
MATH 462 - Homework #1 Solution - by Ben Ong

Derivation of the Euler Equations

We present a first principles derivation of the Euler Equations for two-dimensional fluid flow
in three-dimensional cylndrical cooordinates (r, θ, z). We assume no vertical flow (uz = 0) and
no vertical variations (∂/∂z ≡ 0). We define ur(r, θ, t) and uθ(r, θ, t) to be flow components in
the êr and êθ directions respectively.

Conservation of mass tells us that the change of mass inside a control volume has to equal
the net flux of mass through the control volume. The change in mass due to time variation in
density and volume is given by[

ρ(r, θ, t + ∆t)− ρ(r, θ, t)
]
∆r(r∆θ)∆z ≈ ∂ρ

∂t
∆t∆r(r∆θ)∆z (1)

Denoting the flux through surfaces with êr(r, θ, z) and êr(r + ∆r, θ, z) normal vectors as

fluxr = ρ(r, θ, t)
(
ur(r, θ, t)∆t

)
(r∆θ)∆z

fluxr+∆r = ρ(r + ∆r, θ, t)
(
ur(r + ∆r, θ, t)∆t

)(
(r + ∆r)∆θ

)
∆z

We see that the net flux in the êr is

(net flux)r ≈ ∂(ρurr)

∂r
∆r∆t∆θ∆z (2)

Similarly

fluxθ = ρ(r, θ, t)
(
uθ(r, θ, t)∆t

)
∆r∆z

fluxθ+∆θ = ρ(r, θ + ∆θ, t)
(
uθ(r, θ + ∆θ, t)∆t

)
∆r∆z

Thus

(net flux)θ ≈ ∂(ρuθ)

∂θ
∆θ∆t∆r∆z (3)

and
(net flux)z ≡ 0 (4)

Combining the four above equations give the conservation of mass condition

∂ρ

∂t
+

1

r

∂(ρrur)

∂r
+

1

r

∂(ρuθ)

∂θ
= 0 (5)
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Newton’s Law tells us that the net change in momentum is equal to the net impulse. The
net change in momentum is affected by (i) momentum flux leaving through the control volume,
and through (ii) time variation in density and volume of the control box.

The momentum is given by the product of the momentum density and the volume.

~m(t) = ρ(r, θ, t)
[
ur(r, θ, t)êr(θ) + uθ(r, θ, t)êθ(θ)

](
∆r(r∆θ)∆z

)
~m(t + ∆t) = ρ(r, θ, t + ∆t)

[
ur(r, θ, t + ∆t)êr(θ) + uθ(r, θ, t + ∆t)êθ(θ)

](
∆r(r∆θ)∆z

)
thus the contribution to the net change from (ii) is

~mt ≈ ∂

∂t

{
ρ
[
urêr + uθêθ

]}(
∆t∆r(r∆θ)∆z

)
(6)

Denoting the flux through surfaces with êr(r, θ, z) and êr(r + ∆r, θ, z) normal vectors as

~m(r) = ρ(r, θ, t)
[
ur(r, θ, t)êr(θ) + uθ(r, θ, t)êθ(θ)

](
(ur(r, θ, t)∆t)(r∆θ)∆z

)
~m(r + ∆r) = ρ(r + ∆r, θ, t)

[
ur(r + ∆r, θ, t)êr(θ) + uθ(r + ∆r, θ, t)êθ(θ)

]
∗

((
ur(r + ∆r, θ, t)∆t

)(
(r + ∆r)∆θ

)
∆z

)
Thus the net flux out of the two surfaces is approximated by taking

lim
r→0

~m(r + ∆r)− ~m(r)

∆r
= ~mr ≈ ∂

∂r

{
ρrur

[
urêr + uθêθ

]}
(∆t∆r∆θ∆z) (7)

Similarly

~m(θ) = ρ(r, θ, t)
[
ur(r, θ, t)êr(θ) + uθ(r, θ, t)êθ(θ)

](
(uθ(r, θ, t)∆t)∆r∆z

)
~m(θ + ∆θ) = ρ(r, θ + ∆θ, t)

[
ur(r, θ + ∆θ, t)êr(θ + ∆θ) + uθ(r, θ + ∆θ, t)êθ(θ + ∆θ)

]
∗

((
uθ(r, θ + ∆θ, t)∆t

)
∆r∆z

)
From vector calculus,

êr(θ + ∆θ) = êr(θ) + ∆θêθ(θ) (8)

êθ(θ + ∆θ) = êθ(θ)−∆θêr(θ) (9)

Substituting into ~m(θ + ∆θ) gives

~m(θ + ∆θ) = ρ(r, θ + ∆θ, t)
[
ur(r, θ + ∆θ, t)(êr(θ) + ∆θêθ(θ)) + uθ(r, θ + ∆θ, t)(êθ(θ)−∆θêr(θ))

]
∗

((
uθ(r, θ + ∆θ, t)∆t

)
∆r∆z

)
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Thus

~m(θ + ∆θ)− ~m(θ)

∆t∆r∆z
=

[
ρ(r, θ + ∆θ, t)ur(r, θ + ∆θ, t)uθ(r, θ + ∆θ, t)− ρ(r, θ, t)ur(r, θ, t)uθ((r, θ, t)

]
êr

+
[
ρ(r, θ + ∆θ, t)uθ(r, θ + ∆θ, t)uθ(r, θ + ∆θ, t)− ρ(r, θ, t)uθ(r, θ, t)uθ((r, θ, t)

]
êθ

+
[
ρ(r, θ + ∆θ, t)ur(r, θ + ∆θ, t)uθ(r, θ + ∆θ, t)

]
∆θêθ

−
[
ρ(r, θ + ∆θ, t)uθ(r, θ + ∆θ, t)uθ(r, θ + ∆θ, t)

]
∆θêr

Dividing both sides by ∆θ and taking lim ∆θ → 0 ~m(θ+∆θ)−~m(θ)
∆θ

gives

~mθ ≈
[

∂

∂θ

{
ρuθ(urêr + uθêθ)

}
+ ρuθ(urêθ − uθêr)

]
∆t∆r∆z∆θ (10)

Combining equations (6), (7) and (10) gives the net change in momentum[
r

∂

∂t
{ρur} +

∂

∂r
{ρrurur}+

∂

∂θ
{ρuruθ} − ρu2

θ

]
(∆r∆θ∆z∆t)êr

+

[
r

∂

∂t
{ρuθ}+

∂

∂r
{ρruθur}+

∂

∂θ
{ρuθuθ}+ ρuruθ

]
(∆r∆θ∆z∆t)êθ (11)

If you expand the derivatives, and impose conservation of mass (equation (5)), the net change
in momentum simplifies to (djm: the two extra terms come from the CV geometry (8) & (9))

[
ρ
∂ur

∂t
+ ρur

∂ur

∂r
+

1

r
ρuθ

∂ur

∂θ
− ρu2

θ

r

]
(r∆r∆θ∆z∆t)êr

+

[
ρ
∂uθ

∂t
+ ρur

∂uθ

∂r
+

1

r
ρuθ

∂uθ

∂θ
+

ρuruθ

r

]
(r∆r∆θ∆z∆t)êθ (12)

We now need to calculate the net impulse on the system in order to derive the remaining
Euler Equations. There are two contributions; (i) From a given body force density ~F (r, θ, t) =
F r(r, θ, t)êr + F θ(r, θ, t)êθ + F z(r, θ, t)êz and (ii) from the internal pressure.

The impulse contribution from (i) is simply the force density*volume*∆t.

~F (r, θ, t) = (F r(r, θ, t)êr + F θ(r, θ, t)êθ + F z(r, θ, t)êz)(r∆r∆θ∆z)∆t (13)

3



The force = (pressure*area) exerted on the surfaces with êr(r, θ, z) and êr(r + ∆r, θ, z) normal
vectors is

F r
P = P (r, θ, t)

[
(r∆θ)∆z

]
êr(θ)

F r+∆r
P = P (r + ∆r, θ, t)

[
(r + ∆r)∆θ∆z

]
êr(θ)

Thus, the net force contribution from the two surfaces

{FP}r ≈ ∂

∂r
{Pr}[∆r∆θ∆z]êr(θ)

≈
[
r
∂P

∂r
+ P

]
[∆r∆θ∆z]êr(θ) (14)

Similarly

F θ
P = P (r, θ, t)

[
∆r∆z

]
êθ(θ)

F θ+∆θ
P = P (r, θ + ∆θ, t)

[
∆r∆z

]
êθ(θ + ∆θ)

Using equation (9) gives

F θ+∆θ
P = P (r, θ + ∆θ, t)

[
∆r∆z

]
(êθ(θ)−∆θêr(θ))

Thus, the contribution from the two surfaces gives

{FP}θ ≈
[
∂P

∂θ
êθ(θ)− P êr(θ)

]
∆r∆z∆θ (15)

And the contribution from surfaces with êz as normals is

{FP}z ≡ 0 (16)

Thus the net impulse is (djm: note the amazing cancellation of the non-gradient P term)[
F rêr + F θêθ + F z êz +

∂P

∂r
êr +

1

r

∂P

∂θ
êθ

]
r∆r∆θ∆z∆t (17)

Combining equations (12) and (17) gives us Newton’s Law

(êr)
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
− u2

θ

r
=

1

ρ

[
− ∂P

∂r
+ F r

]
(18)

(êθ)
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uruθ

r
=

1

ρ

[
− 1

r

∂P

∂θ
+ F θ

]
(19)

(êz) 0 = F z (imposes condition on body force) (20)
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Rotational Flows

Given ~u = (−Ωy, Ωx, 0), find the pressure which produces a flow solution to the incompressible

Euler Equations with ~F = −ρgẑ

Incompressible Euler Equations

∇ · ~u = 0 (21)

∂~u

∂t
+ (~u · ~∇)~u = −

~∇P

ρo

+
~F

ρo

(22)

We notice that equation (21) is automatically satisfied. Expanding (22)

ut + (uux + vuy + wuz) = −Px

ρo

vt + (uvx + vvy + wvz) = −Py

ρo

wt + (uwx + vwy + wwz) = −Pz

ρo

− g

Substituting ~u = (−Ωy, Ωx, 0), we get

−Ω2x = −Px

ρo

(23)

−Ω2y = −Py

ρo

(24)

Pz = −ρog (25)

Solving (23) gives

P =
ρoΩ

2x2

2
+ f(y, z) (26)

Differentiating (26) and comparing with (24) gives

Py = f ′(y, z) = ρoΩ
2y (27)

Solving (27) gives

P =
ρoΩ

2(x2 + y2)

2
+ g(z) (28)

Differentiating (28) and comparing with (25) and solving gives

P =
ρoΩ

2(x2 + y2)

2
− ρogz + constant (29)
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[djm:] Since the fluid has vorticity, ∇×~u = (0, 0, 2Ω) 6= ~0, the Bernoulli theorem for irrotational
flow does not apply. However, the flow is steady and so the Bernouilli theorem for streamlines
does apply, but the Bernouilli function can have different constant values on different stream-
lines (circles around the axis of rotation) and cannot be used to infer the surface geometry.

An astronomer could make a liquid mirror telescope by spinning mercury on a a parabolic
surface. Actually, this is being done at a UBC research station in maple Ridge; they have a
6m diameter mirror! They need the correct angular velocity to get a uniform coating of the
mercury
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