Homework \#0 • MATH 462 • Think Fluids!

- submit a paper copy of your writing in the Monday 16 January lecture, webct-posting may appear later that evening.
- a 40 page matlab primer can be found on the class webpage.
- part B) is due noon on Thursday 19 January (at my office).
- please attach another copy of the student info sheet to the front of your part A) submission.
A) Think Fluids! (≤ 1 page, due Monday 16 January) Discover a personal interest in fluids by researching a topic of individual choice and writing a short two-paragraph essay. The topic can really be anything which raises awareness of the ubiquity of fluid motion. For instance: a specific fluid phenomena (waterspouts, the Antarctic circumpolar current), a biography (Ernst Mach, Gustave-Gaspard Coriolis), a technology (artificial heart valves, inkjet printers), or a current socio-scientific concern (global warming, oil spills). Creativity counts. Discuss the fluid aspects of your topic (especially mention those that are quantitative/mathematical); be specific and state facts. Give references; they can be either print, or web-based (please verify accuracy). You may attach one image. Be prepared to announce your topic in the Monday 16 January lecture.
Post your essay on the web by attaching a link/copy to a posting on the webct think fluids! discussion group. The subject line should contain your fluid topic.
*) Line Plots in Matlab (optional) Matlab is a computing environment which allows both interactive use and pre-programmed scripts. Plotting is simple. As a first example, download w01line. m from the class webpage. It is a script which reproduces the line plots shown in Figure 2.12 (equation 2.37, page 47, Acheson) for $u_{\theta}(r)$. Play around by editing the file $w 01 l i n e . m$ to see how it works. If you mess up the file, just download a new copy! Make the very minor modifications to reproduce the line plots shown in Figure 2.16 (problem 2.6, page 52, Acheson) for $u(y)$. Give the values of the constants you used (write on your submitted plots).
B) Some Vector Calculus (2 pages +2 plots) Consider a scalar function of two variables,

$$
\psi(x, y)=y\left(1-\frac{1}{r^{2}}\right)+\frac{B}{2} \ln \left(r^{2}\right),
$$

where $r^{2}=x^{2}+y^{2}$. Define a vector field $\vec{U}(x, y)=(u(x, y), v(x, y))$ where the scalar functions $u(x, y)$ and $v(x, y)$ are related to $\psi(x, y)$ by

$$
u(x, y)=+\frac{\partial \psi}{\partial y} \quad ; \quad v(x, y)=-\frac{\partial \psi}{\partial x} .
$$

Calculate these velocities and also show that the divergence of the velocity field is zero.
This vector field (exterior to the unit circle) is plotted by the script $w 01$ flow. m, where the value of B can be changed at the top of the file. For these flows, note that the locations $\left(x^{*}, y^{*}\right)$ where the velocity field $\vec{U}\left(x^{*}, y^{*}\right)$ is exactly the zero vector depend on the value of B. Identify ranges of B which characterize the different behaviours of these stagnation points.
Use the matlab command $\operatorname{plot}\left(x s t a r, y s t a r, r^{*}\right)$, which plots a red asterisk at a single point, to indicate the points of stagnation. Also indicate in black the contours which are associated with these points. Include two annotated plots which illustrate your results.

