
30/12/05

‘How is the Stock Market Doing?’
Using Absence of Arbitrage to

Measure Stock Market Performance
    

Geoffrey Poitras and John Heaney

Faculty of Business Administration
Simon Fraser University

Burnaby, B.C.
CANADA    V5A 1S6

email: poitras@sfu.ca
Phone: 604-291-4071

ABSTRACT

This paper provides a methodology for measuring stock market performance based on the restrictions
provided by absence of arbitrage in security prices.  Under the null hypothesis that the aggregate
cumulative dividend-price process follows a geometric Brownian motion, a closed form related to
the inter-temporal marginal rate of substitution is derived and empirically evaluated.  The stock
market performance measure is based on the level of risk adjustment required to compare the value
of the stock index at the starting point with the cumulative interest rate deflated value at any given
point in the time series.  The paper concludes with empirical tests for the martingale property of the
performance measure.

* The authors would like to thank Edward Fang and Jeff Oxman for invaluable research assistance.
In addition, participants in workshops at the Lancaster University, the University of British
Columbia, Northern Finance Association, Canadian Economics Association and National University
of Singapore made numerous useful comments.  This paper was partially written while Geoffrey
Poitras was a visiting Professor at the School of Commerce and Accountancy, Thammasat U.,
Bangkok, Thailand.  Support from the Social Sciences and Humanities Research Council of Canada
is gratefully acknowledged.



‘How is the Stock Market Doing?’
Using Absence of Arbitrage to

Measure Stock Market Performance

     The problem of measuring stock market performance has long perplexed Finance academics and

practitioners.  This problem is reflected in questions such as: ‘How’s the stock market doing?’ or ‘Is

the current level of the S&P 500 stock index over or under valued relative to the long term trend?’

Because the process of valuation requires a notion of market equilibrium, a valid answer to such

questions requires the risk aversion properties of stock investors to be specified.  Given the level of

interest rates and the mean and variance of the long term trend in stock prices, changes in market

valuation reflect aggregate changes in the risk preferences of stock investors.  This paper exploits

absence of arbitrage conditions to develop a measure of stock market performance based on these

changing risk aversion preferences.  The performance measure has the appealing property that it is

specified as a closed form and can be implemented using the estimated drift and volatility of an

appropriate specified state variable process.  The properties of the performance measure are

illustrated using time series plots.  Results of empirical tests for the martingale property of the

performance measure are provided.  These tests identify situations where the null hypothesis of

martingale behaviour is rejected.  The rejection of the null hypothesis is consistent with the

conclusion that stock market participants use investment horizons that are much shorter than

conventionally assumed in empirical studies of asset pricing.

    The paper is composed of a theoretical and an empirical part.  The first part of the paper provides

a theoretical justification of the empirical procedures employed in the second part.  Section I

provides a brief review of the literature and an introduction to the general problem being examined.

Section II states the relevant assumptions and provides two Propositions, one concerning arbitrage

free pricing and another stating the differential restrictions that are exploited to derive the closed
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form for the performance measure.  Section III develops a closed form for the performance measure

associated with a geometric Brownian motion for the cumulative dividend-price process.  Other

examples for performance measures associated with alternative specifications of the state variable

process are also provided.  The second part of the paper, containing the empirical results, has two

sections.  Section IV provides parameter estimates required to implement the stock market

performance measure and uses these estimates to construct time series plots.  Section V provides

empirical tests for the martingale hypothesis, estimated for the full 1960-2001 sample and four sub-

samples. The paper concludes with Section VI which summarizes the results in the paper and

provides directions for future research.

 I. The Previous Literature

     The performance measure developed in this paper has a number of roots.  The theoretical results

are based on the absence of arbitrage approach, initially suggested by Harrison and Kreps (1979),

that introduced the concept of the equivalent martingale measure.  As demonstrated by Heaney and

Poitras (1994), it is possible to make a connection between the absence of arbitrage approach and

notions introduced by Brennan (1979) and He and Leland (1993) about the properties of stochastic

stock price processes derived from representative investor models.  For example, Brennan (1979)

and others have demonstrated that assuming the stock price process follows geometric Brownian

motion requires a market equilibrium using a representative investor with a constant relative risk

aversion utility function.1  If an initial empirical assumption is made about the underlying wealth

process, Heaney and Poitras (1994) demonstrated that it is possible to recover a closed form for the

inter-temporal marginal rate of substitution.  However, while the representative investor approach

relies on a wealth process and a consumption process as arguments in the utility function, the
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absence of arbitrage approach permits a wider possible range of state variable processes.  In

particular, the approach in Section II uses equivalent martingale theory where the state variable is

an interest-rate-deflated cumulative dividend-price process.  In the absence of interest rate

adjustment and using aggregate wealth as the state variable, this approach is related to the stochastic

discount factor used in empirical tests of asset pricing models, e.g., Brav et al. (2002).

    The theoretical approach taken in this paper can also be compared with the theory of rational stock

pricing.  This theory has a long history that includes Shiller (1981), Campbell and Shiller (1987),

Evans (1991), Campbell and Kyle (1993) and Koustas and Apostolos (2005).  These empirical

studies all invoke some method to detrend price and dividend data, usually to achieve the statistical

property of covariance stationarity that, in turn, is exploited to conduct hypothesis tests.  It is well

known that the method selected to detrend the data contains implicit equilibrium restrictions.

Recognizing that absence of arbitrage is a fundamental requirement for security pricing models, it

follows that it is desirable for detrending procedures to satisfy restrictions required for absence of

arbitrage.  As demonstrated in Section II, using absence of arbitrage restrictions for detrending is

motivated by the theoretical result that, after deflating the stock price and dividend series by the

cumulative interest rate process, the product of the ‘intertemporal marginal rate of substitution’ and

the security price follows a martingale.  For empirical testing purposes, exploiting the martingale

property in this fashion involves a different econometric approach than that followed by rational

stock price studies which exploit only the properties of a covariance stationary process obtained with

an empirically based detrending process.  More precisely, even though first differences of a

martingale process do satisfy the essential requirements for a covariance stationary process, the

arbitrage free detrending process proposed in this paper imposes further equilibrium restrictions
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which involve specifying a fully parametric security pricing model.  This produces a maximum

likelihood estimation problem, where a specific hypothesis is tested parametrically.  In contrast,

rational stock price studies do not typically make such strong assumptions about the theoretical

model generating asset prices.

   There are many potential methods of detrending prices and dividends to achieve covariance

stationarity.  The presence of an equivalent martingale measure dictates that there are certain

methods of detrending which both satisfy covariance stationarity and are consistent with absence of

arbitrage opportunities in security prices.  With this in mind, this paper investigates the following

types of questions: What are the properties of arbitrage free detrenders?  How restrictive are the

equilibrium conditions imposed by absence of arbitrage?  What are the limitations of using specific

detrenders?  The notion that the detrending procedure selected can impact the results of empirical

tests is not new., e.g., Grossman and Shiller (1981), Evans (1991), Diba and Grossman (1988b).

Despite this recognition of the potential importance of the detrending procedure selected, a number

of somewhat different procedures have been employed in, say, studies of stock price rationality.  For

example, Campbell and Kyle (1993) use the Standard and Poor's Composite stock price index and

the associated dividend series both detrended, initially, by the producer price index to get a "real

stock price" and "real dividend".  These series are then further detrended by "the mean dividend

growth rate over the sample".  The resulting series are, under the Campbell and Kyle method,

required to be I(1) processes.  With a number of minor improvements, this is the detrending

procedure followed in Campbell and Shiller (1987).  The failures of the less sophisticated detrending

procedures used in early studies, e.g., Shiller (1981), contributed significantly to the "econometric

difficulties" addressed in Campbell and Kyle (1993).
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    It is possible to develop a correspondence between the detrending process used in this paper and

the specification of the indirect utility function for a representative investor.  This connection has

also been recognized in previous studies.  Diba and Grossman (1988a) demonstrate theoretically that

the marginal utility of consumption will impact the determination of rational stock prices.  Olivier

(2000) is a recent theoretical example of this approach.  At least since Scott (1989), the development

of empirical procedures for estimating the marginal rate of substitution in capital asset pricing

models have been of interest.  Campbell et al. (1997, ch.8) discusses more recent studies along this

line, with Otrok et al. (2002) being a recent empirical study.  These studies almost always employ

a utility function defined using  the aggregate consumption or wealth process, leading to deflation

of nominal prices and dividends by a consumption price index.  Empirical problems associated with

the use of consumption in asset return models has recently been recognized, e.g., Constantinides

(2002).  In contrast, the procedure employed in this paper deflates security prices and dividends by

the cumulative interest rate process before detrending the cumulative dividend-price process by a

function that accounts for the risk aversion properties associated with absence of arbitrage. This

implies that specification of the detrending procedure requires some equilibrium assumption about

risk aversion properties.

II. Absence of Arbitrage and Rational Security Valuation

   The stock market performance measure examined in this paper has an intuitive foundation

derivable from rational security valuation problems of the general form:

where p(t) is the nominal security price observed at time t, d(t) is the instantaneous nominal dividend

or coupon paid at t, and T is the terminal or maturity date for the valuation problem (T $ t $ 0).
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Equation (1) is often referred to as a "no arbitrage" condition, e.g., Blanchard and Watson (1982)

though the connection with the ‘absence of arbitrage’ associated with the equivalent martingale

measure is more complicated.2  The set of valuation operators {V(t,T)} will, in general, involve both

discounting and expected value operations.  Two conditions almost always imposed on the {V(t,T)}

are:

The first condition ensures continuity and consistent pricing.  The second condition ensures pricing

convergence, e.g., Craine (1993).  It is well known that the convergence of the operator as T 6 4 is

required for the satisfaction of a transversality condition that, in turn, is needed to ensure that the

difference equation identified by (1) will not have an infinite number of solutions.  The basic notion

of (1) is that, looking forward from an initial starting point at t to the end of the investment horizon

at T, the return on a stock investment will be a combination of the cumulative dividends paid on the

stock and the capital gain or loss due to price appreciation.  

     The importance of the transversality condition can be seen by interpreting (1) as a continuous

time version of a dividend-price (stock) valuation model, where p(T) is the anticipated nominal stock

price at time T and d(u) is the continuous dividend paid over u , (t,T].  Progressive substitution for

p(T) produces the infinite horizon, discounted-dividend model.  This model forms the basis of

empirical tests for rational bubbles.  Theoretically, a rational bubble is specified by observing that

the security price p(t) can be modelled as the sum of two components, a market fundamentals

component pF(t) and a rational bubbles component B(t), e.g., Evans (1991): p(t) = pF(t) + B(t), where

pF(t) is associated with the infinite sum of the discounted value of expected future dividends and B(t)

can be any random variable that satisfies B(t) = V(t,T) B(T).  Because p(t) can incorporate both
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fundamental and bubble information, progressive substitution for p(T) produces restrictions on the

bubble component.  If the transversality condition:

is satisfied, then a rational bubble is ruled out, B(t) = 0.  The current price will be determined solely

by  pF(t), the discounted value of expected future dividends.

   The connection of the rational security price model with the ‘absence of arbitrage’ model

associated with the equivalent martingale measure can be made by observing that the valuation

operators {V(t,T)} can be decomposed into two parts, one associated with the time value of money

and the other with the systematic risk of the security being priced.  After removing the interest rate

component from the security price and dividend processes, further adjustment for the risk associated

with the state variable will produce a martingale process under the null hypothesis of absence of

arbitrage. This result can be motivated theoretically by initially assuming that the cumulative

dividend-price process is the only state variable.  Given this, the first step in the process is to deflate

the stock price and dividend processes by the cumulative (riskless) interest rate process.  This

deflation procedure is accomplished, for example, by choosing t=0 as the starting point for the

series; price and dividend observations at t=1 are divided by (1 + r(1));  t=2 price and dividend

observations are divided by (1 + r(1))(1 + r(2)) and so on; where r(t) is the (riskless) interest rate for

period t.  A normalization condition that the interest rate process equal one at the pricing decision

date, t=0, is imposed together with the assumption that the discounting process is strictly positive.

The resulting stock price and dividend series are denoted as {S(t)}and {D(t)} to distinguish these

series from the nominal un-discounted series {p(t)} and {d(t)} used in the rational security price

model.3



8

    Considerable effort has been given to establishing that the presence of an equivalent martingale

measure is sufficient to ensure absence of arbitrage in security prices.  Arbitrage free pricing

provides conditions such that, for {S(t)} and {D(t)}, the interest-rate deflated price and dividend

processes,  the cumulative dividend-price process:

is a martingale under the equivalent martingale measure, Q.4  The precise role played by the risk

detrending function, Z(t), in achieving this result can be formalized in the following adaption of

Girsanov's theorem (see also Ingersoll 1987, p.220-3):

Proposition 1: Arbitrage Free Shadow Pricing

Assuming an equivalent martingale measure Q exists, then there exists a positive martingale {Z(t)}
on the probability space (S,F,{F(t)},P), such that for the cumulative dividend-price process, the
transformed process:

is a martingale on (S,F,{F(t)},P) such that for t,k $ 0:

To model current prices, it is appropriate to let t = 0 and observe that Z(0) = 1.

   The significance of Proposition 1 can be clarified by comparing the {Z(t)} with the valuation

operators {V(t,T)} arising from (1) and (2).  Proposition 1 reveals that {Z(t)} roughly corresponds

to the systematic risk component of {V(t,T)} that remains after adjusting for the interest rate deflating

of S and D.  There is a pedagogical connection of {Z(t)} with the inter-temporal marginal rate of

substitution arising in representative investor models.  However, those models work with wealth or

consumption as the state variable while Proposition 1 uses the cumulative dividend-price process
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as the state variable.  The equivalent martingale measure provides the essential transformation to

permit the expectation in (3) to be used for empirical testing purposes, i.e., the expectation is taken

with respect to the empirical P measure.  Following Heaney and Poitras (1994), this permits the

theoretical assumptions made about the diffusion associated with the state variable process to

provide a nested null hypothesis under which a specific {Z(t)} is the appropriate, arbitrage free

detrender for prices and dividends.  It is this detrender function {Z(t)} that is used as the stock

market performance measure.  However, in order to be of practical value, a method is required to

derive a specific closed form for Z(t).  Because Z(t) is a function of the diffusion process assumed

for the state variable, the precise method for doing this is not obvious.  An intuitive solution

procedure is to invoke Ito's lemma to specify partial differential equations for Z(t) which can then

be solved to determine a closed form for {Z(t)}.  This is the approach used here.5

     For the purpose of measuring stock market performance, Proposition 1 suggests a general outline

for an arbitrage free procedure.  Observed prices and dividends, p and d, are initially deflated by the

cumulative interest rate process.  The resulting S and D series are used to estimate the parameters

of Z(Y,t) .  The S and D series are then multiplied by the Z(y,t) applicable to the valuation problem

at hand where the function Z(Y,t) is evaluated at Y= y.  The specific functional form for the Z(Y,t)

used will depend on the diffusion process assumed for the underlying state variable process Y(t).  The

detrending procedure depends crucially on having a closed form for {Z(Y,t)}.  Deriving this closed

form involves starting from the Y(t) diffusion, dY = "(t) dt + ((t) dW, and developing further

restrictions needed to derive the closed form for Z(t).  Heaney and Poitras (1994) provides a

theoretical result that can be used to derive the appropriate closed form.  More precisely, recalling

that {Z(t)} is a martingale, if Z(t) is assumed to obey the differentiability requirements needed to
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apply Ito's lemma, i.e., Z(t) is twice differentiable in the state variables and once differentiable in

time for each t in the interval T $ t $ 0, then it follows that Z(y,t) satisfies a set of partial differential

equations that can be solved to get a specific functional form. 

     Given the functional restriction on Z(Y,t) as well as the relatively weak diffusion assumptions on

dY required to derive Proposition 1, Heaney and Poitras (1994) provide the following restrictions

on Z(y,t) that can be used to restrict the coefficients ("(t), ((t)) in the diffusion processes for the state

variable:

Proposition 2:  Differential Properties of Z  for the Single Diffusion Process dY 6

Given that dY = "(t) dt + ((t) dW and Z(y,t) obeys the first order partial differential equations:

Then the following condition:

is necessary and sufficient for Z(y,t) to satisfy (4), where:

and 8 = "(t) + d(t) is the risk premia for the cumulative interest rate deflated process with d(t) being
the instantaneous dividend rate and y a defined point for the random variable Y(t).

Given the implied restrictions on ((t), "(t) and 8, conditions (4) can be integrated to obtain a

solution for Z(Y,t).  This resulting Z will depend on maintained null hypotheses about the parameters
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and functional form of the underlying price processes.

III. Specific Detrenders

   This Section exploits (4) and (5) to derive closed form solutions for Z(Y,t).  Following the

discussion in Section II, it is appropriate to derive Z(Y,t) for a cumulative dividend-price process.

As dividends are being cumulated into the state variable, Y(t) is modelled as a non-dividend paying

state variable process.  For pedagogical purposes, this cumulative dividend-price state variable

process can be viewed as a proxy for the aggregate wealth process making a connection to the

conventional interpretation of Z(Y,t) as the intertemporal marginal rate of substitution, i.e., ratio of

the marginal utilities of wealth at time  t ( > 0) and at t=0.  However, this interpretation is only

pedagogical as the cumulative dividend-price process combines both the conventional wealth and

consumption processes used in representative investor models.  The use of this state variable process

is relevant because the absence of arbitrage relationship between prices and dividends in Proposition

1 applies to a cumulative dividend-price process.7  Derivation of a specific closed form for Z requires

precise specification of the diffusion process for the state variable, which then becomes a nested null

hypothesis under which the Z is appropriate.  To this end, let this state variable process, Y, follow

the lognormal (Black-Scholes) process:

In (6), Y has been cumulative-interest-rate deflated.  The derivation of Z from the conditions

associated with (4) require:

Verifying that (5) is satisfied, the Z(Y,t) can now be derived as:



12

where t=0 is the initial starting time. Empirically, deflating the observed state variable process by

the cumulative interest rate followed by detrending with Z will produce a martingale process, under

the null hypothesis (6).  As specified in Proposition I, under the null hypothesis of absence of

arbitrage, Z(t) is also required to possess the martingale property.  This Z(t) detrender requires two

parameters to be estimated, : and F.

     With this background, the rationale for interpreting Z(t) as a stock market performance can now

be motivated using conventional notions from asset pricing theory.  In particular, the representative

investor framework identifies the state variable process Y as aggregate wealth.   With some loss of

content, the aggregate wealth process can be identified with the cumulative dividend-price process

generated by the interest rate deflated S&P 500 price index and associated dividend payouts.

Because Z(y,t) captures the adjustment for systematic risk at time t required to ensure absence of

arbitrage, it follows that the time series {Z(y,t)} can be characterized as a measure of the risk

aversion propensity of the representative investor over time.  Given that Proposition 1 requires

dividends and prices deflated by the interest rate and then multiplied by the appropriate Z(y,t) to be

a martingale process, high values of Z can be characterized as reflecting a high degree of risk

aversion for the representative investor at that point in time.  A more precise statement that avoids

the representative investor characterization would say that the value of the interest rate deflated

cumulative dividend-price process is low relative to the long-term trend indicating that investors are

pricing a high level of ‘systematic risk’ into stock prices.  Conversely for low values of Z.

   Interpreting whether specific values of Z are ‘high’ or ‘low’ follows from observing that, from
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Proposition 1, Z(t) = 1 indicates that deflating by the riskless interest rate is all that is required to

obtain a martingale.  Observing that the functional form of Z(Y,t) depends on a null hypothesis about

the underlying stochastic ‘wealth’ process, it follows that performance measures based on Z (or

empirical tests of models involving security prices) involve a joint hypothesis about the assumed

stochastic structure of the underlying state variable and absence of arbitrage in security prices.

Different stochastic assumptions will lead to different functional forms for Z.  In other words, the

method selected to detrend data implicitly imposes assumptions about the underlying security market

equilibrium.  From (7), this Z will depend fundamentally on the selection of the starting value Y(0)

and the length of the investment horizon reflected in the sample period used to estimate the

parameters.

     In order to further illustrate the general model, consider the case where the analysis is extended

to allow dividends to be a constant fraction (*) of the stock price: D = * S.  The asset price, S, is for

simplicity assumed to follow a lognormal process: dS = 2 S  dt + F S  d1.  Because there is still only

one state variable, there is also only one risk premia,  8 = 2 S + * S.  While this approach to

incorporating dividends is not fully consistent with observed dividend behaviour, it does provide the

significant analytical simplification of retaining only stock prices as state variables.  Based on

Proposition 1, absence of arbitrage for a dividend paying asset requires the cumulative dividend-

price process to be a martingale under Q.  In this case:
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Verifying that (5) is satisfied, it is possible to derive Z as:

By construction, this Z is based on the null hypothesis of lognormal, interest rate deflated security

prices and constant proportional payout dividends.  Compared to (7), this detrender has an additional

parameter to be estimated.  Instead of the drift :, there are now two values to be estimated, 2 and

*.  However, it can be verified by direct comparison of (8) with (7) that the solutions are not

substantively different.

   These closed forms for the detrender Z(t) depend on the log normal diffusion process assumed for

the state variable Y(t).  In order to illustrate the implications that assuming a different  stochastic

process for the state variable has on the functional form for Z, consider a more general form of (6),

the constant elasticity of variance (CEV) process.  Again taking Y to be the cumulative dividend-

price process:

For this process:

To satisfy the integrability conditions (5) now requires that either $ = 2 or : = 0.  Of the class of

processes covered by the CEV, only the limiting lognormal, $=2, case is compatible with a non-zero

drift and 8 � 0.  For :=0, because the asset involved does not pay dividends, this condition reduces

to risk neutrality, 8 = 0.  The associated Z(t) = 1, a constant, indicating that deflating prices and

dividends by the interest rate is all that is required for arbitrage free detrending.  This risk neutral

solution provides a trivial stock market performance measure.  If the underlying equilibrium is a

result of aggregate risk neutrality of stock market participants, then the Y(t) process is the arbitrage
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free martingale process.

IV. Empirical Results

     The data file ie_data.xls was obtained from the Shiller website (www.aida.yale.edu/~shiller).

This data file contains monthly data from January 1871 to September 2001 for three variables:

{p(t)}, the nominal values of the Standard and Poor's (S&P) Composite stock price index; {d(t)},

the nominal dividends paid on the S&P Composite price index; and,{CPI(t)},the consumer price

index (1983=100).  In addition to these series, monthly data series were obtained from the website

for the Board of Governors of the Federal Reserve (www.federalreserve.gov) for the AAA bond

yield from Jan. 1919 to Oct. 2002{rt}.  Despite having such long data series, it is not feasible to use

all of the observations available.  One practical reason has to do with the substantive changes in the

composition of the S&P Composite price index.  In the 19th and early 20th centuries, the index is

heavily weighted by transportation stocks, especially railways, and it is not until the 1920's that

industrial stocks are a substantial component of the index.  Even then, the number of stocks in the

index was less than the number included in the post WWII era.  In addition to the types of stocks

included in the index, the legislative reform of US securities markets in 1933 and 1934 also

substantively changed the pricing environment.  The market disruptions precipitated by WWI and

WWII and a substantive change in aggregate dividend payout in the 1950's argue against the use of

those observations. As a consequence, the full sample period selected for examination is the forty-

plus year period from Jan. 1960 to Sept. 2001, amounting to 501 monthly observations.  In addition

to the full sample, this permits four ten year sub-samples to also be examined.

     The Z(Y,t) selected for estimation is given in (7).  Since the associated geometric Brownian

motion process (6) is written on the cumulative interest rate deflated Y, the first step in the estimation
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process is to deflate the observed stock price and dividend series by the cumulative (riskless) interest

rate process.  This is done by multiplying each element of {p(t)} and {d(t)} by:

As required, this cumulative interest rate deflator equals unity at the initial date since r(0) = 0.  The

AAA bond yield is used because this rate captures both the level of the riskless interest rate and the

term premium.  The relationship between the risk premium and the term premium has been

examined in Abel (1998).  (Deflating by a short-term interest rate, such as the three or one month

Treasury bill rate instead of {r(t)} leaves the term premium as a component of Z(t).)  The resulting

cumulative interest rate deflated series, S(t) and D(t) respectively, that make up Y(t) are given in

Figures 1 and 2.    St and Dt are used to estimate the parameters used in the detrender Z(t) and, in

turn, to calculate ZY(t), the Z-detrended value of Y(t):

where Y(t) is the cumulative dividend-price process and ZY(t) is Y(t) detrended by Z(t) defined by

(7). A striking comparison can be made with the commonly used technique of deflating the p(t)

prices by the CPI(t) which is given in Figure 3.

      An important step in estimating the detrender Z(t) is the estimation of the drift : and the

volatility F of dY/Y from (7).  Following Campbell et al. (1997), the maximum likelihood estimators

of the constant drift and volatility are respectively, the (adjusted) mean and the standard deviation

of the log-differences in the state variable, Y, in each pair of adjacent time periods.  To formalize:
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with T being the sample size. Table 1 reports the monthly drift and volatility estimates for the full

sample and the four sub-samples:

Table 1

Estimated Monthly Drifts and Volatilities of Yt

" : F

1960.1-1970.12 .00218  .00253   .0266
1970.1-1980.12 -.00178 -.00124 .0325

1980.1-1990.12 .00285 .00335 .0318

1990.1-2001.9

Full: 1960.1-2001.9

.00318

.00093

.00361

.00113

 .0293

.0201

The estimated monthly drifts are relatively ‘small’ because the prices and dividends have already

been deflated by the cumulative interest rate.  Given the values in Table 1, it is now possible to

calculate the stock market performance measure, Z(y,t), defined by (7).

   Empirical estimates of Z(y,t) will vary with: the initial starting value selected, Y(0) ; the length of

the sample period (which corresponds to the aggregate investment horizon); and the resulting

constant parameter estimates for : and  F obtained for the sample.  Because Z(t) measures the ‘value’

of Y(t) relative to Y(0), the starting point for the sample is fundamental for interpreting the dimension

of Z(t).  For example, if Z(t = 20) = 1.23 this means that the twentieth observation for Y(t) has to be

multiplied by 1.23 to be equal to the trend line value defined by : and  F.  If Y(0) is ‘high’ relative
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to the remaining values in the Y(t) series, then values of Z(t) will be affected accordingly through the

estimates of (negative) : and  F.  Though it is possible to pick a Y(0) starting point for the sample

such that a value of Z(y,t) = 1 represents a particular prior on : or  F, e.g., Z(t) = 1 is a median value

in the Z series, this point was not explored.  Given this, the stock market performance measure, Z(t),

for the full 1960-2001 sample is provided in Figure 4.  Observing that troughs (peaks) in the Z(t)

series represent market peaks (troughs) significant market episodes can be compared.  In particular,

the market ‘bubble’ that peaked in 2000 is seen to be ‘larger’ than the bubble that peaked in 1967.

Similarly, the severity of the market trough in 1973 can be compared with the trough achieved in

1982.  The much studied market meltdown of Oct. 1987 does not appear as a relatively significant

event.

    Given the stock market performance measure plotted in Figure 4, the plot of ZY(t) in Figure 5

reveals that a number of questions remain unanswered.  Confronted with the empirical variation in

: and F reflected in Table 1, the significantly greater volatility in ZY(t) over the first decade of the

sample indicates that different values for ZY(t), Y(t) and Z(s,t) be determined using the drift and

volatility estimates for relevant sub-samples.  The decomposition into sub-samples addresses

questions such as: do stock market participants use forty year sample periods to estimate drift and

volatility or, rather, are investment horizons of a decade more realistic?  Do events from the 1960's

and 1970's have limited impact on stock market valuations of the 1990's?  As indicated in Figures

6-9, change to ten year sub-samples produces substantively different ZY(t).  The changes are also

evident in the Z(t) for each of the four sub-samples provided in Figure 10. For example, the extreme

market trough in 1973 in Figure 4 is not evident in the Z(t) for 1970-1980 in Figure 10.  Similarly,

the extreme troughs in the early 1990's evident in Figure 10 are not apparent in Figure 4.  The upshot
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is that assessment of stock market performance depends on both the length of the sample period

(investment horizon) used to make comparisons and the initial Y(0) starting value.

Section V:  Martingale Tests8

   In Section II it was observed that, under the null hypothesis of absence of arbitrage in security

prices, {Z(t)} is a strictly positive martingale.  This can be seen by applying Ito's lemma to (7) and

using (6) to show the martingale requirement also applies to Z(t).  In general, the martingale property

of {Z(t)} is inherent in the theoretical framework captured in (4) and (5).  Evidence that {Z(y,t)}

generated by (7) does not follow a martingale is a rejection of the joint null hypothesis (6) and (3).

In particular, testing empirically whether {Z(t)} follows a martingale is a specification test for the

joint hypothesis of absence and arbitrage and the validity of (7).  It is possible that, if the martingale

hypothesis is not empirically validated, the null hypothesis of absence of arbitrage could still be true

because (7) is not valid.   Similarly, the joint null hypothesis of (6) and (3) requires ZY(t) to also have

the martingale property.  

   Various possible statistical methods are available for testing whether a time series is a martingale

process, e.g., Campbell, et al. (1997, Sec. 2.1), Pantula et al. (1994).9  Tables 2-4 reports martingale

tests derived from the result that first differences of a martingale process are orthogonal.  Hence,

under the null hypothesis that the Z(t) is a martingale, the slope and intercept in an AR(1) regression

for )Z(t) are expected to be insignificant.  Because both the slope and intercept are required to be

zero, the relevant statistic to examine is the F test.  Because there is a lagged dependent variable in

the regression, a test for autocorrelation is required.  If autocorrelation is present then the statistical

tests will be biased in favour of acceptance.  Durbin’s h test is provided for the purpose of testing

for autocorrelation in regressions with lagged dependent variables.  In order to determine whether
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there is drift in the mean, regression results are presented both with and without a linear time trend.

Similar tests are also done for Y(t) and ZY(t).  Under the joint null hypothesis of (6) with absence of

arbitrage, ZY(t) is expected to be a martingale.  If Z(t) = 1 for all t, then (3) implies that Y(t) is also

expected to be a martingale.  The properties of these two series reflect the difference between using

the detrender given by (7), for ZY(t), and assuming the risk neutral detrender, Z(t) = 1.  Results for

both the full sample and the relevant subsamples are provided. 

     The results in Tables 2-3 reveal that Z(t) and ZY(t) generated by (7) do not meet the requirements

of a martingale for the full 1960-2001 sample, i.e., )Z(t) exhibits statistically significant and positive

autocorrelation.  Results for the four 10 year subsamples are generally the opposite, with the F test

for all coefficients jointly equal to zero being insignificant at the 1% level in all subsamples for ZY(t)

and all but the 1980.1-1989.12 subsample for Z(t), i.e., it is not possible to reject the hypothesis of

jointly zero coefficients at the 1% level with the F test. This rejection for the full sample, but not the

subsamples, suggests that there are possible problems associated with achieving a martingale using

the constant drift and volatility estimated over such a long time period.  Because these parameters

are essential components in the functional form for Z(t), it may be necessary to incorporate parameter

evolution in the specification of Z(t) in order to obtain a martingale for long sample periods.

Alternatively, the subsample results may be due to low power of the tests that is manifested in the

smaller length of the subsamples.  The possible impact of Z(t) on ZY(t)can be assessed by examining

the case where Z(t) = 1applies, i.e., by examining the martingale properties of Y(t).  Comparing the

results in Tables  3 and 4 reveals generally similar results.  The Y(t)full sample results reject

martingale behaviour, with the F test for three of the four subsamples being insignificantly different

from zero.  As with the Z(t) results, the F test for Y(t)is highly significant for the 1980.1-1989.12
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subsample.  This would tend to support a ‘low power’ explanation for the difference between the full

and subsample results.

VI. Conclusions and Implications

  Several issues are raised in this paper.  Of general interest to empirical researchers, it is

demonstrated that detrending procedures can impose significant equilibrium restrictions in empirical

studies.  In the specific case of rational stock pricing models, this is due to the implications that the

null hypothesis of absence of arbitrage has for the empirical behaviour of security prices.

Implementation of the stock market performance measure (detrending procedure) proposed here

involves making specific stochastic process assumptions about prices in order to generate a Z(y,t).

Because the selection of a closed form detrender embeds an assumption about how risk is reflected

in security prices, the empirical tests involve a joint hypothesis concerning the detrending process

and the security pricing model.  Given this, the empirical results of this study provide useful

evidence about the null hypothesis of absence of arbitrage in aggregate stock prices.  Tests for the

martingale property, both in the detrender, Z(y,t), and in the detrended state variable process, ZY(t),

indicate a significant amount of positive autocorrelation in the first differences of both Z(y,t) and

ZY(t) for the full 1960-2001sample.  This rejection of absence of arbitrage is qualitatively different

than, say, finding evidence for a rational bubble where there is a component of the observed price

that is not explained by the discounted value of expected future dividends.  If there are rational

bubbles, then discounted dividend stock pricing models, such as the Gordon model, are mis-

specified.  This conclusion is based on a rejection of the transversality condition.  As the rejection

of the martingale hypothesis relates to the properties of the path of security prices, the empirical

results in Section V are not equivalent to finding evidence for a rational bubble.
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   The primary objective of this paper is to use the restrictions imposed by absence of arbitrage in

security prices to develop a stock market performance measure, Z(t).  Rejection of the joint

hypothesis involving absence of arbitrage begs an obvious question: does this rejection undermine

the applicability of the performance measure?  The answer to this question depends on how the

performance measure is being used.  Comparison of the sub-sample and full sample results indicates

that fitting Z(t) with constant parameters over a long time period generates positive autocorrelation

in the measure.  In practical terms, this could mean that the risk assessment reflected in aggregate

stock market values is taken over a shorter time horizon than 40 years.  Even though the plots are

less revealing, the sub-sample results may indicate that an assessment horizon of ten years or less

is appropriate for measuring stock market performance using measures that are consistent with

absence of arbitrage.  It could also mean that, at times, markets do not strictly adhere to absence of

arbitrage.  As such, if measuring performance over long time periods is desired, this may require

some method for evolving the parameter estimates.  Yet, incorporating parameter evolution by

introducing additional state variables substantively complicates the problem of deriving a closed

form for the performance measure.  A practical, if somewhat ad hoc, solution would be to use a

moving estimation window to determine the parameters required to calculate Z(t).  However, this

raises the as yet unresolved problem of determining the optimal time period for estimating these

parameters.  These issues raise a number of potentially fruitful avenues for future research on the

properties of the stock market performance measure proposed in this paper.
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Table 2*
Tests for the Martingale Property of Z(t)

)Z(t) = "0 + "1 )Z(t-1) + "2 t
_____________________________________________________________________________
Full Sample, 1960.1-2001.9 (NOB = 499) R2 = .0597 Durbin h = .905 F test = 31.57

"0 = -.0007 "1 = .2439 Std. Error of Reg. = .0342
(-.461) (5.62)

____________________________________________________________________________
R2 = .0598 Durbin h = .907 F test = 15.79

"0 = -.0014 "1 = .2440 "1 = .00002 Std. Error of Reg. = .0342
(-.353) (3.09) (.241)

_____________________________________________________________________________
Subsample, 1990.1-2001.9  (NOB = 139) R2 = .0421 Durbin h = .232 F test = 6.01

"0 =  .0010 "1 = .2220 Std. Error of Reg. = .0415
(.279) (2.45)

_____________________________________________________________________________
R2 = .0598 Durbin h = .233 F test = 3.57

"0 = -.0055 "1 = .2198 "2 = .00009 Std. Error of Reg. = .0415
(-.742) (2.37) (.857)

_____________________________________________________________________________
Subsample, 1980.1-1989.12 (NOB = 118) R2 = .1033 Durbin h = 2.47 F test = 13.36

"0 =  .0005 "1 = .3207 Std. Error of Reg. = .0391
(.137) (3.56)

_____________________________________________________________________________
R2 = .1063 Durbin h = 2.68 F test = 6.84

"0 = .0044 "1 = .3178 "2 = -.00007 Std. Error of Reg. = .0391
(.531) (2.85) (-.569)

_____________________________________________________________________________
Subsample, 1970.1-1979.12 (NOB = 118) R2 = .0480 Durbin h = .753 F test = 5.85

"0 =  .0004 "1 = .2182 Std. Error of Reg. = .0190
(.281) (2.42)

_____________________________________________________________________________
R2 = .0480 Durbin h = .849 F test = 2.90

"0 = .0004 "1 = .2182 "2 = .00000 Std. Error of Reg. = .0191
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(.104) (2.41) (.001)
_____________________________________________________________________________
Subsample, 1960.1-1969.12 (NOB = 118) R2 = .0537 Durbin h = .581 F test = 6.58

"0 = -.0024 "1 = .2302 Std. Error of Reg. = .0579
(-.457) (2.57)

_____________________________________________________________________________
R2 = .0622 Durbin h = .362 F test = 3.81

"0 = -.0120 "1 = .2253 "2 = .0002 Std. Error of Reg. = .0579
(-.811) (1.14) (.910)

_____________________________________________________________________________

* Values in brackets below coefficient estimate are t-test values for the hypothesis that the coefficient
equals zero.  For the regressions with a time trend, heteroskedasticity adjusted standard errors
(White’s adjustment) are used to calculate the t-value.  For regressions without time trends, the t-
values are based on unadjusted standard errors.
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Table 3*
Tests for the Martingale Property of ZY(t)

)ZY(t) = "0 + "1 )ZY(t-1) + "2 t
_____________________________________________________________________________
Full Sample, 1960.1-2001.9 (NOB = 499) R2 = .0624 Durbin h = .987 F test = 33.03

"0 =  .0060 "1 = .2493 Std. Error of Reg. = .3845
(.351) (5.75)

____________________________________________________________________________
R2 = .0655 Durbin h = 1.07 F test = 17.35

"0 = -.0014 "1 = .2456 "1 = .0002 Std. Error of Reg. = .3842
(-.519) (1.65) (.828)

_____________________________________________________________________________
Subsample, 1990.1-2001.9  (NOB = 139) R2 = .0389 Durbin h = .784 F test = 5.50 

"0 =  .0862 "1 = .2094 Std. Error of Reg. = .3574
(2.73) (2.34)

_____________________________________________________________________________
R2 = .0481 Durbin h = .784 F test = 3.41

"0 =  .0259 "1 = .2027 "2 = .0009 Std. Error of Reg. = .3570
(.601) (1.88) (.963)

_____________________________________________________________________________
Subsample, 1980.1-1989.12 (NOB = 118) R2 = .0292 Durbin h = 1.62 F test = 3.46 

"0 =  .0648 "1 = .1642 Std. Error of Reg. = .0573
(7.38) (1.86)

_____________________________________________________________________________
R2 = .0382 Durbin h = 1.46 F test = 2.27

"0 = .0556 "1 = .1591 "2 = .00016 Std. Error of Reg. = .0573
(3.61) (1.38) (1.10)

_____________________________________________________________________________
Subsample, 1970.1-1979.12 (NOB = 118) R2 = .0545 Durbin h = .943 F test = 6.63

"0 =  -.0310 "1 = .2336 Std. Error of Reg. = 1.495
(-.225) (2.58)

_____________________________________________________________________________
R2 = .0546 Durbin h = 1.08 F test = 3.29

"0 = -.0434 "1 = .2337 "2 = .0002 Std. Error of Reg. = 1.495
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(-.126) (2.36) (.050)
_____________________________________________________________________________
Subsample, 1960.1-1969.12 (NOB = 118) R2 = .0549 Durbin h = .522 F test = 6.67

"0 = -.0326 "1 = .2353 Std. Error of Reg. = 1.237
(-.285) (2.58)

_____________________________________________________________________________
R2 = .0643 Durbin h = 1.19 F test = 3.92

"0 = -.2483 "1 = .2270 "2 = .0036 Std. Error of Reg. = 1.237
(-.779) (1.21) (.930)

_____________________________________________________________________________

* Values in brackets below coefficient estimate are t-test values for the hypothesis that the coefficient
equals zero.  For the regressions with a time trend, heteroskedasticity adjusted standard errors
(White’s adjustment) are used to calculate the t-value.  For regressions without time trends, the t-
values are based on unadjusted standard errors.
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Table 4*
Tests for the Martingale Property of Y(t)

)Y(t) = "0 + "1 )Y(t-1) + "2 t
_____________________________________________________________________________
Full Sample, 1960.1-2001.9 (NOB = 499) R2 = .0524 Durbin h = 1.43 F test = 27.53

"0 = .0357 "1 = .2312 Std. Error of Reg. = .9216
(.864) (5.25)

____________________________________________________________________________
R2 = .0525 Durbin h = 1.47 F test = 13.75

"0 = .0487 "1 = .2313 "1 = -.00005 Std. Error of Reg. = .9225
(.485) (4.25) (-.157)

_____________________________________________________________________________
Subsample, 1990.1-2001.9  (NOB = 139) R2 = .0341 Durbin h = .644 F test = 4.83

"0 =  .0619 "1 = .1941 Std. Error of Reg. = .8734
(.829) (2.20)

_____________________________________________________________________________
R2 = .0416 Durbin h = .663 F test = 3.57

"0 = .1957 "1 = .1905 "2 = -.0019 Std. Error of Reg. = .8732
(1.65) (1.98) (-.874)

_____________________________________________________________________________
Subsample, 1980.1-1989.12 (NOB = 118) R2 = .1187 Durbin h = 2.53 F test = 15.63

"0 =  .0385 "1 = .3438 Std. Error of Reg. = .6437
(.647) (3.95)

_____________________________________________________________________________
R2 = .1217 Durbin h = 2.72 F test = 7.97

"0 = -.0288 "1 = .3409 "2 = .0011 Std. Error of Reg. = .6454
(-.211) (2.66) (.553)

_____________________________________________________________________________
Subsample, 1970.1-1979.12 (NOB = 118) R2 = .0509 Durbin h = .040 F test = 6.28

"0 = -.0418 "1 = .2261 Std. Error of Reg. = .9747
(-.467) (2.51)

_____________________________________________________________________________
R2 = .0513 Durbin h = .081 F test = 3.13

"0 = -.0718 "1 = .2258 "2 = .0005 Std. Error of Reg. = .9788
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(-.338) (2.44) (.194)
_____________________________________________________________________________
Subsample, 1960.1-1969.12 (NOB = 118) R2 = .0421 Durbin h = 1.30 F test = 5.09

"0 = .0835 "1 = .2067 Std. Error of Reg. = 1.157
(.780) (2.26)

_____________________________________________________________________________
R2 = .0523 Durbin h = 1.20 F test = 3.17

"0 =  .2916 "1 = .1999 "2 = -.0035 Std. Error of Reg. = 1.157
(1.29) (1.70) (-1.07)

_____________________________________________________________________________

* Values in brackets below coefficient estimate are t-test values for the hypothesis that the coefficient
equals zero.  For the regressions with a time trend, heteroskedasticity adjusted standard errors
(White’s adjustment) are used to calculate the t-value.  For regressions without time trends, the t-
values are based on unadjusted standard errors.
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1.  As demonstrated by Decamps and Lazrak (2000), there is a semantic confusion in one of the
proofs in Heaney and Poitras (1994) where it was not made sufficiently clear that separability
of Z(t) in the forward and backward variables is used in the main Proposition 1.  

2.  This illustrates the potential confusions arising from the sometimes conflicting usage of
"arbitrage".  The convention in rational stock pricing models is that absence of arbitrage
requires "assets are voluntarily held and that no agent can, given his private information and the
information revealed by prices, increase his expected utility by reallocating his portfolio".  This
definition of absence of arbitrage is much weaker than that encountered in the pricing of
derivative securities where an arbitrage is a riskless trading strategy which generates a positive
profit with no net investment of funds.

3.  Following the approach used in Harrison and Kreps (1979), the role of the discounting
process in theoretical absence of arbitrage models is usually handled with the simplification of
assuming that interest rates are zero, directly suppressing consideration of issues associated with
the numeraire.  This approach is impractical for empirical applications.  Introducing deflating
by the cumulative interest rate process into the definition of the state variables permits the
arbitrage free shadow prices to be directly derived as the product of the marginal rate of
substitution and the observed, interest rate detrended price process.  To make the connection
with empirical applications means that security prices and dividends deflated by the interest rate
are the relevant state variables.

4.  The cumulative dividend-price process could also be defined as the total return process.  The
change in notation from p and d to S and D is intended to recognize the difference between these
variables: S and D are interest rate deflated while p and d are observed nominal prices and
dividends.

5.    To facilitate this process, the explicit connection of Z(t) with the state variable Y(t) will be
recognized by introducing the notational convention {Z(t)} / {Z(Y,t)}.  The substitution of Z(y,t)
for Z(Y,t), where y represents a specific point realization of Y, is deliberate.  This follows
because, much like a Taylor series, Ito's lemma involves expanding a function about a specific
point.

6. Heaney and Poitras (1994) result applicable for a k-dimensional vector diffusion state space.
The specification of f in Proposition 2 reveals that the assumption of differentiability on Z(Y,t)
also requires that the diffusion coefficients F(@) and "(@) be differentiable.  This is substantively
stronger condition than the Lipschitz and growth conditions required to get Proposition 1.  From
this it follows that Proposition 2 also requires, "(@), F(@) and D(@) to be second order
differentiable in state and first order differentiable in time.

7.  Models such as the consumption based CAPM would interpret the stock price process as the
wealth process and the dividend process as the consumption process.   As captured in

NOTES



42

Proposition 1, the absence of arbitrage approach permits a different choice of state variables.

8.  Creating subsamples is not straight forward.  Another practical problem which arises in
constructing and interpreting the various Z-detrended series is associated with the presence of
initial transients in the various data series: it takes a number of observations from the start of
the detrended series for the process to damp down to an equilibrium state.  This initial transient
behaviour is expected, given that the Z(t) are solved by integrating (5) which induces an initial
starting value into the solution.  The transient is generic to the pricing problem being examined
and is independent of the starting value selected.

9.  An alternative and potentially more powerful method of testing the martingale hypothesis
is to use goodness of fit tests.  However, this approach would require considerable analytical
development to determine the specific distributional implications of the martingale hypothesis.
As a consequence, the more familiar procedures selected in this section are driven by
expediency.
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