MATH 462 - Homework \#0 Solution - by Ben Ong

Finding Stagnation Points (Vector Calculus)

Given a scalar field

$$
\phi(x, y)=y\left(1-\frac{1}{r^{2}}\right)+\frac{B}{2} \ln \left(r^{2}\right) \text { where } r^{2}=x^{2}+y^{2}
$$

Define a vector field $\vec{U}(x, y)=((u(x, y), v(x, y))$ where

$$
\begin{gather*}
u(x, y)=\frac{\partial \phi}{\partial y}=\left(1-\frac{1}{r^{2}}\right)+\frac{2 y^{2}}{r^{4}}+\frac{B y}{r^{2}}=\left(1-\frac{1}{r^{2}}\right)+\frac{2 y^{2}}{r^{2}}\left(\frac{y^{2}}{r^{2}}+\frac{B}{2}\right) \tag{1}\\
v(x, y)=-\frac{\partial \phi}{\partial x}=\frac{2 x y}{r^{4}}+\frac{B x}{r^{2}}=\frac{2 x^{2}}{r^{2}}\left(\frac{y}{r^{2}}+\frac{B}{2}\right) \tag{2}
\end{gather*}
$$

We wish to find when $\vec{U}(x, y)=(0,0)$. Notice that $v=0$ when

Case 1, $x=0$
Setting equation (1) to zero (with simplification) results in

$$
u(x, y)=1-\frac{1}{y^{2}}+\frac{2}{y^{2}}+\frac{B}{y}=0
$$

or equivalently

$$
\begin{equation*}
x=0, \quad y=\frac{-B}{2} \pm \frac{\sqrt{B^{2}-4}}{2} \quad \text { which are real provided }|B| \geq 2 \tag{3}
\end{equation*}
$$

Case 2, $\frac{y}{r^{2}}+\frac{B}{2}=0 \Rightarrow y=-\frac{B r^{2}}{2}$
Setting equation (1) to zero (with simplification) results in the condition $r^{2}=1$. Thus

$$
\begin{equation*}
y=-\frac{B}{2}, \quad x= \pm \sqrt{1-\frac{B^{2}}{4}} \quad \text { which are real provided }|B| \leq 2 \tag{4}
\end{equation*}
$$

