ — [b7 I'}.
Answer:

Wl =

1

— m[a,v] [b,r] [a, —V]
1

- m[a,V][ba+r-v, ar —bv + v X r]
1

- m[a(r'V)‘i‘baz—a(v-r)+bv~v—v-(v><r),
a2r—(ab)v+a(v><r)—|—(ab)v+(r.v)v+a(vxr)_b(VXV)+VX(er)]
1

= m[bcﬂ—i—bvv, a2r+2a(vxr)+(r.v)v+vx(VXI.)]

a v

This agrees with the vector formula for rotation R(fn) of r by 6 around (unit) vector n (that is,
when a = cosg,b =0,v= singn);

R(fn)r = r+ (sinf)(n x r) 4 2(sin? g)n X (nxr)

Our formula above reads

50

2 inx(nxr)]

6 6 . 60 6
[0, cos or+ 2 cos — sin i(n X r) + sin? i(r ‘n)n + sin

2

Re-writing the vector part as;

6 0
cos? oF + sin? 5((n Xr)xn+(r-nn)+
0
sinf(n x r) + 2sin? gh % (nxr)

Now use that
(mxr)xn+(r-nn=r

29



The struggle of vector analysis; 1850 - 1900

“I believe that a struggle for existence is just commencing be-
tween the different methods and notations of multiple algebra,

especially between the ideas of Grassman and of Hamilton”
W. Gibbs, 1888.

Vectors/Matrices Quaternions
(linear algebra)

Gibbs (1839-1903 US) Hamilton (1805-1865 Ireland)
Heaviside (1850-1925 England) | Tait (1831-1901 Scotland)
Grassman (1809-1877 Germany) | B. Peirce (1809-1880 US)

Maxwell (1831-1879 Scotland) Maxwell

Some differences:

The 'vector product’ X is not associative, but quaternion multi-
plication is (both are non-commutative).
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Vector analysis with Quaternions

Gy, V(E) = (01(F), 02(t), 03(t))

—
—~
D
=
&\
~
e
<
=
|
a)
<
I

et = v = G, V(t) = (01(2), va(t), U3(t))

Cross product/ dot product: v, w € R?* ¢, = [0,V], qw = [0, W]

1 1
Qvxw = [O,V X W] - i (QVQW - QWQV> = Q[QVQW]
1
Gvw = [V W, 0] = —qvGw — S[avaw]
Newton’s equations; F = ma;
gF = Mga = My
Rigid body dynamics; % = 17=r X F;
, 1
qL = ¢- = ;|¢:qr]

Divergence/Curl:  q(z,y,2) = [0, V(x,y,2)]; quaternion field
Quaternion ‘divergence’ operator; Qv = [0, V]

qu: [_V'Vv V XV]
Maxwell’s equations: qg = [0, E], g = [0, B], qy = 1p, 0];

Qvae = —q, — gB

And more..... quaternionic Julia and Mandelbrot sets!
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Michael J. Crowe

AHISTORY O

VECTOR

ANALYSI

4

The Evolufion
of the ldea of a
Vectorial System

A HISTORY OF
VECTOR ANALYSIS

Michael J. Crowe

On October 16, 1843, Sir William Rowan Hamilton discovered quaternions and, on
the very same day, presented his breakthrough to the Royal Irish Academy
Meanwhile, in a less dramatic style, a German high school teacher, Hermann
Grassmann, was developing another vectorial system involving hypercomplex
numbers comparable to quaternions. The creations of these two mathematicians
led to other vectorial systems, most notably, the system of vector analysis
formulated by Josiah Willard Gibbs and Oliver Heaviside and now almost
universally employed in mathematics, physics, and engineering. Yet the Gibbs-
Heaviside system won acceptance only after decades of debate and controversy in
the latter half of the nineteenth century concerning which of the competing systems
offered the greatest advantages for mathematical pedagogy and practice.

This volume, the first large-scale study of the development of vectorial systems,
traces the rise of the vector concept from the discovery of complex numbers
through the systems of hypercomplex numbers created by Hamilton and Grass-
mann to the final acceptance around 1910 of the modern system of vector analysis.
Professor Michael J. Crowe (University of Notre Dame) discusses each major
vectorial system as well as the motivations that led to their creation, development,
and acceptance or rejection.

The vectorial approach revolutionized mathematical methods and teaching in
algebra, geometry, and physical science. As Professor Crowe explains, in these
areas traditional Cartesian methods were replaced by vectorial approaches. He also
presents the history of ideas of vector addition, subtraction, multiplication, division
(in those systems where it occurs), and differentiation. His book also contains
refreshing portraits of the personalities involved in the competition among the
various systems.
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ROTATIONS,

QUATERNIONS,

AND

DOUBLE GROUPS

SIMON L. ALTMZ IN

L ]

ROTATIONS,
QUATERNIONS,

DOUBLE GROUPS

SIMON L. ALTMANN

his self-contained fext presents a consistent description

of the geometric and quaternionic treatment of rotation

operators, employing methods that lead to a rigorous
formulation and offering complete solutions to many illustrative
problems.

Geared toward upperlevel undergraduates and graduate
students, the book begins with chapters covering the funda-
mentals of symmetries, matrices, and groups, and it presents
a primer on rotations and rotation matrices. Subsequent
chapters explore rofations and angular momentum, fensor
bases, the bilinear transformation, projective representations,
and the geometry, topology, and algebra of rotations. Some
familiarity with the basics of group theory is assumed, but the
text assists students in developing the requisite mathematical
tools as necessary.



AN ELEMENTARY TREATISE

ON %"'2?4 2y
Op

Q

QUATERNIONS

BY

i’w TAIT M. A., Sec. R.8.E,

HONORARY mmw OF BT PETER'S OOLLEGE, CAMBRIDGE
PROFES80R OF NATURAL PHILOBOPHY IN THE UNIVERSITY OF EDINBURGH

waydy dexdov Picens pilduar’ Fyovoar.

THIRD EDITION, MUCH ENLARGED

CAMBRIDGE
AT THE UNIVERSITY PRESS
1890

[Alt Rights reserved.)

33



J. Fluid Mech. (2018), vol. 849, pp. 498-509. (@© Cambridge University Press 2018 498
doi: 10.1017/jfm.2018.337

Optimal wing hinge position for fast ascent in a
model fly

R. M. Noest' and Z. Jane Wang' >

IDepartment of Physics, Cornell University, Ithaca, NY 14853, USA
2Department of Mechanical and Acrospace Engincering, Cornell University, Ithaca, NY 14853, USA

(Received 26 June 2017; revised 27 January 2018; accepted 17 April 2018;
first published online 21 June 2018)

It was thought that the wing hinge position can be tuned to stabilize an uncontrolled
fly. However here, our Floquet stability analysis shows that the hinge position has
a weak dependence on the flight stability. As long as the hinge position is within
the fly’s body length, both hovering and ascending flight are unstable. Instead, there
is an optimal hinge position, A*, at which the ascending speed is maximized. A* is
approximately half way between the centre of mass and the top of the body. We show
that the optimal A* is associated with the anti-resonance of the body—wing coupling,
and is independent of the stroke amplitude. At A*, the torque due to wing inertia
nearly cancels the torque due to aerodynamic lift, minimizing the body oscillation
thus maximizing the upward force. Our analysis using a simplified model of two
coupled masses further predicts, h* = (m,/2m,,)(g/w”). These results suggest that the
ascending speed. in addition to energetics and stability. is a trait that insects are likely
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2.1. Three-dimensional dynamic flight simulation
To simulate three-dimensional free flight with flapping wings, we solve the Newton—
Euler equations for the coupled wing—body system (Chang & Wang 2014). The
insect model consists of (n+ 1) rigid bodies. where n is the number of wings on the
body. Each wing is modelled as an ellipsoid connected to the body, also an ellipsoid,
through a ball joint that allows for three degrees of freedom in rotation. The body
kinematics are given by its position r”, linear velocity v”, body orientation quaternion
[¢”]1 and angular velocity @”. In our current implementation we use quaternions 1o
represent the body and wing orientations. This has the advantage of avoiding gimbal
lock and simplifies the algebra. For the results the quaternions are converted to Euler
angles, which are easier to understand, as they refer to the rotations about body axes.
The Newton-Euler equations governing the body dynamics are

mbab=mbg—ZFf. (2.1)
=1
PRl =-o" x (F0”) — Z T — Z il & (2.2)
i=l1 =1

P =[q]° ("), 2.7)
1’ =a® — 0’ x v’ (2.8)
Gl =ilq)" - [w]’, (2.9)
w’=p". (2.10)
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