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Understanding the lead-lag relationship between distribution and demand is an important and challenging
issue for all marketers. It is particularly challenging in the movie industry, where the very short lifespan

and decaying revenue and exhibition patterns of motion pictures means that the associated time series are short
and nonstationary, rendering existing econometric methods unreliable. We propose an alternate method that
uses state-space diagrams to determine lead-lag relationships. Straightforward to apply and interpret, it takes
advantage of the eye’s ability to see patterns that algebra-based formulations cannot easily recognize. A number
of validation tests are provided to illustrate the usefulness and limitations of the method. We study the weekly
data for 231 major movies released in 2000–2001. While econometric methods do not provide consistent results,
the graphical method of visually inferred causality clearly shows a pattern that demand leads distribution for
most movies. In other words, the dominant industry pattern is one of movie exhibitors monitoring box office
sales and then responding with screen allocation decisions. The managerial implications of these findings are
discussed.
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1. Introduction
Researchers in marketing have been critically con-
cerned with determining causal relationships among
marketing variables. One of the most enduring
puzzles concerns the relationship between distribu-
tion and demand. One can plausibly argue that
demand drives distribution. For example, indepen-
dently owned retailers would choose to allocate their
scarce shelf space only to products that are selling
well and withdraw shelf space when sales start to
decline. That is, demand leads distribution.1 On the
other hand, one may also argue that marketing com-
munication builds demand for a product, but that
demand would only be realized if the product were

1 In its early years Snapple was able to receive distribution from
national supermarket chains as a result of its successful sales in the
convenience store sector (see Kotler 1997, pp. 536–537).

readily available. This is especially true in a com-
petitive environment where customers come to the
distributor and decide what to buy based on which
brands are available (Bronnenberg et al. 2000). As a
result, demand follows distribution.
The movie industry, which has recently attracted

much attention from researchers, constitutes a prime
example of the distribution-versus-demand puzzle.
In this context, distribution primarily concerns the
number of theaters a studio may obtain for a par-
ticular movie. The demand is the box office sales
of the movie. Besides the highly risky decisions of
movie production, the studios constantly face the
challenge of adopting appropriate distribution strate-
gies (Vogel 2001). In an analysis of the movie indus-
try, Sawhney and Eliashberg (1996) suggest that
a consumer’s moviegoing behavior can be divided
into two phases—a time to decide and then a time
to act. If a specific movie is not available in “a the-
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ater near you,” potential moviegoers might not be
able to act on their desire of seeing it. With an aver-
age Hollywood movie lasting about twelve weeks or
less in wide distribution, consumers may never see a
movie despite their desire to do so (at least until the
video comes out—see Lehmann and Weinberg 2000).
This implies that the distribution of movies directly
influences their demand, and it may be beneficial for
the studios (and theaters) to lead with distribution
to help increase box office sales. Nevertheless, there
is anecdotal evidence that the theaters may passively
observe the changing patterns of box office sales.
Instead of trying to influence the demand by distri-
bution, they may opt to respond to it by adjusting
the number of screens. As a result, some movies are
withdrawn early because of their failure to meet box
office expectations. If this effect dominates, then the
movie market will show a pattern of demand leading
distribution.
The existing research on movies has primarily

focused on examining the factors that are corre-
lated with box office revenue and improving the
precision of its prediction (Sawhney and Eliashberg
1996, Eliashberg and Shugan 1997, Neelamegham and
Chintagunta 1999). Prior studies have noted the lack
of research on issues related to movie distribution
(Elberse and Eliashberg 2003) and, with the notable
exception of Elberse and Eliashberg (2003), who esti-
mate the demand-distribution dynamics using simul-
taneous equation models, few studies have explicitly
examined the dynamic correlations between box office
sales and distribution intensity.
Understanding this lead-lag relationship, however,

has important managerial implications. For instance,
the intensity of movie promotion and the primary
target of promotion (i.e., movie audience versus
movie theaters) are both critical issues to the studios.
Depending on whether distribution leads or demand
leads, the studios’ optimal strategy will differ. That is,
if distribution leading demand is the dominant pat-
tern, the studio may want to use more trade promo-
tions and incentives to motivate theaters to carry the
movie and carry it for more weeks. On the other hand,
if demand leading distribution is the dominant pat-
tern, consumer promotion becomes more important.
Moreover, since movie studios typically spend the
majority of their advertising funds before a movie’s
actual release (Vogel 2001), such findings could lead to
greater effort being placed on the postlaunch period.
Furthermore, some important managerial and pub-

lic policy issues in the movie industry will benefit
from the identification of this lead-lag relationship.
These include channel management and integration
(i.e., whether movie studios will have incentive to
own parts of or the entire distribution channel),
antitrust (i.e., whether integration between studios

and exhibitors should be allowed by law), bargain-
ing (e.g., to what extent studios should compete
or concede when negotiating with movie theaters),
and contracting (e.g., how much flexibility exhibition
contracts should contain in terms of withdrawing a
movie from exhibition and whether exhibition con-
tracts should be renegotiated after the movie opens).2

Such issues are particularly timely in the United
States, where a period of bankruptcy of major movie
exhibitors has been followed by consolidation and
emergence of larger theater companies. At the same
time, most Hollywood studios are now divisions
of large entertainment conglomerates. Understand-
ing the relationship between demand and distribution
will allow these new corporate entities to better
structure their interactions with each other and their
marketing strategies. In many non-North American
markets, where there are generally fewer theaters
per capita than in the United States, decisions about
growth strategies and channel contracts will be influ-
enced by enhanced understanding of the demand and
distribution interactions.
Finally, the lead-lag issue between distribution and

demand has broad implications beyond the movie
industry. It is particularly relevant for markets such
as books, broadcast and cable television, music, and
fashion goods, where the product life cycle is typically
short and the distributors (retailers) make frequent
decisions about which products to sell and which
to drop.3

Albeit critical, the empirical detection of lead-lag
relationships between demand and distribution can be
difficult.4 Time series models have made significant
contributions to the marketing literature (Dekimpe
and Hanssens 2000). Methods such as Granger causal-
ity and VARX (vector autoregression with exogenous
variables) are increasingly utilized to detect lead-lag
relationships, make directional inferences, and exam-
ine the effects of marketing mix variables on mar-
ket performance (Horvath et al. 2002, Nijs et al. 2001,
Pauwels et al. 2002, Pauwels and Srinivasan 2004,
Srinivasan et al. 2004). One important reason for the
popularity of these methods is the growing availabil-

2 Interested readers are referred to Vogel (2001), Ornstein (2002),
and Squire (2004) for further details of these issues, some of which
have been under longtime debate and are quite controversial.
3 For recent research on product life cycle, diffusion, and distri-
bution issues, see Golder and Tellis (2004), Van den Bulte and
Stremersch (2004), Fader et al. (2004), and Naik et al. (2005).
4 Experiments such as those reported in Lodish et al. (1995) can
be used to determine whether changes in advertising expenditures
result in changes in short term or long term sales. However, such
experiments are relatively costly to conduct and are infrequently
employed.
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ity of extensive time series data.5 However, due to
the nature of the movie industry, the time series of
box office sales and screens are short (typically, they
have a length of twelve weeks or less) and are non-
stationary. With short and nonstationary time series,
the typical time series methods become unreliable and
often provide conflicting results. For example, we use
VARX-based Granger causality tests to determine the
direction of lead-lag relationships for 231 mass-market
movies released from May 2000 to December 2001
that played for at least five weeks. As we discuss for-
mally in §3, the tests show that demand leads distri-
bution for 12 movies, and distribution leads demand
for 86. Both directions were rejected for 39 movies,
and neither direction could be rejected for 94. By con-
trast, the graphical approach introduced in this paper
takes advantage of the eye’s ability to see patterns that
algebra-based formulations cannot easily recognize in
short time series. It finds that 90% of these movies fol-
lowed a pattern of demand leading distribution.
It is thus the purpose of this note to introduce a

new graphical method to help analyze the lead-lag
pattern for time series data and to apply it to the
movie industry. The method is based on state-space
diagrams and helps analysts visualize the differences
in phases between two time series. In §2, we present
the details of this new method and report a set of sim-
ulation studies to demonstrate its ability to recover
known lead-lag relationships in noisy data. In §3 we
apply the graphical method to a set of movie data and
compare the findings with those from VARX-based
Granger causality tests. In §4 we discuss the substan-
tive findings for the movie industry and conclude
with limitations and future research.

2. Graphical Interpretation of
Leads and Lags

Although the approach developed in this paper
depends on the visual interpretation of trajectory cur-
vatures in state-space diagrams, we begin by provid-
ing the analytical model underlying this approach.
The basic problem that we are trying to resolve is
whether there is a causal relationship between two
time series, Xt and Yt ; that is, which series leads and
which lags. For example, if Xt and Yt are weekly
advertising expenditures and sales, respectively, and
the impact of advertising on sales takes at least two
weeks to appear, then we should see changes in sales
lagging those in advertising by at least two weeks.
In many cases (as discussed below), curvature in
state-space diagrams provides a more effective way to

5 The twenty studies summarized in Table 2 of Dekimpe and
Hanssens (2000) use time series data with an average length of
94 time periods.

“see” the lag pattern than currently employed econo-
metric methods.
We will first develop the theory using periodic sine

and cosine functions, and then generalize the argu-
ment utilizing the Fourier expansion of arbitrary time
series to a summation of sine and cosine functions.
Fourier theory also allows us to identify limitations to
the method, which we explore empirically. A search
of the published economics and marketing literature
found no studies that have employed similar graphi-
cal approaches.

2.1. Fourier Series and State-Space Diagrams
To continue the above example, consider a market
with stable demand that is influenced by periodic
advertising, such as “pulsing,” which, for exposi-
tional reasons, is presented as deviations from the
mean advertising level in the simple form of Xt =
A sin�2�f · t�. This series has frequency f (cycles per
week), cycle period 1/f (in weeks), and maximum
advertising spending deviation of A. Now suppose S
is the mean sales and that the deviations from mean
sales lag advertising by �t weeks, so that sales are
given by:

Yt = S+ kXt−�t = S+ kA sin�2�f · t− 
�� (1)

where 
= 2�f ·�t is the phase difference between the
two series. Figure 1 shows an example with frequency
f = 1/�2�� and phase difference 
 = �/2. In the cor-
responding time domain, the period of both series is
6.3 weeks, and the lag between them is 1.6 weeks. The
constants k and A are both set to 1, and S to zero in
Figure 1.
Plotting the pairs �Xt�Yt� generates the state-space

diagram of the above time series. Figure 2 shows this
state-space diagram for t = �1� � � � �6�. With advertis-
ing leading sales and advertising plotted on the hor-
izontal axis, the curvature of the trajectory will be
counterclockwise.6 Reversing either will reverse the
curvature. If the two series are perfectly in phase, cor-
responding to positively correlated contemporaneous
effects, the plot will be a straight line with positive
slope. Thus, such state-space diagrams offer the use-
ful feature that the direction of curvature (i.e., clock-
wise or counterclockwise) uniquely indicates which
series is leading.7

6 The analytic definition of clockwise and counterclockwise trajec-
tory curvatures, together with an analytic example of the relation
between these curvatures and the lead or lag between two periodic
functions, are given in Appendix B, which can be found on the
Marketing Science website at http://mktsci.pubs.informs.org.
7 State-space diagrams with sinusoidal inputs are known as
Lissajous figures, named after French physicist Jules Antoine
Lissajous. The unique features of Lissajous figures to reflect fre-
quency and phrase relationship of time series data are used in
physics and electronics for such tasks as circuit analysis.
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Figure 1 Stylized Example of Sales Lagging Advertising Expenditure

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time

$ 
(d

ev
ia

tio
n)

Ad $ Sales

Figure 2 A State-Space Diagram for the Sales-Lagging-Advertising
Example
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Note that this analysis requires k > 0, which is the
case for many business phenomena. If k < 0, as is typ-
ically the case for price and sales, the logic and cur-
vature are both reversed, but the pattern of curvature
is still uniquely linked to the lead-lag relationship. In
practice this means that before applying the method
we must have some theory to assure us that the
two series are either positively or negatively related.
In cases where neither the sign of the relationship
between the series, nor which is leading, is known,
the method is indeterminate.
This explains the rationale behind the graphical

method using sinusoids, a rather special type of func-
tion. We now present the rationale for arbitrary func-
tions. Any time series can be approximated by a
Fourier series composed of sine and cosine functions,
much as any function can be approximated well by
a few Taylor series components. The Fourier expan-
sion of an arbitrary continuous function z�t�, which
is periodic with period T (or if nonperiodic and of
finite length T , is assumed to repeat with period T ),
is given by:

z�t�= a0+
�∑
m=1
�am cos�2�mf0t�+ bm sin�2�mf0t�� (2)

Each term on the right hand side of Equation 2
is a single-frequency sinusoid. The coefficients am

and bm are determined from the Fourier transform
of the function z�t�, or in the discrete case, the dis-
crete Fourier transform of the series zt . A small
number of the Fourier components (represented by
their Fourier coefficients, am and bm) can usually
approximate an arbitrary time series quite well over
a limited range of t. It is thus technically possible
to compare any two arbitrary time series by com-
paring their corresponding Fourier components in
a series of state-space diagrams, with one diagram
for each frequency of interest. The associated curva-
tures would determine which series is leading and
which is lagging at each frequency. This is essentially
the frequency-domain equivalent of the time-domain
VARX methodology. However, while the frequency-
domain approach demonstrates the rationale behind
the interpretation of the state-space diagrams, we
are not advocating estimating the Fourier coefficients.
Such estimation is comparable to estimating the lag
coefficients and suffers similar limitations. Rather, we
present this approach as the theoretical basis for using
the graphical method for arbitrary pairs of series. This
also allows using Fourier theory to specify limitations
of the method, as detailed in Appendix A; in par-
ticular, an underlying continuous function must be
sampled “frequently enough” for the lag pattern to
show up clearly in the state-space diagrams. In the
next section, we build on this idea to design empirical
validation tests.

2.2. Validation
To examine the lead-lag relationship between two
time series, we could take an econometric approach
by estimating a VARX model and testing for the exis-
tence of Granger causality. Besides the inability to
work with very short time series, Granger causal-
ity analyses are very sensitive to the choices of the
number of lags and the statistics used to test the
null hypothesis (Hamilton 1994, p. 305; Hsiao 1982;
Thornton and Batten 1985). The main advantage of
the state-space diagrams, on the other hand, is that if
there is a lead-lag relationship, the curvature direction
can be quickly detected by eye, even with very few
data points in the series. A full assessment of all pos-
sible circumstances is beyond the scope of this paper.
Rather, in this section, we concentrate on conditions
that will cause difficulty for a Granger causality test
using a VARX model: first, when the time series are
short, but stationary, and second, when the series are
short and nonstationary.

2.2.1. Validation and Smoothness Limitation
with Short Stationary Series. Appendix A describes
the Nyquist limitation of the graphical method with
periodic functions. In general, an underlying contin-
uous function must be sampled “fast enough.” When
the underlying continuous function is not known, as
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is typical with discrete economic series, this condi-
tion translates as the discrete series being “smooth
enough.” If we take the perspective of an analyst
who is given a discrete time series but either knows
no details of the underlying continuous function or
has a series that is intrinsically discrete—for exam-
ple, weekly movie revenue—then the smoothness of
the discrete series will be relevant in the application
of the graphic method. We now provide an empiri-
cal validation of the method and show that the length
of the lead or lag that can be detected increases as
the “smoothness” of the series increases and that the
detection is more reliable than Granger causality for
short time series.
We first created time series with different smooth-

ness and lengths as follows. Uniform i.i.d. random
number series were generated. These series were
then smoothed by convolution with either a 5-point
or a 9-point triangular filter to give two levels of
smoothness. These are referred to as the MA5 and
MA9 series, and the MA9 series is smoother. For
each series, pairs were then generated by creating a
second series that was identical to the first but with a
lead or lag of 1, 2, 4, or 6. Finally, shorter series pairs
of either 11 points or 6 points were extracted from
these longer stationary series.
In summary, we vary the smoothness (2 levels), the

lead or lag (8 levels), and the length (2 levels) of
the test series. These series pairs were displayed in
state-space plots. Eight realizations of each combina-
tion were plotted, for a total of 256 state-space plots.
Three judges who were blind to the test objectives
but trained in recognizing clockwise and counter-
clockwise curvature in states-space plots then inde-
pendently judged each of the 256 plots. The task was
to assign them into one of three categories: domi-
nantly clockwise (CW), dominantly counterclockwise
(CCW), or indeterminate.8 From the aggregate judg-
ments, an overall “hit rate” was calculated. A hit was
counted if the judged direction matched the lead or
lag of the data generation process. A judgment of
indeterminate was automatically a miss.
Table 1 summarizes the hit rates, indicating that

first, increasing the lag systematically and signifi-
cantly decreases the accuracy of detection for all con-
ditions (F = 19�01, p < 0�01). Second, such a decrease is
slower for the smoother MA9 series (F = 5�82,
p < 0�05). On average, a smoother series allows better
identification, as predicted. Finally, there is only min-
imal and insignificant difference between the hit rates
for the 6-point series and the 11-point series (F = 0�19,

8 The reason for allowing these three categories is for greater com-
parability with the VARX method, which can and often does give
significant results for both lead and lag, and, hence, is indetermi-
nate in choosing a dominant direction.

Table 1 Comparisons of Hit Rate in Lead-Lag Detection

Series length and smoothness

Lead-lag No. of 6-point 6-point 11-point 11-point
detection method lags MA5 (%) MA9 (%) MA5 (%) MA9 (%)

Graphical 1 93�75 93.75 89.58 91�67
2 75�00 85.42 85.42 85�42
4 29�17 70.00 22.92 70�83
6 43�75 41.00 22.92 41�67

Granger causality 1 62�50 50.00 31.25 6�25
2 0�00 25.00 56.25 50�00
4 25�00 37.50 12.50 12�50
6 18�75 31.25 18.75 6�25

p = 0�67). This confirms the usefulness of the graph-
ical method when the time series becomes shorter.9

The overall performance of the graphical method is
impressive—even with a lead or lag of 2, and series
as short as 6 data points, the accuracy of unambigu-
ous judgments of which series leads and which lags
is still more than 75%.
While the main purpose of this exercise was to

validate the graphical method and to identify limi-
tations, it is also interesting to compare it with the
econometric approach. We estimated bivariate vector
autoregressive models and tested for the existence of
Granger causality. As Hamilton (1994, p. 304) summa-
rizes, the simplest and probably best econometric test
for Granger causality takes the following format:

[
xt
yt

]
=

[
c1
c2

]
+

�

�1�
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�1�
12

�
�1�
21 �

�1�
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
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]
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
�
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


·
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
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11 �

�p�
12

�
�p�
21 �

�p�
22


[
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]
+
[
�1t
�2t

]
�

(3)

If the coefficient matrices  j �j = 1� � � � � p� are all lower
triangular, i.e., ��j�12 = 0, then y does not Granger-
cause x. The most common implementation of this
vector autoregression system is to estimate the follow-
ing equation using OLS:

xt = "0+"1xt−1+"2xt−2+ · · ·+"pxt−p
+#1yt−1+#2yt−2+ · · ·+#pyt−p+ut� (4)

Then either the F statistic or the Wald statistic can
be calculated to test the null hypothesis H0& #1 =
#2 = · · · = #p = 0. If the null hypothesis is rejected,

9 The 6-point series were subsets of the 11-point series to make the
comparison between series lengths less variable. The plots were
presented in groups of 64 that were either all 6-point or all 11-point,
so that there was no possibility of judges recognizing that the
6-point series were subsets of the 11-point series.
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then “y Granger-causes x.” Otherwise, “y does not
Granger-cause x.”
For each pair, a hit was recorded if the under-

lying direction was unambiguously determined (the
maximum lead or lag to be tested was three for the
11-point series). The results are also summarized in
Table 1. Since this is an asymptotic test on very short,
even though stationary, series, we did not expect good
results, and such was the case. Hit rates in almost all
cases were below 50% and were less than that for the
graphical method (F = 34�22, p < 0�01). The graphi-
cal method consistently outperforms the econometric
method in recovering the lead-lag relationship.

2.2.2. Validation with Short Nonstationary
Series. We next generate short nonstationary data
that are inspired by our objective of understanding
the demand and distribution relationship for movies
(i.e., box office sales and the number of theaters
showing the movie). We label the simulated series
pairs as “box office” and “theaters.” The model we
use to generate weekly data assumes that box office
revenues decline monotonically, and the number of
theaters is the same as the previous week until box
office drops below a threshold. Below the threshold,
the number of theaters is a fixed proportion of the
previous week’s box office. Thus, theaters lag box
office by one week. Five data points are generated,
and the threshold is crossed in the third week. For
illustration purpose, Figure 3(a) shows the state-space
diagram of one of these short, nonstationary series.
It clearly shows the clockwise curvature indicating
that box office leads. We then add noise to the base
series to generate 18 pairs of noisy data points. The
noise level was chosen so that the clockwise direction
could be identified most, but not all, of the time. An
example of the noisy trace is shown in Figure 3(b).
By looking at the state-space diagrams, three judges
independently judged and agreed on the clockwise
curvature for 15 of the 18 traces, while three were
indeterminate.
This rate of identifying that the box office leads the-

aters was then compared to the Granger method. We
estimated bivariate vector autoregressive models for
both theaters leading and box office leading for each
trace. Note that with only five data points (i.e., five
weeks into a movie’s life span), only one lag �p = 1�
can be estimated. For the null hypothesis that box
office does not lead screens, which should be rejected
by an ideal test, the null was rejected in only 3 of
the 18 cases.10 As a result, for these simulated short
nonstationary series, the graphical approach was able
to recover the data generation process more consis-
tently than the econometric approach.

10 On the other hand, the null was rejected (i.e., false-positive) in
two of the 18 cases for screens leading box office.

Figure 3 State-Space Diagram of the Simulated Threshold Model
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Note. The underlying simulation mechanism is that box office leads theaters.

3. Detecting the Demand-Distribution
Pattern for Movies

In movie exhibition, the distribution intensity is typ-
ically adjusted weekly (Sanjeev et al. 1999). The
demand for most movies, particularly wide-release
movies, changes very smoothly and typically with a
monotonic decline (Krider and Weinberg 1998). As a
result, weekly sampling should be sufficiently smooth
to allow the lead-lag pattern to appear.
The box office and theaters data for 407 movies

playing between May 5, 2000 and December 7, 2001
were collected from a popular website of movie
records (www.the-numbers.com). The full data set
includes many narrow-release and short-run movies.
Only movies with at least 5 weeks of data and a
cumulative box office of 5 million dollars—231 movies
in total—were retained for analysis. Key summary
statistics of these movies are provided in Table 2.
To compare the graphical and econometric meth-

ods of determining whether theaters lead box office

Table 2 Summary Statistics of the Movie Sample

Mean Median Standard deviation

Opening week number 1,847 2,305 1,162
of theaters

Opening week box 12,999,037 9,386,342 14,412,500
office revenue

Total number of weeks 11.97 11.00 7.74
in theaters

Total box office revenue 51,695,553 32,054,918 54,444,803



Krider, Li, Liu, and Weinberg: A Graphical Method Applied to Movies
Marketing Science 24(4), pp. 635–645, © 2005 INFORMS 641

Table 3 Demand-Distribution Relations for 231 Movies
Classified by Granger Causality Tests

Demand leads
distribution

Yes No Subtotal

Distribution leads demand
Yes 94 12 106
No 86 39 125

Subtotal 180 51 231

Note. Distribution is the number of theaters showing the
movie, and demand is the box office revenue.

revenues or revenues lead theaters, we first estimate
six VARX models for each movie. Three of the mod-
els assume that theaters lead revenue, and the other
three assume box office leads theaters. In each case,
lags of one, two, and three weeks are modeled. In
cases where there is insufficient data, only one-week
or two-week lags are estimated. For example, the
VARX model for the three-week lag case is

yt = "0+"1yt−1+"2yt−2+"3yt−3+#1xt−1
+#2xt−2+#3xt−3+ �t� (5)

Then Wald tests on #1 = #2 = #3 = 0 are conducted
for Granger causality. If the model with the minimum
AIC of the three models for theaters leading passes
the Granger causality test, that movie was counted
as “theaters leading.” “Box office leading” was sim-
ilarly defined. Any one movie could be classified as
theaters-leading, box-office leading, neither, or both.
Table 3 shows the resulting classifications of the

231 movies based on the econometric test. It indi-
cates that in 39 cases, no lead-lag relation can be
detected. In 94 cases, neither direction can be rejected.
In 86 cases, demand leads theaters unambiguously,
and in the remaining 12 cases theaters lead demand
unambiguously.11

Next, state-space diagrams of the movies are gen-
erated with the number of theaters on the horizontal

11 Another possible method is to treat the VARX parameters for each
movie as random draws from a known distribution and to use ran-
dom coefficient estimations to infer the mean lead-lag relationship
in the sample. While it offers a different approach to analyzing the
data, it has the same limitation as the common VARX method (e.g.,
short time series cannot be reliably estimated) and faces additional
constraints. That is, the number of lags used in any one run must
be the same for all the movies—it equals the maximum lag that
allows Granger causality to be tested for all the movies. Neverthe-
less, we conducted random coefficient estimation using lag num-
bers one, two, and three, respectively for two specifications—box
office revenue leads theaters and theaters lead revenue. Therefore,
six random coefficient models are estimated. The results are not
very informative: for both specifications and for all of the lag num-
bers, the Wald tests reject the hypothesis that the lagged exogenous
variables are jointly zero.

axis. Three judges independently assigned each movie
into one of five categories, depending on the curva-
ture of the plots. Three broad categories were box
office leads screens (clockwise), screens lead box office
(counterclockwise), and indeterminate. The two cur-
vature categories were further divided into strongly
curved (with less than 20% of the points deviat-
ing from the curvature direction) and weakly curved
(with more than 20% deviating). State-space diagrams
for an example movie from each of the four cases in
Table 3 are shown in Figure 4.
The three judges agreed on 82% of all the movies

with regard to which of the five categories they
belong to. If counting only the three broad categories,
the agreement rose to 90%. Most of the disagreement
occurs on whether or not the direction was inde-
terminate. The judges assigned the majority of the
movies (187, 188, and 183 movies, respectively) to
the strong-clockwise category, that is, box office leads
screens. The state-space diagrams for the four movies
in Figure 4 illustrate this pattern, which can readily
be seen. As a result, we conclude that the demand-
distribution dynamics for most movies are character-
ized by theater owners observing the demand in a
week and adjusting screens in the following week.12

Given the role of pattern recognition in making these
assessments, we term this approach “Visually Inferred
Causality.”
As an example, consider the movie “The Art of

War,” which was determined to be strongly clock-
wise (demand leading) by all three judges (see Fig-
ure 4). Theaters remain constant in the first two weeks
while demand is high but falling. In the third week,
demand drops dramatically, even though only a few
theaters have dropped the movie. In the fourth week,
exhibitors respond to the previous week’s drop in
sales by reducing the number of theaters by more
than one-third. The theater lag shows up clearly
in clockwise curvature. Not only is this nonstation-
ary behavior, but also the series has only enough
data to estimate Granger causality with two lags. To
make things worse, the Granger test classified this
movie as theaters leading, not as demand leading. The
state-space diagrams appear to offer results that have
greater face validity than the econometric methods for
this type of data.

12 In a study of movies in domestic and international markets,
Elberse and Eliashberg (2003) find that while the number of screens
in a week influences that week’s box office revenue, there also exists
a significant effect of the expected box office revenue for a week on
the actual number of screens. In other words, the studio/theater,
managers appear to observe the trend in box office revenue and
respond to it by setting the number of screens. Note that the real-
ized demand cannot precede distribution in the first week, when
distribution has to be set based on demand expectations.
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Figure 4 Movies That Show Clockwise Curvature but Classified Differently by Granger Causality Tests
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Note. The four movies are classified by the Granger causality test as different in lead-lag relationship between demand and distribution. The position of the
four movies in the figure corresponds to the positions in the four cells of Table 3. For example, Blair Witch 2 is classified as both “demand leads distribution”
and “distribution leads demand” in Table 3. Clockwise curvature of the state-space diagram is apparent for each movie.

4. Discussion and Conclusions
In this paper we develop a graphical method based on
state-space diagrams to help identify and interpret the
lead-lag relationship between movie distribution and
box office sales. The method is easy to implement, can
be conducted for short time series, and offers results
that are less ambiguous and of greater face valid-
ity. Various simulations are conducted to examine the
validity and limitations of the method.

4.1. Managerial Implications
Applying this graphical method, we consistently find
that demand leads distribution for most movies. In
other words, movie distributors and exhibitors appear
to be monitoring the weekly box office sales and then
responding by adjusting distribution intensity. There
are at least two potential explanations for why this
pattern of lead-lag dominates in the industry. First,
as many movies open wide on thousands of the-
aters across the United States, there is low risk of
“lost” sales due to insufficient distribution in the early
weeks of a movie’s run. The movie industry, espe-
cially theaters, is more concerned with “overdistribu-
tion” than “underdistribution.” When there are many
competing films that can be shown, theater owners
tend to use the most revealing factor of a movie’s
potential—its box office sales—to decide whether to
retain a particular movie in the subsequent week. (See
Eliashberg et al. 2001, for example.) Second, a num-
ber of common practices in the movie industry enable

(and encourage) the demand-leading-distribution pat-
tern. For instance, the typical movie distribution con-
tract includes a holdover term, which specifies the
minimal level of box office revenue that a movie
needs to achieve to be kept in the theater for the next
week (Vogel 2001). The theaters, by observing the box
office revenue, may drop the movie if the revenue
falls below this threshold.13 Moreover, since movie
exhibitors typically have a meeting every Monday
morning to make “shelf space” decisions for the
upcoming week, this makes the weekend box office
results and the use of the screens for the coming week
critical subjects of discussion.
As a result, from the managerial point of view, it

may be more effective for movie studios to focus on
building demand for movies during the post-release
period rather than trying to push the theaters. In
other words, it is important for movie studios to con-
sider adopting “pull”-oriented consumer promotional
strategies. By building strong demand from potential
audiences the studios can increase the opportunity
for a movie to receive continuous distribution sup-
port from the theaters, or at least to not be withdrawn

13 Recognizing that declining revenue acts a stimulus for theaters
to drop a movie, the studios typically offer contracts in which the
share of revenue the theaters must remit back to studios declines
over time.
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too early.14 Advertising is one of the most impor-
tant consumer promotional tools. The current indus-
try practice is to heavily promote the movie before
release and then allow the advertising budget to drop
rapidly (Vogel 2001). The demand leading distribu-
tion result suggests changes to this practice—studios
should consider spending more money on advertis-
ing after the opening week than they currently do
(or in general, increasing post-release marketing effort
aimed at pulling viewers into theaters).15 This alterna-
tive strategy appears to be particularly relevant to the
extent that subsequent sales of videos, video games,
and other products are driven by the number of peo-
ple who see the movie in a theater.
Moreover, these results imply that when negoti-

ating contract terms with movie theaters, studios
should be careful about trying to get distribution sup-
port through costly concessions that may not be nec-
essary. If audiences can be motivated to come to the
theaters in larger numbers and for a longer time (as
a result of appropriate advertising and sales promo-
tions), theaters will respond positively by keeping the
movie. Ultimately, this calls for more careful plan-
ning during the production stage of new movies. For
example, some movies include high-budget special
effects to motivate moviegoers to see the movie in
theaters more than once (e.g., King 2000). More gen-
erally, movie producers might place great emphasis
on movie characteristics that are likely to generate
strong, positive word of mouth.
Finally, the pattern of demand leading distribution

suggests one negative aspect of the wide opening
strategy. Despite its presumed ability to reduce the
risk of a total box office flop by generating viewer-
ship before “true quality” is revealed and to crowd
out competition by putting a movie on thousands
of screens, opening wide may not allow sufficient
time for a movie to build up awareness and poten-
tial demand. It can exhaust demand quickly, causing
box office sales to decline rapidly and thus inducing
movie theaters to cut distribution early.

4.2. Limitations and Future Research
Nearly every managerial decision requires some
knowledge of causal relationships. As a particular

14 Since box office sales do not occur before the first week, movie
theaters cannot observe demand to adjust distribution for that week
(although they can use expectations, see Footnote 12). As a result,
it is difficult to predict whether trade promotions or consumer pro-
motions should dominate before opening. Our findings mainly sup-
port pull promotions for the weeks after opening.
15 One approach to do so would be to provide cooperative advertis-
ing money to exhibitors, to motivate them to find marketing strate-
gies that would increase demand for movies currently in theaters.
Another would be to utilize the Internet to stimulate interest and
word of mouth.

example, if advertising causes sales (in contrast to
advertising budget being set as a result of sales),
then the firm should advertise as long as the net
marginal returns are positive. Employing various the-
ories and methodologies, researchers have tried to
address the causality issue for different markets (e.g.,
Eliashberg and Shugan 1997 for movies and Chevalier
and Mayzlin 2003 for book sales). It is important
to note that temporal relationships alone do not
establish “true” causality. Nevertheless, especially in
the absence of controlled experiments (Lodish et al.
1995), temporal data do provide useful evidence for
the underlying relationships. Furthermore, such evi-
dence becomes stronger if either theoretical or institu-
tional reasons exist to support it. While the graphical
method of visually inferred causality proposed in this
paper offers a new type of analytical tool to detect
lead-lag relationships in short time series data, its use-
fulness and limitations for more general market con-
ditions remain to be explored.
This paper focuses on the temporal relationship

between the number of theaters and the box office
revenue, two critical factors in the movie industry.
There are, of course, other factors that may influence
the movie distribution process. For instance, com-
petition between studios (and, to a lesser degree,
between movie theaters) during peak seasons may
moderate the impact of box office revenue on sub-
sequent distribution. Moreover, these data are from
the North American market. Relationships between
demand and distribution may vary in other loca-
tions where the intensity of distribution is lower or
where channel arrangements differ. Richer data sets
are clearly valuable to make a fuller assessment of
these situations.
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Appendix A. Sample Rates
An important consideration for ease of graphical inter-
pretation involves the relation between the series’ sample
interval and how rapidly the underlying process changes.
Roughly speaking, the sample rate must be high enough to
adequately represent the most rapid changes in the underly-
ing data generation process. To make the relations specific,
consider a time series resulting from regular sampling of
a continuous time function with a well-defined frequency
spectrum. Let the upper limit of the spectrum be fmax, i.e.,
the highest frequency in the continuous time function. The
sample interval �t determines the highest frequency that
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Figure A.1 Two Time Series with Sample Interval �t = 5
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can be represented in the discrete sampled time series: fN =
1/�2�t�, the “Nyquist” frequency. The sample interval must
be short enough so that fN ≥ fmax. Otherwise, the upper
end of the original spectrum cannot be captured in the
discrete series. Frequencies above the Nyquist in the con-
tinuous time function are shifted to frequencies below the
Nyquist in the sampled discrete series (a process known
as aliasing). In practice, most of the underlying spectrum
should be below about half the Nyquist frequency for easy
interpretation.
As an example of the problem of insufficient sampling

frequency, consider the two discrete time series in Fig-
ure A.1 (and the associated state-space plot in Figure A.2).
These two series are generated from two identical single-
frequency continuous time functions, with the Series 2
leading16:

Series 1& Y1�t� = sin�t�+ t/25 (A.1)

Series 2& Y2�t� = sin�t+ 2�+ t/25 (A.2)

Figure A.2 incorrectly suggests a counterclockwise pattern,
indicating that Series 1 is leading. This arises because we
have not sampled the underlying function often enough.
The sample interval is 5, and the Nyquist frequency is 0.1.
The time functions have a single frequency 1/2�, approxi-
mately 0.16, which is greater than the Nyquist frequency.
By quintupling the sample rate and Nyquist frequency

(to fN = 0�5, which is greater than 0.16), we can adequately
represent the continuous time function, and the underly-
ing pattern becomes obvious (see Figure A.3). Similarly, the
state-space diagram now shows the expected clockwise cur-
vature, and the interpretation that Series 2 leads Series 1
is straightforward (Figure A.4). As indicated in the text,
the theater scheduling decision is made on a weekly basis,
so the state-space diagrams based on weekly information
have the appropriate sampling frequency.

16 The linear trend term t/25 in both series is included only to shift
sequential cycles so that they do not plot on top of each other in
the state-space diagram.

Figure A.2 The State-Space Diagram Associated with the Time Series
of Figure A.1
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Note. Counterclockwise curvature is shown here.

Figure A.3 The Same Underlying Continuous Time Function as in
Figure A.1, but with Sample Rate �t = 1
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Note. The first 20 points are shown in �t = 1.

Figure A.4 The State-Space Diagram Associated with the Time Series
of Figure A.3
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