Homework \#7 • MATH 462 • Sound \& Viscosity

- submit your write-up Wednesday 20 March.
- thank you for acknowledging collaborations \& assistance from colleagues.
A) Music of the Sphere? (2 pages, 10pts) This problem is based on \#3.13 in Acheson. Derive the linear wave equation for a spherically symmetric wave from the Euler equations. For a spherical shell of radius L, derive the eigenvalue relation for the natural (temporal) frequencies, ω, of the interior standing waves

$$
\tan \frac{\omega L}{c}=\frac{\omega L}{c}
$$

Explain why the boundary conditions of bounded density at the origin and zero velocity at $r=L$ are reasonable choices. Calculate (approximately) the first three eigenfrequencies (as multiples of $c / L)$, and give an opinion on whether or not this music of the sphere is a truly harmonious sound.
B) Cylindrical Navier-Stokes (2 pages, 10pts) Show how the viscous terms expressed in cylindrical coordinates are derived using the two approaches discussed in section 2.4 of Acheson. Which approach gives a clearer presentation?
C) Turning on the Water (3 pages, 10pts) Solve the problem as posed by \#2.5 in Acheson. There are several ways to approach the mathematics, some maybe more efficient \& pleasant than others. Use Matlab to calculate at what time the flow speed at $r=0$ reaches half of the (steady) Couette flow value (state your choices for parameter values).

