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Abstract

Browning, Chiappori, and Lewbel (2013) model collective-household economies
of scale in goods consumption by having each good be partly shared, instead
of each good being public or private. We modify their model to achieve simple
point identification and estimation of the economies of scale of consumption
of each good, and we provide a new index of household level economies of
scale. Our model has a linear form, permits households of varying composi-
tion, including children, and accommodates unobserved heterogeneity in both
preferences and in the economies of scale of each good. We provide estimates
using Canadian Survey of Household Spending data.

1 Introduction

“Two can live as cheaply as one” - Biloxi Herald newspaper, 1895.

“Two can live as cheap as one, if you don’t want to eat” - Will Rogers,
1925.

“When you have a wife and a baby, a penny bun costs threepence” -
William M. Gorman, 1976.

Economies of scale to consumption within a household depend on the extent to
which goods are jointly consumed by household members. Two could live as cheaply
as one if all goods were public within the household. But goods like penny buns
are private; two people can’t eat the same bun. Many collective household demand
analyses assume that every good is either private or public (see, e.g., the survey book
by Cherchye, De Rock, and Vermeulen, 2012). But in reality, most goods are partly
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shared, e.g., automobile transportation is private if one drives alone, but jointly
consumed when a family rides together. Heating is private when home alone, but
public when the whole family is home.

Measuring the extent of joint consumption within households is important for
analyses of welfare, and to assess the efficiency and effectiveness of government
transfer policies. Most transfers to households are not proportional to household
size, reflecting assumed economies of scale to consumption. For example, in 2022,
Canadian households falling below specific income thresholds can receive an annual
Goods and Services Tax (GST) credit payment of CAD$496 for singles, CAD$650
for married or common-law couples, plus CAD$171 for each child.

Most of the collective household consumption literature assumes goods are each
either purely private or purely public within the household.1 However, the collective
household model of Browning, Chiappori, and Lewbel (2013) (hereafter BCL) relaxes
this constraint by introducing, for each good the household consumes, a measure
of the extent to which that good is shared or jointly consumed among household
members. BCL refer to these good specific economies of scale measures as Barten
scales, since they resemble measures used in Barten’s (1964) unitary model.

The main contributions of this paper are:

1. By suitably modifying BCL, we construct a simple linear regression method to
identify and estimate BCL Barten scales for households of different observed
types (e.g., singles, households with and without children, etc). Estimation uses
readily available household level consumption data and Barten scales are iden-
tified without assuming that preferences are identical across household types.

2. We allow these Barten Scales to vary randomly across households with an
unknown distribution allowing for (and estimating) unobserved heterogeneity
in joint consumption across households. This is in addition to unobserved
random variation in household member preferences.

3. We propose a new simple index of household level economies of scale that
depends only on BCL Barten scales and on readily observed household level
expenditures.

4. We estimate these economies of scale measures using data from the Canadian
Survey of Household Spending.

1See, e.g., Browning et al. (1994), Browning and Chiappori (1998), Blundell et al. (2005), or
Cherchye et al. (2011, 2015).
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Our empirical findings include some interesting results.We find similar economies
of scale to consumption in households with one child versus childless couples, sug-
gesting little or no joint consumption of goods by children and adults. We find that
unobserved heterogeneity in economies of scale across households of the same com-
position is rather small, except for food not consumed at home. Overall, we also find
less economies of scale to consumption than is implied by the GST credit scheme
described above, which suggests that larger household sizes are undercompensated
relative to singles.

1.1 Background

In principle, joint or shared consumption (i.e., good-specific economies of scale)
within households could be directly measured, by observing the time and place of
consumption of every good by every household member. For example, one would
need to record how often household members drove alone vs together to measure
the economies of scale of gasoline consumption. Such detailed data on every good a
household consumes is unavailable. We therefore require a model to infer economies
of scale from available consumption data.

In the 20th century, economies of scale to consumption were modeled using equiv-
alence scales (see Lewbel and Pendakur, 2008a for a survey). Equivalence scales
assume a unitary model, i.e., a household’s behavior is assumed to be equivalent
to that of a single utility maximizing agent. An equivalence scale is then defined
as what the household must spend to obtain the same utility level as an individual
living alone, divided by what that individual alone spends. These equivalence scales
suffer from serious methodological and identification issues, because they require as-
signing a single utility level to a household, and require interpersonal comparability
of utility between that household and an individual.

Starting from Becker (1981), Apps and Rees (1988), and Chiappori (1988, 1992),
collective household models relax the constraints of unitary models by modeling
households as collections of utility maximizing individuals making household con-
sumption decisions. These consumption choices are often assumed to be efficient,
that is, household members are assumed to reach the Pareto frontier.

Most of the collective household consumption literature assumes goods are each
either purely private or purely public within the household. See, e.g., Browning et al.
(1994), Browning and Chiappori (1998), Blundell et al. (2005), or Cherchye et al.
(2011, 2015). BCL relax this constraint by introducing, for each good the household
consumes, a measure of the extent to which that good is shared or jointly consumed
among household members. BCL call these measures Barten scales, due to their
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resemblance to unitary model good-specific scales proposed by Barten (1964).
BCL show that these Barten scales are identified for childless couples from household-

level demand functions and singles’ demand functions assuming preference stability,
i.e., assuming that single men and women have the same preferences regardless of
whether they live alone or together. Other early papers that make use of the BCL
machinery include Lewbel and Pendakur (2008b) and Bargain and Donni (2012).

We start from BCL, and from Dunbar, Lewbel, and Pendakur (2013), who re-
lax the restrictive preference stability assumption in BCL, replacing it with similar
across people (SAP) and similar across types (SAT) assumptions. Unlike preference
stability, SAP and SAT only require that individual preferences be similar, rather
than identical, across different individuals or across the types of households in which
individuals may find themselves. These SAP/SAT assumptions have been applied
in e.g., Penglase (2021), Lechene, Pendakur, and Wolf (2022), and Calvi, Penglase,
Tommasi, and Wolf (2023).

Estimation of the BCL model is challenging in terms of required assumptions and
data analysis. In contrast, we obtain a computationally trivial linear least squares
estimator for BCL Barten scales. We do this by combining BCL with SAP and
SAT type restrictions, employing a specific semiparametric class of demand (utility)
functions, and differencing out some complicated price functions. This is feasible
because our goal is just point identification and estimation of economies of scale,
rather than the entire BCL model.

We also generalize BCL by letting these Barten scales vary randomly across house-
holds with an unknown distribution, thereby accommodating unobserved heterogene-
ity in the extent to which households share and jointly consume goods. Lewbel and
Pendakur (2017) introduce random Barten scales into a unitary model framework
and Dunbar, Lewbel, and Pendakur (2021) introduce random resource shares into
a collective model, but having random Barten scales into the collective household
model is an innovation of the present paper.

To avoid the drawbacks of equivalence scales, BCL propose indifference scales,
which measure the savings from joint consumption within a household by comparing
the costs to an individual of achieving the same indifference curve when living alone as
they experience when living within a collective household. Constructing indifference
scales requires identification of the entire BCL model.

Since we focus on only identifying BCL Barten scales, another contribution is that
we propose a new measure of household level economies of scale that only depends
on Barten scales and on observed expenditure levels. The measure we propose is an
index function similar to a Laspeyres (1871) price index.

Our model identifies consumption economies of scale with partly shareable (rather
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than purely private or purely public) goods while only requiring price and household-
level repeated cross-section expenditure data. Our model is trivial to estimate: it
reduces to a linear system of equations, requiring only linear seemingly unrelated
regression (SUR) or linear three-stage least squares estimation. Our model also al-
lows for unobserved heterogeneity in economies of scale across households, by letting
Barten scales vary randomly across households. Unlike BCL, but similar to Dunbar
et al. (2013), Calvi (2020), Penglase (2021), Lechene et al. (2022), Lewbel and Lin
(2022), and Calvi et al. (2023), our model accommodates households with children.

The rest of this paper is organized as follows. In Section 2, we introduce a
modified BCL collective household model. In Section 3 we then define our index of
household economies of scale. Next, in Section 4, we show general semi-parametric
point identification of deterministic Barten scales, and then we extend our approach
to random Barten scales. Section 5 shows how to estimate our model using linear
regression. We also introduce two linear empirical tests of our model’s assumptions.
Section 6 provides empirical results using Canadian household spending data. Section
7 concludes.

2 The BCL Collective Household

Here we set up our modified BCL model. For simplicity we focus on nuclear families
composed of J members which, unlike the original BCL model allows for any number
of members, including children. Let q = (q1, ..., qK)

′ be a continuous K−vector
of observed household-level quantities of goods, let M be the observed household
budget, and let p be an observed K−vector of market prices. We will assume that
p, q,M are the observed variables for individual households.

Each household member is endowed with their own set of preferences over quan-
tities of the K goods. Let q̃j = (q̃j1, q̃j2, ...q̃jK)

′ be the K-vector of quantities of each
good k consumed by member j in a household. We use tildes to indicate that these
quantities may not be observed. For example, q̃j is only observed when person j lives
alone. The household is assumed to be Pareto efficient, and so behaves equivalently
to maximizing the following weighted sum of utilities:

max
q,q̃1,q̃2,...q̃J

J∑
j=1

Uj (q̃j) · µj (p,M) s.t. p′q = M, q = A
J∑

j=1

q̃j,

where Uj (q̃j) is the direct utility function for member j and µj (p,M) is a Pareto
weight function that is member j′s weight in the household’s objective function.
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The K × K matrix A is what BCL call the consumption technology function.
The elements of A describe the extent to which goods are shared, that is, jointly
consumed. We assume the matrix A is diagonal, which is what BCL refer to as a
Barten consumption technology. The diagonal elements of A are a1, a2, ..., aK that
BCL call Barten scales, analogous to Barten’s (1964) unitary model. For each good

k, we have qk = ak

(∑J
j=1 q̃jk

)
, so what the household purchases is the total amount

of good k consumed by all household members multiplied by ak. When ak is smaller
than 1, the household purchases less than the total amount consumed by its members.
Each Barten scale ak is therefore a measure of the household’s economies of scale to
consumption of good k. The first goal of this paper is estimation of the vector a for
each household type.

At one extreme, if good k was completely public,2 then each of the J household
members would consume the entire purchased quantity of the good, and in that case
ak would equal 1/J . Even though the total consumption of members is Jq, the
household need only purchase q. At the opposite extreme, if good k is private, then
ak would equal 1. In this case, the household must purchase the full value of the total
consumption of all the members. More generally, a good that is jointly consumed
some of the time within a household, like gasoline, would have a value of ak between
1/J and 1. This provides a strong plausibility check for the estimates of our model,
since each estimated Barten scale ak should neither be below 1/J (indicating more
than full sharing) nor above 1 (which would imply diseconomies of scale).

Using the same machinery as the second fundamental theorem of welfare eco-
nomics, BCL show that the household problem described above is algebraically equiv-
alent to a decentralized maximization, where each member j separately maximizes
their individual utility, subject to a shadow budget constraint:

max
q̃j

Uj (q̃j) s.t.
K∑
k=1

akpkq̃kj = η̌j (p,M)M, (1)

where η̌j (p,M) is the resource share function indicating the fraction of the total bud-

get M claimed by member j, with the constraint that
∑J

j=1 η̌j (p,M) = 1. (We put

2Pure public goods have the property that ak = 1/J . They also have the additional property
that all persons j consume exactly the same quantity. Satisfying this additional restriction would
change the optimal solutions for the shadow budget constraints (described below), and in particular
would result in shadow prices that vary across household members j (each member would face their
Lindahl price for the pure public good). We do not impose that restriction in this paper, and, as a
consequence, shadow prices are identical across household members. In that sense, public goods in
our setting are not pure.
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a check on η for now because later we will restrict it and remove the check.) Unlike
BCL, we will not attempt to identify or estimate these resource share functions.3 We
call η̌j (p,M)M the shadow budget of person j because it equals what person j gets
to spend at shadow prices akpk for each good k when they live in the household.

Suppose for a moment that person j was living alone, maximizing Uj (q̃j) under
a budget constraint p′q̃j = M . Define ωjk (p,M) as the Marshallian budget share
demand function for good k that would result from this maximization, so we would
have q̃kj satisfying pkq̃kj/M = ωjk (p,M) for each good k.

Equation (1) shows that each household member j in BCL maximizes their own
utility Uj (q̃j) based on shadow prices akpk and the shadow budget η̌j (p,M)M .4 So
the resulting quantity of good k consumed by household member j, i.e., q̃kj, is given
by

pkq̃kj
η̌j (p,M)M

= ωjk (a1p1, a2p2, ..., aKpK , η̌j (p,M)M) .

These member specific quantities q̃kj are not observed in general. We can only observe
qk, the total quantity of good k consumed by the household, for each good k.

Define observable household-level budget shares wk = pkqk/M , so wk is the frac-
tion of the household’s total expenditures M that is spent on purchasing good k. It
follows from the above constructions (see Proposition 3 in BCL for the special case
where J = 2) that the household’s budget share demand equations are given by

wk =
J∑

j=1

η̌j (p,M)ωjk (a1p1, a2p2, ..., aKpK , η̌j (p,M)M) . (2)

Equation (2) expresses household level budget shares as a function of p, M , and
the Barten scales a1, a2, ..., aK . In the previous literature, these Barten scales are
assumed to be fixed parameters that are the same for all households having same
composition. We maintain this assumption for now, but later in Section 4.3 we
will relax this assumption by introducing random (aka unobserved) heterogeneity in
Barten scales across households. Our goal is to identify and estimate these Barten
scales and their distribution.

3For information on resource share interpretation, identification and estimation, see BCL and
Lewbel and Pendakur (2008b), Bargain and Donni (2012), Dunbar et al. (2013, 2021), Penglase
(2021), and Lechene et al. (2022).

4A feature of the BCL model is that all members of a given household face the same shadow
prices. This distinction sets shareable goods apart from pure public goods. Pure public goods
involve Lindahl prices that are specific to each individual, whereas shareable goods share the same
vector of shadow prices among all household members.

7



3 Household Level Economies of Scale

Let subscript t index household types, such as childless couples or couples with
children. For now, each household of type t is associated with a unique vector of
Barten scales (at1, at2, ...atK)

′. We will introduce random variation in Barten scales
amongst households of a given type later. Each Barten scale atk can be interpreted
as the economies of scale in consumption of good k for household type t. Let t = 1
denote single-member households. Since there is no opportunity for shared or joint
consumption for singles, atk for t = 1 must equal 1 for each good k. We now propose
a certain weighted average of Barten scales as a household level economies of scale
measure.

As noted earlier, household economies of scale were traditionally measured using
equivalence scales, which suffer from many methodological and identification issues.
Less problematic measures of household economies of scale are the indifference scales
proposed by BCL, but these require strong assumptions and rich data for identi-
fication, and are computationally difficult to estimate. In particular, identifying
the indifference scale for a household type requires identifying the (ordinal) utility
function of each household member.

Let e1k = pkq1k be the observed spending level on good k for a single individual,
where q1k is this single person’s quantity consumed of good k. Instead of equivalence
scales or indifference scales we propose the following measure of economies of scale,
which depends only Barten scales atk and observable spending of singles e1k

St =

∑K
k=1 atke1k∑K
k=1 e1k

. (3)

The denominator of St equals the budget of a single person living alone, and the
numerator equals the shadow budget this single person would need in a household of
type t to purchase the same bundle of goods he or she consumed while living alone.

In short, St is how much (in percentage terms) a single person would save if,
instead of paying market prices for each good he or she buys, they paid the shadow
price of each good within a household of type t. Since Barten scales each fall within
the range of 1/J to 1, the index St also falls within this range. The lower is St, the
greater are the economies of scale to consumption in household type t.

The difference between St and an indifference scale is that an indifference scale
would replace the numerator with the cost of attaining the same indifference curve
the single attained while living alone. So unlike St, an indifference scale would
account for that fact that an individual living in a household would reoptimize based
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on within-household shadow prices, therefore consuming a different quantity bundle
than when living alone.

Thus St is essentially a Laspeyres (1871) price index, equalling the ratio of costs of
purchasing an identical bundle of goods under two different price regimes (the shadow
price atkpk vs the market price pk for each good k), and so only requires estimating
Barten scales. In contrast, an indifference scale, which depends on preferences, can
be interpreted as a true cost of living index between those two price regimes, and
so would require estimating not only Barten scales but also the utility functions of
household members.

Having described what the structural parameters atk are and having shown how
to construct an index of scale economies that depends only on those parameters and
other observable variables, we now turn to identification of atk (and their distribution)
from data on household expenditure.

4 Identification

In this section, we show semiparametric identification of collective household Barten
scales based on a simple linear relationship. We then extend these results to allow
for identification of the distribution of random variation in Barten scales across
households.

4.1 Semiparametric Specification

Let subscript i = 1, ..., N index observed households. Each household i of type
(composition) t consumes a bundle of K goods, having a budget Mit and facing the
K vector of prices pit.

Assumption 1. Each household i’s demand behavior is given by the BCL model with
K goods and a Barten consumption technology. Let at = (at1, at2, ..., atK−1)

′ denote a
fixed (K−1)-vector of collective Barten scales for goods 1, ..., K−1 in a household of
type t. Assume the vector of Barten scales is the same for all the households of type
t. Assume the K-th good is private for all t, and so has a Barten scale of atK = 1.

Later we will relax the assumption that at is a fixed vector to allow Barten scales
to vary randomly across households of the same type t. We assume here that the
K-th good in the bundle is private and so non-shareable. Many empirical studies
use clothing as a private good to estimate the resource share function, e.g., Dunbar
et al. (2013) and Lechene et al. (2022). Having one good be private is required for

9



point identification, otherwise one could not distinguish the scaling of the vector at
from coefficients of p in preferences.

Let yit = lnMit−ln pitK and ritk = ln pitk−ln pitK for k = 1, ..., K−1 be the logged
relative-budget and logged relative-prices, deflated by the price of theK-th good (the
private good) in the bundle. Let rit = (rit1, rit2, ..., ritK−1)

′ denote the (K−1)-vector
of log-relative prices faced by household i. Scaling prices and the budget by the price
of the private good in this way will simplify later algebraic expressions without any
loss of generality (because indirect utilities are homogeneous in prices and budgets).

Now we semiparametrically specify the utilities (and thus preferences) of individ-
ual household members, and derive their corresponding Marshallian demand func-
tions. Let Vit(y, r) be the indirect utility function of member t of household i, which
equals the maximum utility level attainable by that member when facing the log
relative budget y and log relative prices r. We assume that individuals have price
independent generalized logarithmic (PIGLOG) preferences. This is a popular class
of utility functions introduced by Muellbauer (1976), e.g., both Deaton and Muell-
bauer’s (1980) Almost Ideal Demand System and Christensen, Jorgenson, and Lau’s
(1975) Translog Demand System are special cases of PIGLOG.

Assumption 2. For all i, j and t, member j of household i of type t has PIGLOG
utility:

Vijt = [yit − αijt (rit, ρ̃ijt)] e
−β(rit),

where αijt(rit, ρ̃ijt) = αjt(rit) + ρ̃′ijtrit and αjt and β are unspecified and unrestricted
functions of r. Assume that αjt(·) and β(·) are differentiable in rit, and that the
random vector of unobserved heterogeneity in tastes ρ̃ijt = (ρ̃ijt1, ρ̃ijt2, ..., ρ̃ijtK−1)

′

has E (ρ̃ijt | yit, rit) = 0.

Lemma 1. Under Assumption 2, the individual Marshallian budget-share demand
ωijtk of good k for member j in household i of type t is given by

ωijtk (rit, yit) =
∂αjt (rit)

∂ritk
+

∂β (rit)

∂ritk
[yit − αjt (rit)] + ρijtk,

where

ρijtk = ρijtk (rit, ρ̃ijtk) = ρ̃ijtk −
∂β (rit)

∂ritk
ρ̃′ijtrit.

All proofs are given in Appendix A.1, though note that the proof of Lemma 1
follows immediately from Assumption 2 by Roy’s identity.

Assumption 2 posits that individual preferences are of the PIGLOG functional
form, varying by each person j in each household i of type t, with the restriction
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that the function β (rit) is the same for all i, j, and t. This is similar to the SAP
and SAT assumptions seen in Dunbar et al. (2013), Penglase (2021), Lechene et al.
(2022), and Calvi et al. (2023). This assumption is much weaker than the preference
stability assumption in Lewbel and Pendakur (2008b), Bargain and Donni (2012),
and BCL, since all these papers would force α to be the same for all i, t However,
Assumption 2 is stronger than either SAP and SAT of Dunbar et al. (2013), in that
it simultaneously imposes both SAP and SAT, so β (·) does not vary by j or t, and
it imposes this restriction on all goods.

However, Assumption 2 is also more general than in those previous papers, be-
cause it allows for unobserved heterogeneity in preferences. This is the role of the
term ρ̃′ijtrit in the utility function, which then shows up as the additive error term
ρijtk in the Marshallian budget shares given by Lemma 1.

Assumption 3. For all i, j, and t, the resource share for member j in household
i of type t does not depend on the household’s budget Mit, and is homogeneous of
degree zero in prices pit.

Under Assumption 3, the resource share function η̌jt (pit,Mit) can be written
as ηjt (rit). We remove the check mark to indicate that the resource share ηjt is
assumed to not vary with the budget M . This assumption, though restrictive, is fre-
quently adopted in the collective household literature. Examples include Lewbel and
Pendakur (2008b), Bargain and Donni (2012), Dunbar et al. (2013), Lechene et al.
(2022), and Lewbel and Lin (2022). Empirical evidence supporting this assumption
is provided by Menon, Pendakur, and Perali (2012) and by Cherchye et al. (2015).

We cannot directly observe the individual demands ωijtk with household level
data, except in single member households. However, as shown in Section 2, the BCL
model implies that observable household level budget shares witk equal a weighted
sum of the ωijtk functions, yielding the following household level Marshallian budget
shares. Importantly, our restriction that η(r) not depend on M implies that resource
shares drop out of the coefficient of yit in the following theorem.

Theorem 1. Let Assumptions 1, 2, and 3 hold. Then for a household composed of
Jt members, the observable household budget share for each good k = 1, ..., K − 1 is
given by

witk (yit, rit) = mtk (rit) +
∂β (rit + ln at)

∂ritk
yit + εitk,
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where

mtk (rit) =
Jt∑
j=1

ηjt (rit)

[
∂αjt (rit + ln at)

∂ritk

+
∂β (rit + ln at)

∂ritk
(ln ηjt (rit)− αjt (rit + ln at))

]
,

and

εitk = εitk (rit, ρ̃ijtk) =
Jt∑
j=1

ηjt (rit) ρijtk (rit, ρ̃ijtk) ,

where E (εitk | yit, rit) = 0.

A key feature of Theorem 1 for our analysis is that most of the complexity of
each household level demand function witk (yit, rit), including many of the preference
parameters and all of the resource share functions, is subsumed into a single function
mtk (rit) that we will later eliminate. In contrast, the coefficient of yit in each demand
function is a relatively simple function that we will use to recover the Barten scales
at.

Another useful feature of this model for estimation is that all unobserved prefer-
ence heterogeneity across people and across households is contained in the additive
error terms εitk, which arise from the unobserved random utility parameters ρ̃ijt in
αijt (rit, ρ̃ijt). The error terms εitk will be heteroskedastic, since they depend on rit,
but they do not depend on the budget term yit.

Now we consider identification of Barten scales in this model.

Assumption 4. Assume for goods k = 1, ..., K − 1, for a set of households i of type
t for all t ∈ T that E (witk | yit, rit) is identified for all (yit, rit) ∈ Y × R where Y
contains at least two elements and R contains at least K − 1 elements. Assume the
set T includes a household type with only one member (e.g., single men and/or single
women) that we denote t = 1. Assume the gradient function ∇rβ(r) is invertible for
r ∈ R.

Theorem 2. Let Assumptions 1, 2, 3, and 4 hold. Then the vectors of Barten scales
at are identified for all t ∈ T .

Assumption 4 assumes that E (witk | yit, rit) is identified. A sufficient but stronger
than necessary condition for this to hold would be a random sample of regular data
witk, yit, rit with a sample size that grows to infinity. More generally, identification
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only requires having data that allow us to consistently estimate regressions of witk on
functions of yit and rit. This then means that we can estimate, for k = 1, ..., K − 1,

E (witk | yit, rit) = mtk (rit) +
∂β (rit + ln at)

∂ritk
yit.

To see how this leads to identification of Barten scales, observe that the coeffi-
cients of yit (i.e., the Engel curve slopes for each good k) in this expression identify
∂β (rit + ln at) /∂ritk. For singles living alone (denoted t = 1), Barten scales equal
one, so for these households we have identified the functions ∂β (ri1) /∂ri1k. Then,
having identified these derivative functions, we can use ∂β (rit + ln at) /∂ritk to iden-
tify the Barten scales at for all other household types t. The proof of the above
Theorem in the Appendix formalizes this logic.

Although the maintained PIGLOG functional form is restrictive, this identifica-
tion is semiparametric since it allows the resource share functions ηjt, the preference
functions αjt and β, and the cumulative distribution function of unobserved prefer-
ence heterogeneity parameters ρ̃ijt to all be unspecified, nonparametric functions.

4.2 Simple Linear Identification

Theorem 2 establishes the general semiparametric identification of deterministic
Barten scales. We now make two additional assumptions that will yield simple linear
regression based identification and estimation of these Barten scales.

Assumption 5. Assume β (rit) = b0 + b′erit, where b0 is a constant and b =
(b1, b2, ..., bK−1)

′ is a (K − 1)-vector of parameters. Assume every element of b is
nonzero.

Assumption 6. Assume R, the set of observed price regimes, has a finite number
G of elements.

Assumption 5 imposes a parametric restriction on the function β (rit), specifically,
linearity in erit . Note that by definition, erit = pit/pitK , the relative price of goods
faced by household i to the price of the K ′th good. Assumption 6 requires that the
number G of distinct price vectors we can observe is finite. This will then allow
us to treat the unknown function mtk (rit) as a fixed effect for each price vector.
Specifically, let subscript g = 1, ..., G indicate groups of observations that face the
same price regime rg = (rg1, rg2, ..., rgK−1)

′. Then within each group g, we can define
group-specific fixed effects mtgk = mtk (rg). Since every variable that varies at the i
level is associated with a group g, we will omit the label g from these variables to
keep our notation clean.
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Corollary 1. Let Assumptions 1, 2, 3, 5, and 6 hold. Then for household i of type
t facing a price regime rg, we have the following expression of household demand on
each good k ∈ {1, ..., K − 1}:

witk (yit, rg) = mtgk + γtkxitk + εitk,

where γtk = bkatk and xitk = ergkyit is an observable regressor.

Theorem 3. Let Assumptions 1, 2, 3, 4, 5, and 6 hold. Then the vectors of Barten
scales at are identified by

atk = γtk/γ1k

for all t ∈ T .

The key point of Corollary 1 and Theorem 3 is not just that the Barten scales
are identified, but that the budget share demand functions used to identify them are
now linear, and so will be trivial to estimate. In particular, we have

E [witk | rg, yit] = mtgk + γtkxitk,

which we can think of as a linear regression of witk on a fixed effect and on the
observed regressor xitk. The coefficient of this regressor is γtk, so γtk is identified
for all t and k. From these coefficients all Barten scales are then identified by
atk = γtk/γ1k, using the fact that t = 1 are singles for whom Barten scales all equal
one.

Given identified Barten scales, by equation (3) we identify the scale economy
index for any observed single-member household with spending levels ei1k as the
ratio of the Barten-scale weighted sum of spending to the simple sum of spending:

Sit =

∑K
k=1 atkei1k∑K
k=1 ei1k

=
K∑
k=1

atkwi1k (rg, yi1) .

An interesting feature of Theorem 3 is that under the extreme case that we
only observe a single price regime, meaning G = 1 and there is no observable price
variation in the data, identification is still achieved by the above theorem, since γtk
can be identified just from variation in yit. However, in this case the identification
depends crucially on the linear parametric specification assumed for β (rit). More
generally, semiparametric identification from Theorem 2 would require observing
price variation. In Appendix A.6, we present alternative functional forms that offer
greater generality by allowing for nonlinearity in β (rit).
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4.3 Random Barten Scales

Past applications of BCL all assume a deterministic consumption technology, and
hence fixed collective household Barten scales. In this subsection we introduce ran-
domness into the Barten scale parameters at (by adding an i subscript to at) and
show that the distributions of these Barten scales are nonparametrically identified
within the framework of Section 4.2.

Assumption 1m (Replacing Assumption 1). Assume household i’s demand behavior
is given by the BCL model with K goods and a Barten technology with a (K − 1)-
vector of random Barten scales for goods 1, ..., (K−1) in household i of type t (other
than t = 1, i.e., single-member households) denoted by ait = (ait1, ait2, ..., aitK−1)

′.
Assume the K-th good is private for all i and t, and so has a deterministic Barten
scale of atK = 1.

Assumption 4m (Replacing Assumption 4). Assume for goods k = 1, ..., K − 1,
for a set of households i of type t for all t ∈ T that the conditional distribution
Fw|r,y (witk | yit, rit) is identified for all (yit, rit) ∈ Y × R where Y contains at least
two elements and R contains at least K − 1 elements. Assume the set T includes
a household with one member only (e.g., single men and/or single women) that we
denote t = 1.

Assumption 7. For each t ∈ T , assume the Barten scale vectors ait are indepen-
dently, identically distributed across households i, with unknown joint distribution
Fat (ait1, ait2, ..., aitK−1) independent of rit, yit, ρ̃ijt. Assume that the first moments of
random Barten scales, denoted by at = E (ait), are finite.

Assumption 1m replaces Assumption 1 by assuming that each household i of
type t possesses its own vector of Barten scales ait. Assumption 4m strengthens
Assumption 4 by assuming that the entire conditional distribution of witk (rit, yit)
instead of just its conditional mean is identified from the observed data, which e.g.
will hold under the iid data generating process discussed in Section 4.1. Assumption
7 further assumes that the random vectors ait are draws from some unknown joint
distribution Fat that is independent of all the other variables in the model and that
they are identically distributed for each t. We are interested in identifying features of
these unknown distributions. Since the first moments of random Barten scales exist,
we can write ait = at + τit, where τit is a random additive household Barten scale
heterogeneity with E (τit) = 0. It follows that the function mtk (rit) in Theorem 1
will now include a new argument τit since the function itself contains random Barten
scales. Let mtk (rit, τit) = ftk (rit)+ vtk (rit, τit), where ftk (rit) = E [mtk (rit, τit) | rit].
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By construction,

E [vtk (rit, τit) | rit] = E [mtk (rit, τit) | rit]− ftk (rit) = 0.

Assumption 8. For each t ∈ T , given a price vector rg, let the household’s budget
yit and the unobserved heterogeneity in tastes ρ̃ijt across household i be independent
and identically distributed.

Corollary 2. Let Assumptions 1m, 2, 3, 5, 6, and 7 hold. Then for household i of
type t facing a price regime rg, we have the following household demand functions
for k = 1, ..., K − 1:

witk (yit, rg) = ftgk + (atk + τitk) bkxitk + vitk,

where ftgk = ftk (rg), xitk = ergkyit, and vitk = vtk (rg, τit) + εitk.

Corollary 3. Let Assumptions 1m, 2, 3, 4m 5, 6, 7, and 8 hold. Given a price
vector r̄, this model transforms into a linear random coefficient model as described
in equations (1.2) and (1.3) in Beran and Millar (1994), taking the form:

witk (yit, r̄) = f̄tk + (atk + τitk) bkxitk + vitk,

where f̄tk = ftk (r̄). The identification of the distributions Fat for all t ∈ T is
then immediate, following the methodology established by Beran and Millar (1994).
Moreover, in the case of observing more than one price vector, the distributions Fat

become over-identified.

Corollary 2 is a random Barten scale extension of Theorem 1. The functions
ftgk = ftk (rg) in Corollary 2 are uniquely determined for each price regime rg. When
considering a single price regime r̄, the model can be expressed as presented in
Corollary 3. This expression represents a system of K − 1 linear random coefficient
bivariate regressions with random intercepts f̄tk + vitk and random slopes atk + τitk.
These intercepts and slopes are inherently correlated since the randomness of vitk
stems partly from τit. Each pair of intercept and slope follow an unknown iid joint
distribution by Assumption 7 and 8, since vitk and τit are both iid under r̄. The regres-
sors, xitk = er̄kyit, are also iid, given that yit are iid in accordance with Assumption
8, and bke

r̄k are constants that can be identified through the data of single-member
households. As a result, the identification of the coefficient distributions for each
price regime follow immediately from Beran and Millar (1994).
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Previously, we defined a household economies of scale index by equation (3) under
the assumption of deterministic Barten scales. Now, we extend this index to consider
random Barten scales:

Sit =

∑K
k=1 aitkei1k∑K

k=1 ei1k
=

K∑
k=1

aitkwi1k (rg, yi1) .

Since Assumption 7 ensures that aitk is independent of wi1k (rg, yi1), it follows that
the expectation of the index takes the following form:

E (Sit) =
K∑
k=1

E (aitk)E (wi1k) .

Moreover, applying the Bohrnstedt and Goldberger (1969) formula for the approxi-
mate variance of a sum of products, we can approximate the variance of the index
Sit using

V ar (Sit)

=
K∑
k=1

V ar (aitkwi1k) + 2
K∑
l>k

Cov (aitkwi1k, aitlwi1l)

=
K∑
k=1

[
(E (aitk))

2 V ar (wi1k) + (E (wi1k))
2 V ar (aijk)

]
+ 2

K∑
l>k

[E (aitk)E (aitl)Cov (wi1k, wi1l) + E (wi1k)E (wi1l)Cov (aitk, aitl)] + ξit,

where ξit is the approximation error. In matrix form,

V ar (Sit) = a′tV ar (wi1) at + w′
1V ar (ait)w1 + ξit,

where wi1 = [wi11, wi12, ..., wi1K ]
′, and w1 = E (wi1). Note that, with an abuse

notation, the K-vector at here also contains the Barten scale of good K which equals
one for all t. Applying this approximation formula only requires estimating first and
second moments of ait and wi1; all terms involving higher moments of ait and wi1 are
in the approximation error.
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5 Estimation

We now consider estimation of the model using data from repeated cross-sectional
household expenditure surveys conducted in varying price regimes (e.g., varying ge-
ographic areas and/or time periods). We only require typical government-conducted
household survey microdata, where households are asked to report their expendi-
tures on specific categories of goods over some time period, along with demographic
information. Corresponding goods prices are either reported in the same data set,
or given by consumer price indices from the same region and time period.

Recall we observe n households, denoted i = 1, ..., n. We only require one observa-
tion from each household i, not panel data. We observe each household’s composition
(e.g., number of men, number of women, and number of children in that household),
which is indexed by t. Our data contain many households of each composition type
t = 1, ..., T , including single person households that are denoted type t = 1. We
also observe the price regime (time period and/or location) each household is in. All
households in a given price regime (group) g are assumed to face the same observed
vector of prices pg. For each good k = 1, ..., K, we also observe the expenditures of
household i on good k, denoted eitk, and the price that household faces for good k,
denoted pgk. As per Assumption 1m, one good (which we label good K) is assumed
to be private and assignable. In many previous empirical studies (cited in the intro-
duction), clothing is taken to be a private good. Unlike those applications, we do
not require separate observations of men’s, women’s, and children’s clothing; we do
require that clothing be non-shareable, that is, private.

From these observables, for each household we construct the following variables.

Mit =
∑K

k=1
eitk, witk =

eitk
Mit

, yit = ln

(
Mit

pgK

)
,

rgk = ln

(
pgk
pgK

)
, and xitk = ergkyit =

pgk
pgK

yit.

So Mit is the household’s total expenditures (budget), witk is the household’s budget
share of good k, yit is the logged budget relative to the price of good K faced by
the household, rgk is the logged price of good k relative to the price of good K faced
by the household, and xitk— which is the key regressor in our budget share demand
equations—is the product of relative prices times the logged relative budget. We will
also later add some demographic conditioning variables.

Using this data, our goal is to estimate the mean and the covariance matrix of
the vector of Barten scales ait, as well as the mean and variance of the household
economies of scale index Sit, for each household type t, based on the model of Section
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4.3. In this section, we describe estimation of the means of ait and Sit, which turns
out to be equivalent to estimating at and St in the simple non-random Barten scale
model of 4.2. Estimation of the second moments of these variables, along with a
detailed step-by-step guide for estimating the model, is provided in Appendices A.2
and A.3.

Begin with the household demand functions described in Corollary 2. For each
good k we have the following bivariate regression of witk on xitk:

witk = ftgk + γtkxitk + uitk, (4)

where ftgk is a constant fixed effect for each value of t, g, and k, the coefficient γtk
is a constant for each value of t and k, and uitk is an error term. The error uitk is
given by

uitk = vitk + bkτitkxitk, (5)

where, by construction,

E (uitk | rg, yit) = E (vitk | rg) + bkE (τitk)xitk = 0.

Each error term uitk combines the randomness generated by both individual prefer-
ence heterogeneity terms vitk and household Barten scale heterogeneity terms τitk.

5.1 Estimating Barten Scales Using Differencing

We could directly estimate equation (4) for each t and k by linear regressions. How-
ever, this will require estimating many fixed effect constants ftgk, particularly if our
data are drawn from many price regimes g = 1, ..., G (in our empirical data, there
are 444 combinations of t and g). We instead remove all of the fixed effects ftgk
by applying the well-known “within transformation” used in linear panel regression
models, as follows.

For each possible t and g pair, let Itg denote the set of all households i of type t
in price regime g. The number of such households in the data is Ntg =

∑
i∈Itg 1. We

now demean the data within each of these t and g sets of households, that is, define
w̃itk and x̃itk by

w̃itk = witk −
∑

ĩ∈Itg wĩtk

Ntg

, x̃itk = xitk −
∑

ĩ∈Itg xĩtk

Ntg

.

It then follows from equation (4) that we can eliminate the fixed effects, yielding
regressions

w̃itk = γtkx̃itk + ũitk. (6)
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Now for every pair of t and g in the data, we estimate the system of K − 1 linear
bivariate regressions given by equation (6) for k = 1, ..., K − 1. By construction the
residuals ũitk in these equations will be correlated across goods k, so this system
of K − 1 linear regressions can be estimated using Zellner’s Seemingly Unrelated
Regressions (SUR) estimator to obtain coefficient estimates γ̂tk.

From these coefficient estimates, we recover estimates of the mean Barten scales
for each good k = 1, ..., K − 1 for each household type t = 2, ..., T by

âtk = γ̂tk/γ̂1k.

The Barten scale of good K is 1 for all households, and scales of all goods for singles
(who have t = 1) are also 1.

If Barten scales are fixed, âtk is the estimate of the Barten scale of good k for all
households of type t. Otherwise, if Barten scales are random, then âtk is the estimate
of the mean Barten scale of good k across all households of type t. Similarly, if Barten
scales are fixed then the estimated household level economies of scale to consumption
index is

Ŝt =
K∑
k=1

âtkw̄1k, (7)

using single’s mean budget share w̄1k. Alternatively, if Barten scales are random,
then the estimated mean household level economies of scale index is the same formula
Ê (Sit) =

∑K
k=1 âtkw̄1k.

While identification of the covariance matrix of Barten scales and of the variance
of the scale economies index is fairly transparent, estimation of these objects is
somewhat involved. We provide a full description of the procedure in Appendix
A.2. The basic strategy is to use the covariance matrix of reduced form residuals
from (6), conditional on x̃itk, to estimate the covariance matrix of Barten scales.
The key feature of the model that makes this feasible is that while that conditional
covariance matrix depends on both the covariance of Barten scales and the covariance
of preference heterogeneity, the former covariance is independent of x̃itk.

5.2 Tests of the Model

We provide two sets of hypothesis testing: one for evaluating the preference similarity
assumption imposed in Assumption 2, and the other for checking the identification
of Barten scales. In our empirical work, we will use five different types of households:
single males (denoted as t = sm), single females (sf), couples with no children (c0),
couples with one child (c1), and couples with two children (c2). For each type, let
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Ti,t be the type indicator, which equals 1 if i belongs to the specified type and 0
otherwise. Additionally, we observe a vector of demographic variables z for all types.
Moving forward, we will use commas to separate each subscript to reduce confusion.

Preference similarity and Barten scales equalling one for singles immediately im-
ply that γsm,k = γsf,k for all goods k (our estimator called both of these parameters
γs,k). We test H0: γsm,k = γsf,k for k = 1, ..., K − 1 by estimating both parameters
in the budget share equations for singles using

w̃i,t,k =
∑

t∈{sm,sf,c0,c1,c2}

(
γt,kx̃i,t,k + π′

t,kz̃i,t
)
· Ti,t + ũi,t,k

in the SUR regressions. Note this is a weak test of Assumption 2, since it only tests
the common Engel curve slope β (rit) for singles, not multi-member households. This
is because these coefficients cannot be separately identified and hence not be tested
in multi-member households.

Regarding the identification of Barten scales, note that Assumption 5 requires b ̸=
0. On estimation, this is equivalent to requiring γs ̸= 0. Violation of this assumption
for any good k implies that the denominator in the equation at,k = γt,k/γs,k becomes
zero, leading to the non-identification of at,k for that k. Therefore, the identification
of Barten scales can be tested by the hypotheses H0: γs,k = 0 for k = 1, ..., K − 1 in
the following SUR regressions:

w̃i,t,k =
∑

t∈{s,c0,c1,c2}

γt,kx̃i,t,k · Ti,t +
∑

t∈{sm,sf,c0,c1,c2}

π′
t,kz̃i,t · Ti,t + ũi,t,k,

where Ti,s is the type indicator of all singles combined.

6 Empirical Application

6.1 Data

We implement the outlined estimation procedure from Appendix A.3 using data
from the Canadian Survey of Household Spending public-use microdata spanning the
years 1997 to 2009. This dataset, structured as a repeated cross-sectional collection,
contains information on incomes, demographics and household expenditures across
various commodities. This dataset is the same as that in Norris and Pendakur (2015);
those authors describe its construction, including the construction of province-year
level commodity price indices, in detail.

Our analysis focuses on five household types t: single males, single females, child-
less couples, couples with one child, and couples with two children. We choose K = 6
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commodity categories: food-at-home, food-out, clothing and footwear, recreation
and education, transport, and rent. Transport encompasses public transport costs,
gasoline expenses, and vehicle maintenance outlays, but excludes vehicle purchase
expenditures. Rent includes both rent payments and associated energy costs. We
only include households that are renters, excluding homeowners, because mortgage
payments and the timing of property transactions make comparable cross-household
comparisons difficult. We designate clothing and footwear as privately non-shareable,
assigning it a Barten scale of one. We incorporate the age of the head of households
and its squared term as demographic variables z.

The original dataset of 170K observations contains 40,837 renters, of which 29,846
households belong to the household types of interest. We exclude observations from
rural areas and small cities with populations under 100,000 (21,098 remain), and
are within their working age range of 20 to 65 (17,786 remain). All observations
that have zero spending on any categories are removed from the sample (16,094
remain). Furthermore, we omit the top 10% highest expenditure and bottom 5%
lowest expenditure from the sample (13,679 remain), as the Engel curves of these
populations might exhibit greater nonlinearity, violating the assumption of PIGLOG
preferences. This trimming follows findings in Banks, Blundell, and Lewbel (1997)
who show that the greatest violations of linearity are in the top decile of expenditure.

The dataset covers nine provinces of Canada (excluding Prince Edward Island due
to data masking) over thirteen years, yielding 117 distinct prices for each commodity.5

In each price regime, we group the observations based on their household types.
Nine observations of households were alone in their type and price regime. We
removed these nine households since they do not contribute any information on
estimation once we difference out group averages. This results in a dataset comprising
4,080 single male observations, 3,736 single female observations, 3,267 childless couple
observations, 1,491 couples with one child, and 1,096 couples with two children.

We normalize the log-relative price vectors to zero in Ontario in 2002. The
transport and rent variables are aggregates of multiple sub-categories with different
prices. For these we adopt a methodology similar to Lewbel (1989) and Hoderlein
and Mihaleva (2008) to construct Stone price indices from the underlying commodity
subcategories.6

5Due to missing data, 111 distinct price vectors remain in the dataset after filtering.
6These references use household-specific within-category budget shares as price index weights.

We instead use the average of within-category budget shares as weights so that price indices will
only vary at the province-year level.
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Table 1: Summary Statistics: Canadian Survey of Household Spending

Single males Single females Childless couples Couples with one child Couples with two children

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Budget Shares
Food-at-home 0.1595 0.0764 0.1584 0.0717 0.1874 0.0773 0.2148 0.0754 0.2314 0.0763
Food-out 0.0788 0.0701 0.0540 0.0502 0.0566 0.0485 0.0424 0.0408 0.0388 0.0349
Recreation and Education 0.1478 0.1112 0.1238 0.0967 0.1379 0.0976 0.1216 0.0813 0.1152 0.0694
Transport 0.1381 0.0882 0.1268 0.0811 0.1663 0.0819 0.1596 0.0802 0.1537 0.0790
Rent 0.4124 0.1230 0.4522 0.1206 0.3711 0.1052 0.3802 0.0979 0.3769 0.0935
Clothing and Footwear 0.0635 0.0448 0.0848 0.0565 0.0807 0.0514 0.0814 0.0446 0.0841 0.0489

Normalized Log-Relative Prices
Food-at-home 0.0840 0.1139 0.0813 0.1127 0.0662 0.1122 0.0598 0.1122 0.0510 0.1096
Food-out 0.0327 0.1210 0.0272 0.1195 0.0113 0.1185 0.0078 0.1186 0.0011 0.1138
Recreation and Education -0.0526 0.0935 -0.0579 0.0937 -0.0650 0.0927 -0.0641 0.0914 -0.0646 0.0883
Transport 0.0008 0.1388 0.0008 0.1357 -0.0166 0.1368 -0.0197 0.1360 -0.0329 0.1329
Rent -0.0994 0.1499 -0.1144 0.1490 -0.1249 0.1489 -0.1169 0.1506 -0.1109 0.1496

Log-Budget 9.7449 0.3563 9.6878 0.3344 9.9865 0.3166 10.0206 0.2827 10.0996 0.2585

Age (less 40) -7.5374 12.6081 -4.7268 14.6469 -8.4553 14.5573 -11.0060 10.4018 -10.2687 8.0968

Number of Observations 4,080 3,736 3,267 1,491 1,096
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Table 1 provides summary statistics of our data. Prices presented in the table
are log-relative prices rk after normalization, and age is also normalized to zero at
40. These normalizations do not affect coefficient estimates since they’re eliminated
after differencing out the group means. For all household types, rent dominates the
budget commanding 30% to 40% of total expenditures. Clothing and footwear, which
is assumed to be nonshareable, accounts for only 5% to 10% of total expenditures.
Our demographic covariate is the age of the household head, which is much younger
for households with children.

6.2 Estimates

6.2.1 Tests of Model Restrictions

Here we summarize results of the model assumption tests described in Section 5.2.
With some abuse of notation, the empirical model is

w̃i,k = γs,kx̃i,s,k + γc0,kx̃i,c0,k + γc1,kx̃i,c1,k + γc2,kx̃i,c2,k + π1
sm,kãgei,sm + π2

sm,kãge
2
i,sm

+ π1
sf,kãgei,sf + π2

sf,kãge
2
i,sf + π1

c0,kãgei,c0 + π2
c0,kãge

2
i,c0

+ π1
c1,kãgei,c1 + π2

c1,kãge
2
i,c1 + π1

c2,kãgei,c2 + π2
c2,kãge

2
i,c2 + ũi,k. (8)

Here, for each observation, only one of the four variables x̃i,s,k, x̃i,c0,k, x̃i,c1,k, or x̃i,c2,k

has a nonzero value, depending on the type of household in which the observation
resides. For instance, when i is a household of couples with two children (c2), then

x̃i,s,k = x̃i,c0,k = x̃i,c1,k = 0 for all k. Similarly, ãgei,t and ãge2i,t for t = sm, sf, c0, c1
are all zeros when i belongs to c2.

We estimate this system of linear equations via seemingly unrelated regression
(SUR). Observations are clustered at the province-year level (111 clusters), so we use
clustered standard errors throughout. Inference on estimates of Barten scales, which
are nonlinear functions of regression coefficients, is via the delta method. Inference
on estimates of the variance of random Barten scales is via the bootstrap, for reasons
discussed below.

Table 2 presents Wald test results. The estimates in the table are γ̂t,k for single-
member household types t, with clustered standard errors in parentheses. Engel
curve slopes in this model are given by γt,ke

rg,k for t = sm, sf, s. Thus, the estimates
of γ̂sm,k, γ̂sf,k, and γ̂s,k equal the Engel curve slope for each type of single-member
households when the relative price of good k equals one, and if γt,k is positive (neg-
ative), then the slope of the Engel curve is positive (negative) regardless of prices.
We will discuss γt,k as if it equals the slope of the Engel curve, which may be in-
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Table 2: Wald Tests on Model Assumptions

Test of Similar Preferences Test of Identification

Single males Single females χ2(1) p-value Singles χ2(1) p-value

Food-at-home -0.0491 -0.0479 0.0530 0.8178 -0.0486 296.42∗∗∗ 0.0000
(0.0040) (0.0037) (0.0028)

Food-out 0.0343 0.0283 1.3350 0.2479 0.0316 150.76∗∗∗ 0.0000
(0.0042) (0.0029) (0.0026)

Recreation and Education 0.0917 0.0813 1.8274 0.1764 0.0871 399.03∗∗∗ 0.0000
(0.0061) (0.0053) (0.0044)

Transport 0.0674 0.0531 6.4474∗ 0.0111 0.0608 344.53∗∗∗ 0.0000
(0.0040) (0.0046) (0.0033)

Rent -0.1729 -0.1769 0.1396 0.7087 -0.1743 715.13∗∗∗ 0.0000
(0.0081) (0.0090) (0.0065)

Joint test χ2(5) - - 76.50∗∗∗ 0.0000 - 1225.34∗∗∗ 0.0000

Number of Observations 4,080 3,736 - - 7,816 - -

1. Numbers in parentheses are clustered standard errors at the province-year level with finite-sample adjustments. Significance
levels are indicated as 0.05∗, 0.01∗∗, 0.001∗∗∗.
2. For the test of similar preferences, we examine separately the null hypotheses H0 : γsm,k = γsf,k for each k. A joint test on
all k is also reported with 5 degrees of freedom.
3. For the test of identification, we examine the null hypotheses H0 : γs,k = 0 for each k. A joint test on all k is also reported
with 5 degrees of freedom.
4. Demographics: age, age2.

terpreted as the semi-elasticity of spending on a particular good with respect to the
total budget.

The estimates show that budget-share demands for food-at-home and rent de-
crease as total expenditure increases, so these goods are necessities. Rent is the good
with the largest budget share (over 40%) and has the highest budget semi-elasticity.
The estimates are consistent with Engel’s law: expenditures on food-at home in-
crease and budget shares for food-at-home decrease as total expenditures increase.
In contrast, food-out, recreation, transport, and education are luxuries, with budget
shares that rise with total expenditures. The small standard errors indicate that all
these estimates are precise and significant.

The results of testing similarity of preferences are presented in the left panel.
As described in Section 5.2, this test replaces γs,kx̃i,s,k with γsm,kx̃i,sm,k + γsf,kx̃i,sf,k

allowing us to test the null hypothesis that H0 : γsm,k = γsf,k for k = 1, ..., K − 1.
When testing each good separately, we do not reject preference similarity for any good
except transport. While transport formally rejects the null, the actual transport slope
estimates, 0.0674 for males and 0.0531 for females, are numerically similar, suggesting
that the estimated departures from preference similarity are not behaviorally large.
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Table 3: Estimated Barten Scales

E (ai)

Childless couples Couples with one child Couples with two children

Food-at-home 0.8425 0.9139 0.7161
(0.0888) (0.1687) (0.1858)

Food-out 0.9001 0.8921 0.8508
(0.1037) (0.1293) (0.1537)

Recreation and Education 0.8146 0.8727 0.7316
(0.0716) (0.1182) (0.1269)

Transport 0.8041 0.9444 0.9851
(0.0897) (0.1500) (0.2165)

Rent 0.8172 0.8678 0.7838
(0.0491) (0.0693) (0.0900)

Number of Observations 3,267 1,491 1,096

1. (·): Delta method clustered standard errors with finite-sample adjustments.
2. Demographics: age, age2.

Similarly, the joint test for all goods yields a χ2 statistic of 76.50 with five degrees
of freedom, rejecting the null, but the numerical differences in slopes between men
and women are small for every good (transport is the largest difference).

The right side of Table 2 presents the identification test. This test examines the
null hypothesis H0 : γs,k = 0, for k = 1, ..., K − 1. Identification of each expected
Barten scale atk requires its corresponding γs,k be significantly different from zero.
All estimates of γs,k in this table are significant, with all χ2 statistics yielding p-values
close to zero, so we can conclude that (under the model) Barten scales are identified
in this dataset.

6.2.2 Mean Barten Scales

As discussed earlier Barten scale estimates obtained from equation (8) can be inter-
preted either as fixed Barten scales or as the mean of random Barten scales. In this
discussion we adopt the latter interpretation. Following the estimation of equation
(8), we recover mean Barten scales using the formula ât,k = γ̂t,k/γ̂s,k and obtain
clustered standard errors via the delta method. These results are presented in Table
3, with their respective standard errors in parentheses.

There are four big-picture messages from Table 3. First, estimated Barten scales
all lie within the range of [0, 1/J ], as required by the theory. Second, they are closer
to 1 than they are to 1/J , indicating that scale economies are not very large. Third,
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although Barten scales for some goods, e.g., recreation, are close to 1, we can reject
the hypotheses that they equal 1 (are purely private). Fourth, we can reject the
hypotheses that any these goods, not even rented shelter, is a pure public good, with
a Barten scale equal to 1/J .

We now compare point estimates of Barten scales across goods and households.
However, these comparisons should be tempered by acknowledging that the standard
errors are mostly not small enough to statistically distinguish one Barten scale from
another.

We expected food-out to be less shareable than food-at-home, because of potential
economies of scale to producing meals at home from purchased groceries. We find
this expected pattern in childless couples, with a food-at-home Barten scale of 0.84
(meaning that each person in a couple only needs 84% of the groceries required when
living alone) compared to a food-out Barten scale of 0.90.

However, this pattern changes with children. The food-at-home Barten scale
increases to 0.91 for households with one child, suggesting food for adults is not very
substitutable with food for children. That is, such households may have to produce
one meal for adults and one meal for children instead of one meal for the family,
thus reducing economies of scale in producing meals. But with two children the
scale drops to 0.72, showing bigger economies of scale when there are both adults
and children who can share consumption (the effect of children on food-out is much
smaller).

Recreation, education, and rent, exhibit a similar pattern to food-at-home. They
are somewhat shareable for childless couples, become less shareable when the first
child joins the household, and then turn to even more shareable with a second child.

Transport deviates from this general pattern. Transport becomes less shareable
as the number of people within a household increases, rising from 0.80 for childless
couples to 0.99 for couples with two children. This could be due to larger households
requiring larger vehicles, and variation in the use of nonshareable public transporta-
tion.

We now turn to testing the hypotheses that goods are either not shared (private)
or are fully shared (public). A good is non-shareable if its Barten scale equals one.
Therefore, the first test is on the hypotheses H0 : at,k = 1 vs H1 : at,k < 1. A good is
fully shareable if its Barten scale equals 1/J , so H0 : at,k = 1/J vs H1 : at,k > 1/J .
We report the t-statistics of these two tests and their respective p-values in Table 4.

Complete shareability is rejected for every good in every household size, implying
that there are no public goods. For childless couples, the only good that might be
private according the tests is food-out. However, in couples with children, almost all
goods have standard errors that are too large to reject the null that goods might be
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Table 4: Tests of Shareability, Barten Scales

Childless couples, t-statistic

E (ai) = 0.5 p-value E (ai) = 1 p-value

Food-at-home 3.8569∗∗∗ 0.0001 -1.7736∗ 0.0381

Food-out 3.8591∗∗∗ 0.0001 -0.9639 0.1675

Recreation and Education 4.3955∗∗∗ 0.0000 -2.5901∗∗ 0.0048

Transport 3.3907∗∗∗ 0.0003 -2.1840∗ 0.0145

Rent 6.4544∗∗∗ 0.0000 -3.7193∗∗∗ 0.0001

Couples with one child, t-statistic

E (ai) = 0.33 p-value E (ai) = 1 p-value

Food-at-home 3.4419∗∗∗ 0.0003 -0.5105 0.3049

Food-out 4.3218∗∗∗ 0.0000 -0.8348 0.2019

Recreation and Education 4.5648∗∗∗ 0.0000 -1.0773 0.1407

Transport 4.0726∗∗∗ 0.0000 -0.3708 0.3554

Rent 7.7091∗∗∗ 0.0000 -1.9073∗ 0.0282

Couples with two children, t-statistic

E (ai) = 0.25 p-value E (ai) = 1 p-value

Food-at-home 2.5086∗∗ 0.0061 -1.5280 0.0633

Food-out 3.9091∗∗∗ 0.0000 -0.9708 0.1658

Recreation and Education 3.7962∗∗∗ 0.0001 -2.1151∗ 0.0172

Transport 3.3956∗∗∗ 0.0003 -0.0689 0.4726

Rent 5.9306∗∗∗ 0.0000 -2.4023∗∗ 0.0081

1. t-statistics are based on the delta method clustered standard errors with finite-
sample adjustments. Significance levels are indicated as 0.05∗, 0.01∗∗, 0.001∗∗∗.

private.

6.2.3 Household Level Economies of Scale

Our household economies of scale index describes how much less (in percentage
terms) a single’s quantity bundle would cost at the shadow prices of a household
with composition t vs at market prices. This measure depends on what single we
choose. In Table 5 we report our estimated expected household economies of scale
index E (Sit) for three multi-member household types t (couples with zero, one, and
two children) using the quantity bundles of each of three types of singles (average
single men, average single women, and the average of all singles). We provide stan-
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Table 5: Estimated Household Economies of Scale and Tests of Shareability

Childless couples Couples with one child Couples with two children

Singles

N =7,816

E (Si)
0.8381 0.8973 0.8130

(0.0367) (0.0608) (0.0777)

E (Si) = 0.5 E (Si) = 1 E (Si) = 0.33 E (Si) = 1 E (Si) = 0.25 E (Si) = 1

t-stat 9.2199∗∗∗ -4.4130∗∗∗ 9.2797∗∗∗ -1.6897∗ 7.2458∗∗∗ -2.4060∗∗

p-value 0.0000 0.0000 0.0000 0.0455 0.0000 0.0081

Single males

N =4,080

E (Si)
0.8372 0.8967 0.8121

(0.0371) (0.0615) (0.0782)

E (Si) = 0.5 E (Si) = 1 E (Si) = 0.33 E (Si) = 1 E (Si) = 0.25 E (Si) = 1

t-stat 9.0944∗∗∗ -4.3653∗∗∗ 9.1576∗∗∗ -1.6691∗ 7.1916∗∗∗ -2.3921∗∗

p-value 0.0000 0.0000 0.0000 0.0475 0.0000 0.0084

Single females

N =3,736

E (Si)
0.8392 0.8979 0.8141

(0.0363) (0.0600) (0.0772)

E (Si) = 0.5 E (Si) = 1 E (Si) = 0.33 E (Si) = 1 E (Si) = 0.25 E (Si) = 1

t-stat 9.3497∗∗∗ -4.4613∗∗∗ 9.4116∗∗∗ -1.7118∗ 7.3026∗∗∗ -2.4204∗∗

p-value 0.0000 0.0000 0.0000 0.0435 0.0000 0.0078

1. (·): Clustered standard errors with finite-sample adjustments.
2. t-statistics are based on the delta method clustered standard errors with finite-sample adjustments. Significance levels are
indicated as 0.05∗, 0.01∗∗, 0.001∗∗∗.
3. Demographics: age, age2.

dard errors based on clustered inference for the reduced form parameters, calculated
via the delta method. Under each estimate, we also report the hypothesis tests of
shareability, analogous to the ones conducted on Barten scales.

We see five main results here. First, the estimated standard errors are reasonably
small. Given that the Canadian household expenditure survey is smaller than similar
surveys (e.g., in the UK and USA), this suggests that the methodology proposed
here is a practical tool that can be used with real world datasets to estimate scale
economies tolerably precisely.

Second, looking down the table, we find that there is essentially no difference
across estimated scale economies when we use all singles versus single men versus
single women to weight the Barten scales. For example, for childless couples, esti-
mated scale economies range from 0.8372 to 0.8392 depending on which preferences
are used to weight the Barten scales into the scale economy index S. This variation
is an order of magnitude less than the estimated standard errors.

Third, looking across the hypothesis tests, we see that the estimated scale economies
are all statistically significantly less than 1, indicating that the overall effect of the
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Barten scales is to make living in a household cheaper than living alone. So, Will
Rogers and Terence Gorman had it at least somewhat right. However, it is also the
case that estimated scale economies are statistically significantly greater than 1/J .
For example, using the top row, we have that the z−test for the hypothesis that
scale economies for childless couples equals 0.5 is ((0.8381 − 0.500)/0.0367) is 9.22.
So, scale economies are not so great that we can simply use per-capita measures to
adjust for costs in different household types.

Fourth, looking across the row for singles (similarly to the other rows), we can see
that estimated scale economies are on the order of 0.8 to 0.9. This suggests that scale
economies are not very large. For example, many empirical studies of poverty and
inequality use a scale economy index equal to 1/

√
J . This equals 0.71 for childless

couples, 0.58 for couples with 1 child and 0.5 for couples with 2 children. Our
estimates of scale economies are statistically significantly larger than these rule-of-
thumb values. This suggests that commonly used methods of adjusting for household
size may be erring on the side of assuming too much scale economies available to
large households, that is, making big households seem richer than they actually are.

A related point is that scale economies are used to scale program benefits. Con-
sider the Canadian Household Goods and Services Tax Credit program, described
in the introduction. Designed to support low or modest income families in miti-
gating the impact of sales tax, the program’s payment structure assumes certain
levels of economies of scale to consumption. Each quarter, the GST rebate program
pays CAD$496 for singles, CAD$650 for married or common-law couples, and an
additional CAD$171 for each child. The economies of scale for childless couples im-
plied by the GST is 650/ (496× 2) = .655, which implies far more sharing than our
estimate of .838 in Table 5 (assuming the goal of the GST is to enable the same
purchasing power for each member of a couple as it provides for singles living alone).
Our estimates similarly imply that the GST rebate substantially undercompensates
households with one or two children, relative to what it provides to singles.

Fifth, we do not see dramatically different scale economies across multi-member
households of different sizes. Indeed, the estimated scale economies index for couples
with one child is not statistically significantly different from that of childless couples,
nor is it different for couples with two children. This could be be because children
affect the shadow prices of within household consumption less than do adults, or it
could be that the greatest impact on shareability comes from adding the first person,
and the marginal effect of adding extra people to a household on shareability is small.
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6.2.4 Variances and Standard Deviations

Our methodology allows for Barten scales that depend on observed characteristics
(like household type) and on unobserved characteristics, such as random variation
across households uncorrelated with the budget. Including random parameters in
household models is unusual, and ours is the first paper to identify and estimate
unobserved heterogeneity in the scale economy parameters (Dunbar et al. (2021)
identify unobserved heterogeneity in resource shares). Assuming random Barten
scales, Table 6 presents the estimates of the standard deviations of Barten scales
(estimated by equation (12) in Appendix A.2) and of the household level economies
of scale index Sit (estimated by equation (13)). The regression model is given by
equation (12), and variable selection is carried out through LASSO with repeated
k-fold cross-validation for choosing the optimal penalty parameter. A complete dis-
cussion of the LASSO approach is reserved for Appendix A.4. Estimates in this table
are adjusted using Higham’s (1988) method to ensure positive definiteness. Standard
errors are calculated through bootstrapping to accommodate estimation of γ̂1k in the
construction of the composite regressors Xitkl and Yitkl. See Appendix A.5 for details
on the bootstrap data generating process.

The reasonable range for Barten scale standard deviations can be challenging to
define. Generally, since Barten scale values are constrained within a narrow range
based on household size (e.g., 0.5 to 1 for childless couples), a large standard deviation
might suggest a bimodal distribution with Barten scales clustering at the two extreme
values. An extreme example would be if half of childless couples had a Barten scale
of 1 and the other half had a Barten scale of 0.5. In this case, the standard deviation
would approach 0.25 as the sample size grows. Therefore, 0.25 could be considered
the theoretical upper limit of the standard deviation for childless couples. This
upper limit increases to 0.33 for couples with one child and 0.375 for those with two
children.

The Barten scale with the largest estimated standard deviation is for food-out,
which comes close to this threshold for childless couples. This shows considerable
variation in how much household members share food when dining out. Most other
Barten scales have far lower standard deviations, resulting in relatively little variation
in overall economies scale across households within each composition type.

The bottom panel of Table 6 gives the estimated standard deviation of random
scale economy indices. For childless couples (using all singles to weight the Barten
scales), we have an estimated standard deviation of 0.0192, indicating a narrow
distribution. In fact, a 4 standard deviation band centered on the estimate from
Table 5 would have scale economies ranging from 0.800 to 0.877 across observationally
identical childless couple households. This is not a huge amount of variation, but it
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Table 6: Estimated Standard Deviations of Barten Scales and the Household
Economies of Scale, with LASSO

sd (ai)

Childless couples Couples with one child Couples with two children

Food-at-home 0.0356 0.0178 0.0139
(0.0115) (0.0125) (0.0194)

Food-out 0.2226 0.2335 0.2280
(0.0379) (0.0357) (0.0340)

Recreation and Education 0.1451 0.1202 0.0718
(0.0199) (0.0334) (0.0314)

Transport 0.0832 0.0487 0.0343
(0.0244) (0.0281) (0.0303)

Rent 0.0265 0.0163 0.0371
(0.0079) (0.0086) (0.0119)

sd (Si)

Childless couples Couples with one child Couples with two children

Singles 0.0192 0.0110 0.0297
(0.0051) (0.0082) (0.0105)

Single males 0.0198 0.0112 0.0305
(0.0057) (0.0088) (0.0111)

Singles females 0.0188 0.0112 0.0289
(0.0045) (0.0076) (0.0100)

1. Estimates are obtained using a LASSO procedure for covariate selection (See Appendix A.4 for details).
2. (·): bootstrap standard errors with 1,000 replications (See Appendix A.5 for details).

is entirely within the plausible range of [0.5, 1.0]. Estimated standard deviations of
random scale economy indices are similarly small for couples with 1 and 2 children,
and similarly have the property that a centered 4 standard deviation band is entirely
within the plausible range for those types.

Table 7 presents estimated Barten scale correlation matrices for different house-
hold types. Unfortunately, due to high standard errors in these correlation estimates,
few conclusions can be drawn. However, one meaningful pattern is a high positive
correlation between the Barten scales of food-at-home and food-out. This shows that
families who share food a lot at home also tend to do so when eating out.
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Table 7: Estimated Barten Scales Correlation Matrix, with LASSO

Food-at-home Food-out
Recreation

and Education
Transport Rent

Childless couples

Food-at-home 1 - - - -
- - - - -

Food-out 0.9093 1 - - -
(0.1728) - - - -

Recreation and Education -0.1599 -0.4429 1 - -
(0.3379) (0.1408) - - -

Transport -0.4823 -0.1530 -0.7841 1 -
(0.3525) (0.2840) (0.1782) - -

Rent 0.0331 -0.3533 0.3889 -0.4365 1
(0.3814) (0.2696) (0.2779) (0.3250) -

Couples with one child

Food-at-home 1 - - - -
- - - - -

Food-out 0.9416 1 - - -
(0.5164) - - - -

Recreation and Education -0.3433 -0.6029 1 - -
(0.6276) (0.1981) - - -

Transport -0.7542 -0.5232 -0.3560 1 -
(0.5357) (0.4988) (0.6583) - -

Rent -0.7270 -0.7582 0.1455 0.6550 1
(0.5598) (0.3544) (0.4640) (0.5628) -

Couples with two children

Food-at-home 1 - - - -
- - - - -

Food-out 0.8191 1 - - -
(0.6815) - - - -

Recreation and Education 0.1826 -0.4145 1 - -
(0.6083) (0.3041) - - -

Transport -0.9902 -0.8912 -0.0433 1 -
(0.5997) (0.4710) (0.6184) - -

Rent -0.0680 0.5166 -0.9933 -0.0721 1
(0.6213) (0.3347) (0.3984) (0.5846) -

1. Estimates are obtained using a LASSO procedure for covariate selection (See Appendix A.4 for details).
2. (·): bootstrap standard errors with 1,000 replications (See Appendix A.5 for details).
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7 Conclusion

We provide a method of estimating intrahousehold economies of scale of consumption,
based on a collective household version of Barten scales. These scales measure the
extent to which each consumed good is shared among household members. We
show semiparametric identification of these Barten scales through a system of linear
equations. This allows estimation via simple linear regressions, and allows us to
treat the Barten Scales like random coefficients, thereby accommodating unobserved
heterogeneity in economies of scale across households. We also propose an index
of household economies of scales based on these collective household Barten scales.
This index is a measure of the consumptions cost of an individual in a multiperson
household relative to the cost of that person living alone. Our model greatly simplifies
and generalizes estimation of economies of scale relative to the BCL model on which
our method is based.

Our empirical results based on Canadian Survey of Household Spending data
demonstrate the usefulness of our method. One surprising result is that we find
less economies of scale to consumption in households with one child versus childless
couples, suggesting very little joint consumption of goods by children and adults.
Another novel finding is that unobserved heterogeneity in economies of scale across
households of the same composition is rather small, except for food not consumed
at home. Overall, we generally find less economies of scale to consumption than is
implied by the current sales tax credit scheme in Canada, which suggests that this
tax credit may be undercompensating larger households relative to singles.

A Appendix

A.1 Proofs

Proof Lemma 1. Using Roy’s identity, we get

ωijtk (rit, yit) = −∂Vijt/∂ritk
∂Vijt/∂yit

=

[
∂αjt(rit)

∂ritk
+ ∂β(rit)

∂ritk

[
yit − αjt (rit)− ρ̃′ijtrit

]
+ ρ̃ijtk

]
e−β(rit)

e−β(rit)
.

Proof Theorem 1. By applying Lemma 1 to equation (2) and using the fact that
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∑Jt
j=1 ηjt (rit) = 1 and atK = 1, we can obtain that for each good k = 1, ..., K − 1:

witk (yit, rit) =
Jt∑
j=1

ηjt (rit)ωijtk (yit + ln ηjt (rit) , rit + ln at − ln atK)

=
Jt∑
j=1

ηjt (r)

[
∂αjt (rit + ln at)

∂ritk

+
∂β (rit + ln at)

∂ritk
(yit + ln ηjt (rit)− αjt (rit + ln at)) + ρijtk

]
= mitk (rit) +

∂β (rit + ln at)

∂ritk
yit + εitk.

Proof Theorem 2. By Assumption 4 and Theorem 1, we have identified the condi-
tional expectation of witk as follows:

E (witk | yit, rit) = mtk (rit) + ϕtk (rit) yit,

for k = 1, 2, ..., K − 1, where

ϕtk(rit) =
∂E (witk | rit, yit)

∂yit
=

∂β (rit + ln at)

∂ritk
,

which is identified for all k = 1, 2, ..., K − 1 because E (witk | yit, rit) is identified.
Let ϕt (r) be a (K− 1)-vector, with elements ϕtk (r) for k = 1, 2, ..., K− 1. Then,

we can write:
ϕt (rit) = ∇rβ (rit + ln at) .

Now, for the identified singles (t = 1), since they have no shareable consumption,
their Barten scale vector a1 must equal one. Therefore, we have:

ϕ1 (ri1) = ∇rβ (ri1 + ln a1) = ∇rβ (ri1) .

It then follows from the invertibility of the function ∇rβ(r) that the (K − 1)-vector
of Barten scales at for all household types t ∈ T is identified by:

at = exp
[
ϕ−1
1 (ϕt (rit))− rit

]
,

and the Barten scale of the private good K is atK = 1.
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Proof Corollary 1. Assumption 5 yields that the derivative of β (rit + ln at) with re-
spect to ritk is given by:

∂β (rit + ln at)

∂ritk
= bkatke

ritk ,

which is a structural parameter bk multiplied by the shadow relative price of good k
to good K, atke

ritk = atkpitk/pitK .
The functionmtk (rit) in Theorem 1 has only one argument rit. Under Assumption

6, the set of price regimes has only G elements. Thus, each price regime rg can be
treated as a group dummy, yielding a group fixed effect mtkg = mtk (rg).

With the above information and Theorem 1, we obtain:

witgk (yit, rg) = mtkg + bkatke
rgkyitg + εitgk.

Proof Theorem 3. Assumption 4 specifies that the set Y contains at least two el-
ements. Let us assume that we observe y0 and y1. Then, for each t ∈ T and
k = 1, ..., K − 1, we have:

E [witgk | rg, y1]− E [witgk | rg, y0] = γtke
rgk (y1 − y0) ,

which identifies the parameter γtk = bkatk. For the case when t = 1, we have a1k = 1
for all k, which implies γ1k = bk. Therefore, given that bk ̸= 0 for k = 1, ..., K − 1,
Barten scales atk for all household types t ∈ T are identified as:

atk =
γtk
γ1k

,

for k = 1, ..., K − 1, and the Barten scale of the private good K is atK = 1.

Proof Corollary 2. Under Assumptions 1m and 7 and write ait = at + τit, mtgk =
mtk (rg) in Corollary 1 takes the following expression:

mtk (rg, τit) =
Jt∑
j=1

ηjt (rg)

[
∂αjt (rg + ln (at + τit))

∂rgk

+
∂β (rg + ln (at + τit))

∂rgk
(ln ηjt (rg)− αjt (rg + ln (at + τit)))

]
.

Define a function ftk (rg) = E [mtk (rg, τit) | rit] that does not depend on the random
disturbances τit. This allows us to write mtk (rg, τit) = ftk (rg) + vtk (rg, τit), and
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vtk (rg, τit) = vitk is mean-zero conditional on rg, which can be regarded as a random
disturbance of the fixed effect ftk (rg) = ftgk under each price regime. By substituting
ftgk, vitk, and ait = at + τit into Corollary 1, we complete the proof of the household
demand functions.

Proof Corollary 3. See Beran and Millar (1994).

A.2 Random Barten Scales: Estimation of Covariances

Estimating covariances of random Barten scales first requires estimating each fixed
effect using

f̂tgk =

∑
ĩ∈Itg wĩtk − γ̂tkxĩtk

Ntg

, (9)

and then estimating the residuals uitk by

ûitk = witk − f̂tgk − γ̂tkxitk.

Recall that our random Barten scales are given by aitk = atk+τitk. The previous sub-
section provided estimates of the mean Barten scales atk. Our goal now is estimation
of the covariance matrix of these Barten scales, i.e., the variances and covariances
of τitk for k = 1, ..., K − 1. Based on equation (5) these may be recovered from
the heteroskedasticity (specifically, the linear random coefficients structure) of uitk.
The construction will be similar to that of Mandy and Martins-Filho (1993) which
is designed for a linear SUR model with additive heteroskedasticity. In particular
this construction is a decomposition of the elements of the second moments of uitk,
which are obtained as a sequence of linear regressions.

Based on equation (5), for each pair of indices k and l (where k = 1, ..., K − 1
and l = 1, ..., K−1), denote the covariance of uitk, uitl as E (uitkuitl | rg, yit) = σitkl,u.
The covariances of uitk vary at the i level since they are heteroskedastic in both rg
and yit. For the variances of vitk, which are the errors of the random intercepts in
Corollary 2, and the covariances between the random intercepts and Barten scales,
we denote E (vitkvitl | rg) = σtgkl,v and E (vitkτitl | rg) = σtgkl,vτ . This notation has a
subscript g since vitk varies only by price regimes g. Lastly, we express the Barten
scale covariances as E (τitkτitl) = σtkl,τ . These covariances are the same for all i and
g since it is assumed that Barten scales are iid.

It follows from equation (5) that the variance structure takes the following form:

σitkl,u = σtgkl,v + (bkxitk + blxitl)σtgkl,vτ + (bkblxitkxitl)σtkl,τ . (10)
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Since σitkl,u are unobservable, we replace them with squared residuals from the em-
pirical model, and we then need to account for the resulting estimation errors. We
defined ûitk above. Define ûitkl = ûitkûitl, eitkl = ûitkl−σitkl,u, Xitkl = γ̂1kxitk− γ̂1lxitl,
and Yitkl = γ̂1kγ̂1lxitkxitl. In these above expressions, eitkl represents the difference
between the squared residuals while the error variances Xitkl and Yitkl are composite
variables with elements that are either directly observed from the data or estimated
through the reduced-form regression (6).

Using the same “within transformation” defined earlier, we can difference out the
unneeded functions σtgkl,v reducing equation (10) to:

˜̂uitkl = σtgkl,vτX̃itkl + σtkl,τ Ỹitkl + ẽitkl. (11)

The error terms ẽitkl here consists of two components: first, the gap between squared
residuals and squared errors of equation (4), and second, the gap between squared
errors of equation (4) and the error variances σitkl,u. While the latter has an expec-
tation of zero, which would not harm the exogeneity of equation (11), the former
does not have the same desired property. This problem was dealt with by Mandy
and Martins-Filho (1993) in the general random coefficients structure, who showed
that the effect of the former is asymptotically negligible.

Since each σtgkl,vτ term in equation (11) varies at the g-level, they can be replaced
by a series of dummy variables Dit1θ

1
tkl +Dit2θ

2
tkl + ...+DitGθ

G
tkl, where each Ditg = 1

if an observation belongs to group g and zero otherwise, and θgtkl for g = 1, ..., G are
scalar coefficients. Consequently, the following K(K − 1)/2 linear regressions (one
regression for each pair of goods k and l) can be used to estimate the covariance
matrix of ait:˜̂uitkl = X̃itklDit1θ

1
tkl + X̃itklDit2θ

2
tkl + ...+ X̃itklDitGθ

G
tkl + Ỹitklσtkl,τ + ẽitkl. (12)

For each pair of goods k and l, the estimated covariance between aitk and aitl is given
by σtkl,τ , which is the coefficient of Ỹitkl. Finally, given the means and variances of
the random Barten scales, the variance of the household level economies of scale
index Sit can be calculated as:

V̂ ar(Sit) =
K∑
k=1

K∑
l=1

[âtkâtlCov(wi1k, wi1l) + w̄1kw̄1lσ̂tkl,τ ] . (13)

The above estimation procedure raises two crucial empirical issues. Firstly, con-
sidering the potentially large number of dummy variables Ditg, precision for the
sole linear regression coefficient of interest, σtkl,τ might be enhanced through vari-
able selection methods, such as the least absolute shrinkage and selection operator
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(LASSO). Our empirical model in Section 6 adopts this method by applying LASSO
to equation (12) separately for each k and l to select variables.7 More specifically,
we impose a penalty on all θgtkl for g = 1, ..., G to facilitate variable selection, while
leaving the parameter of interest σtkl,τ unaffected by the penalty. Following the vari-
able selection process, we re-estimate the entire system of regressions through SUR
using only the selected variables. Appendix A.4 provides a detailed discussion on
different LASSO strategies that may be used in this model.

Secondly, while equation (12) ensures a positive semi-definite matrix asymptoti-
cally, it may not guarantee the same in finite samples. What we therefore do is start
with the estimates of σtkl,τ from the above regressions, and apply Higham’s (1988)
nearest symmetric positive semi-definite matrix algorithm to construct a positive
semi-definite estimated covariance matrix.

A.3 Step by Step Estimation Procedure

We recommend following the estimation procedure outlined below. The notation
here follows that used in Section 5.2.

A.3.1 Mean Barten Scales and Economies of Scale

Step M1. Group the observations by year, geographic location, and household type.
In each group, demean all the variables (wi,t,k, xi,t,k, zi,t) by their group means.

Step M2. Create a type indicator for each t = sm, sf, c0, c1, denoted by Ti,t, which
equals 1 if i belongs to the specified type and 0 otherwise. Then, create a new
type indicator Ti,s that encompasses both single males and single females. This
is to impose the preference assumption in Assumption 2, which implies that the
reduced-form parameters γsm,k and γsf,k should be identical and equal to bk.

Step M3. Set up the following system of (K − 1) regressions using the linear SUR
(clustered at the province-year level):

w̃i,t,k =
∑

t∈{s,c0,c1}

γt,kx̃i,t,k · Ti,t +
∑

t∈{sm,sf,c0,c1}

π′
t,kz̃i,t · Ti,t + ũi,t,k,

and collect the estimates (γ̂s,k, γ̂c0,k, γ̂c1,k) for each k = 1, ..., K − 1.

7We tried running the whole equation (12) without using LASSO, and the resulting estimates
turned out to be unreasonably high (See Appendix A.4). By applying LASSO to eliminate variables
that lack influence, we obtained estimates that are more reasonable, as reported in Section 6.
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Step M4. Recover the Barten scale estimates for t = c0, c1 through

ât,k = γ̂t,k/γ̂s,k,

and calculate the corresponding standard errors using the Delta method.

Step M5. Calculate the mean of the household level economies of scale index Sit.
Create K-vectors â∗t = (ât,1, ..., ât,K−1, 1)

′ and w̄s = (w̄s,1, ..., w̄s,K)
′, where w̄s,k is

the sample mean of all the budget shares of singles, wi,s,k. Then, the estimated
mean of Sit can be calculated by

â∗′t w̄s.

If we wish to calculate the economies of scale on single males and single females
separately, then replace w̄s with their respective subsamples w̄sm and w̄sf .

A.3.2 Variances of Barten Scales and Economies of Scale

Step V1. Use the estimates obtained in the estimation of the mean Barten scales
to compute:

wi,t,k −
∑

t∈{s,c0,c1}

γ̂t,kxi,t,k · Ti,t −
∑

t∈{sm,sf,c0,c1}

π̂′
t,kzi,t · Ti,t.

Then, following the same grouping strategy as used in Step M1, subtract the
group mean from the above expression to recover the undemeaned residuals ûi,t,k.

This step removes the group fixed effect f̂t,g,k in equation (9) from the expression.

Step V2. Create a subsample for each type of multi-member households t = c0, c1.
In each subsample, create a dummy variable Di,t,g for each price regime, and
create the following variables for k = 1, ..., K − 1 and l = 1, ..., K − 1:

ûi,t,k,l = ûi,t,kûi,t,l,

Xi,t,k,l = γ̂s,kxi,t,k + γ̂s,lxi,t,l,

Yi,t,k,l = γ̂s,kγ̂s,lxi,t,kxi,t,l.

Then, under each price regime, do a “within transformation” for ûi,t,k,l, Xi,t,k,l

and Yi,t,k,l.

Step V3. (Optional) For each of the K(K−1)/2 regressions given by equation (12),
run a separate LASSO (See Appendix A.4 for details). Retain only the variables
selected by LASSO.
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Step V4. Use only the variables retained in Step V3 to estimate the covariance ma-
trix of ai,t by running the system of K(K− 1)/2 regressions specified in equation

(12) through linear SUR. Due to symmetry, the coefficient of Ỹi,t,k,l provides the

estimates of the (k, l) and (l, k) elements of the covariance matrix Ω̂t = V̂ ar (ai,t)

for each household type. If Ω̂t is not positive semi-definite, one may correct it to
the nearest positive semi-definite matrix.

Step V5. Calculate the variance of the household level economies of scale index Sit.
Create a K×K covariance matrix Σs = V ar (wi,s), and expand Ω̂t obtained from
Step V4 to be a K ×K matrix by adding one more row and one more column of
zeros, denoted by Ω̂∗

t . Then, the (approximated) variance can be estimated by

â∗′t Σsâ
∗
t + w̄′

sΩ̂
∗
t w̄s.

Like the case of the mean scales, single males and single females can be easily
calculated separately by changing Σs and w̄s to their respective subsamples.

The code for the estimation procedure in Python is publicly available at https:
//github.com/jeff72216/scale econs.git.

A.4 Estimated Covariances and LASSO

Regression (12) requires a lengthy vector of dummy variables to estimate the price
regime fixed effects. However, we are not interested in knowing those values. In
our empirical model, the length of the dummy vector is approximately 110 (varying
for different household types). Table 8 presents the estimates of estimating the
entire equation (12) without dropping any variables. The results are very noisy and
unreasonable, which suggests using a method like the Belloni et al. (2014) post-
double-selection LASSO for dimension reduction.

We propose the following LASSO objective function for each k and l separately:

Nt∑
i=1

(˜̂uitkl −
G∑

g=1

X̃itklDitgθ
g
tkl − Ỹitklσtkl,τ

)2

+ λ
G∑

g=1

|θgtkl| ,

where Nt represents the number of observations for types t = c0, c1, c2. Note that
the penalty parameter λ is only applied to θgtkl for g = 1, ..., G and not to σtkl,τ , since
the latter is the variable of interest which must be included in the model.

In determining the optimal λ, denoted as λ∗, we use a repeated k-fold cross val-
idation procedure with k = 5 and repeat it 10 times, which is the default setting
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Table 8: Estimated Standard Deviations of Barten Scales, without LASSO

sd (ai)

Childless couples Couples with one child Couples with two children

Food-at-home 0.3953 1.4211 1.3299
(0.2646) (0.4404) (0.4335)

Food-out 0.9771 0.3414 1.1757
(0.3471) (0.4093) (0.4058)

Recreation and Education 0.6003 0.3394 1.3117
(0.1962) (0.2992) (0.2752)

Transport 0.8137 1.5551 1.6640
(0.2339) (0.3486) (0.4489)

Rent 0.4617 0.5404 0.4958
(0.0507) (0.0973) (0.1047)

1. (·): bootstrap standard errors with 1,000 replications (See Appendix A.5 for details).

of the Python sklearn package. The cross validation is performed using the func-
tion sklearn.model selection.RepeatedKFold(random state=123). Each com-
bination of k and l yields a unique λ∗. Post LASSO, we retain only those variables
with θ̂gtkl > 0, where θ̂gtkl is the LASSO estimate under λ∗. The results are shown in
Table 6, which are more reasonable and have smaller standard errors compared to
Table 8.

To ensure the robustness of λ∗, we conduct a check to examine whether the
estimates significantly differ from those in Table 6 when the penalty parameter λ
deviates from λ∗. Table 9 presents results for two alternative choices of the penalty
parameter: 0.5λ∗ and 2λ∗. The findings reveal only minor differences in all estimates,
indicating that our dimension reduction is robust to the choice of λ∗.

A.5 Bootstrap of Barten scale covariances

Given that regression (12) incorporates coefficient estimates γ̂1k as regressors, it is
necessary to adjust the standard errors reported by statistical programs to accom-
modate the randomness within γ̂1k. We use a paired bootstrap estimate standard
errors of the Barten scale covariances in equation (12).

For each province and each year, we redraw the observations with replacement to
create a new bootstrap sample. In the original dataset, we exclude groups with only
one observation as they contribute no information to the model after differencing-out
their group means. Given that observations may be drawn more than once during
replacement, it is possible to have a group with two or more identical observations.
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Table 9: LASSO Robustness Check, Estimated Barten Scale Standard Deviations

sd (ai)

Childless couples Couples with one child Couples with two children

0.5λ∗ 2λ∗ 0.5λ∗ 2λ∗ 0.5λ∗ 2λ∗

Food-at-home 0.0336 0.0345 0.0176 0.0108 0.0172 0.0103
(0.0115) (0.0116) (0.0118) (0.0096) (0.0151) (0.0191)

Food-out 0.2277 0.2054 0.2198 0.2340 0.2238 0.2334
(0.0297) (0.0378) (0.0337) (0.0366) (0.0325) (0.0343)

Recreation and Education 0.1402 0.1443 0.1550 0.1408 0.0585 0.0587
(0.0209) (0.0196) (0.0239) (0.0291) (0.0313) (0.0330)

Transport 0.0667 0.0885 0.0768 0.0564 0.0404 0.0299
(0.0225) (0.0250) (0.0302) (0.0293) (0.0257) (0.0306)

Rent 0.0100 0.0268 0.0274 0.0215 0.0289 0.0360
(0.0083) (0.0085) (0.0109) (0.0094) (0.0116) (0.0108)

1. (·): bootstrap standard errors with 1,000 replications (See Appendix A.5 for details).

Consequently, we remove all groups with no within-group variation. After this pre-
processing, we estimate the model following all steps in Section A.3. We gather the
estimated elements, denoted by σ̂b

tkl,τ , of these matrices, with b indicating the index
of bootstrap replications. Note that the LASSO variable selection process is imple-
mented only in the original sample. Once the variables are selected, we use the same
set of variables in every bootstrap replication.

To generate 1,000 bootstrap replications, we first index the entire sample and
then draw 1,000 different arrays of indices with replacement from each province-year
cluster. Drawing is performed using the Python function numpy.random.choice(),
with the simulation seed set to numpy.random.seed(123). In each bootstrap loop,
we then pick one array of indices to create a new bootstrap sample. After completing
the bootstrap, we calculate the standard errors of σ̂tkl,τ using the formula:

sd(σ̂tkl,τ ) =

√√√√ 1

999

1000∑
b=1

(
σ̂b
tkl,τ − ¯̂σtkl,τ

)2
,

where ¯̂σtkl,τ = 1
1000

∑1000
b=1 σ̂b

tkl,τ .
The code for the bootstrap algorithm in Python is publicly available at https:

//github.com/jeff72216/scale econs.git.
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A.6 An Alternative Functional Form of β (r)

In this Appendix, we provide an alternative functional form assumption for β (rit)
that is theoretically plausible. It assumes that β (rit) is quadratic in erit , which can
be regarded as a direct extension of the linear parametric specification introduced in
Section 4.2. Assuming that Assumptions 1, 2, 3, and 4 hold, and:

Assumption 5m (Replacing Assumption 5). Assume:

β(rit) = b0 + b′erit +
1

2
(erit)′Berit ,

where b0 is a constant, b = (b1, b2, ..., bK−1)
′ is a (K − 1)-vector of parameters, and

B = [bkl] is a (K − 1) × (K − 1) symmetric matrix of parameters bkl. Assume all
elements of b and B are nonzero.

The derivative of β (rit + ln at) with respective to ritk is therefore:

∂β (rit + ln at)

∂ritk
= bkatke

ritk +
K−1∑
l=1

bklatkatle
ritk+ritl .

Under Assumption 6, Theorem 1 implies the following reduced-form model:

witk (yit, rg) = mtgk + γtke
rgkyit +

K−1∑
l=1

γtkle
rgk+rglyit + εitk,

where γtk = bkatk and γtkl = bklatkatl. For singles, this reduces to

wi1k (yi1, rg) = m1gk + bke
rgkyi1 +

K−1∑
l=1

bkle
rgk+rgly1t + ε1tk.

Analogous to the linear specification in Section 4.2, each pair of (γtk, bk) exactly
identifies atk. In addition, each pair of the quadratic parameters (γtkl, bkl) also iden-
tifies atkatl. Therefore, we have (K−1)+K(K−1)/2 pairs of parameters to identify
K − 1 unknown Barten scales, resulting in over-identification in the quadratic spec-
ification.

This specification also fits the random Barten scale framework, and it can be
easily shown that at least the first two moments are readily identified. It requires a
weaker version of Assumption 7:
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Assumption 7m (Replacing Assumption 7). For each t ∈ T , let the Barten scale
vector ait follow unknown joint distributions Fat (ait1, ait2, ..., aitK−1) that are inde-
pendent of the rg and yit. Assume that the first moments of random Barten scales
exist, denoted by at = E (ait).

Assuming instead that Assumptions 1m, 2, 3, 4, 5m, 6, and 7m hold. Then,
under the quadratic specification, the model takes the form of

E (witk | rg, yit) = ftgk + bkE (aitk) e
rgkyit +

K−1∑
l=1

bklE (aitkaitl) e
rgk+rglyit.

Since E (witk | rg, yit) is assumed to be identified in Assumption 4, E (aitk) and
E (aitkaitl) are both identified under the fact that bk and bkl are identified from sin-
gles. Therefore, the variances V ar (aitk) and covariances Cov (aitk, aitl) are identified
for k, l = 1, ..., K − 1.

While this approach may seem attractive, providing a one-step linear regression
method to recover both the first and second moments, its feasibility is challenged
by high multicollinearity in our empirical data. In a preliminary check for multi-
collinearity, we observed that the correlation coefficients between eritkyit and eritlyit
consistently exceeded 0.99, indicating near-perfect collinearity. Consequently, the
K − 1 variables intended to identify E (aitkaitl) in each equation k, ergk+rglyit, be-
come practically indistinguishable due to high multicollinearity. In fact, even the
smallest correlation coefficient for eritk+ritl among all pairs of k and l is 0.95, with
the majority ranging between 0.98 and 0.99. This renders the empirical application
of the model impractical with our dataset.
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