Homework \#0 • MATH 418 • Warm-Up Problems

- please respect page limits \& practice the Guidelines for Written Assignments.
- submit your write-up by midnight, Wednesday 16 September (homework box \#12).
- remember that Webct is an open forum for discussion.
- acknowledge collaborations \& assistance from colleagues/instructor.
- student info form attached. Submit with assignment if you haven't already done so.
- consider the warm-up problems below.
- identify which problems you cannot do.
- of these problems that you can do, submit 1-page presentations for the three that you found most challenging.
- state references - not everything in your summaries need be derived. You may certainly discuss references on Webct.
A) Polar Coordinates (1 page) Verify by direct calculation that the function $u(r, \theta)=\cos (r \cos \theta)$ satisfies the PDE relation

$$
\nabla^{2} u+u=0
$$

Investigate from the three different perspectives:
(a) converting to rectangular coordinates: $u(r, \theta)=U(x, y)$;
(b) using the polar form of the Laplacian operator; and
(c) evaluating $u_{x x}$ and $u_{y y}$ from $u(r, \theta)$ by chain rule.
B) Complex Variables (1 page) Find the complex-analytic function, $f(z)$, on the unit disc that takes the values

$$
f(z)=-3 i e^{3 i \arg z}+(1-2 i) e^{-i \arg z}
$$

on the unit circle $|z|=1$. Give an explicit formula for the real part of the function, $u(x, y)=$ $\operatorname{Re}\{f(z)\}$ where $z=x+i y$. Calculate the Laplacian of $u(x, y)$, and state the theorem from which this result derives.
C) Continuity (1 page) Consider the parabola function $y=x^{2}$ on $0 \leq x \leq 1$. Using the standard $\epsilon-\delta$ definition of a continuous function, give the best formula for $\delta(\epsilon ; x)$ that guarantees continuity at the point x. Give the best value of $\tilde{\delta}(\epsilon)$ that guarantees uniform continuity on the interval $0 \leq x \leq 1$.
D) Vector Calculus (1 page) Explain why the area of a 2D region bounded by a simple closed curve, \mathcal{C}, has an area formula in the form of the line integral

$$
A=\frac{1}{2} \int_{\mathcal{C}}\binom{x}{y} \cdot \hat{n} d s
$$

(there are, in fact, two such explanations). Derive the area for a semi-circle using the above formula.
E) ODE Boundary Value Problem (1 page) Find a closed form solution, $q(x)$, for the ODE problem on $0 \leq x \leq 1$

$$
\frac{d^{2} q}{d x^{2}}=f(x) \quad \text { with } \quad q(0)=q(1)=0
$$

Show that the use of integration by parts (followed by some careful bookkeeping), the double integral solution can be reduced to a single integral formula having the form

$$
q(x)=\int_{0}^{1} f(s) G(x, s) d s
$$

(Hint: the function $G(x, s)$ is defined piecewise on $0 \leq s \leq 1$.)
F) Linear Algebra (1 page) Consider the matrix equation for the vector \vec{v}

$$
\left[\begin{array}{rrr}
0 & 1 & -2 \\
1 & -1 & 1 \\
1 & -1 & 0
\end{array}\right] \vec{v}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

Construct vectors \vec{w}_{j} such that \vec{v} has a representation in the form

$$
\vec{v}=\sum_{j=1}^{3} a_{j} \vec{w}_{j}
$$

What is the significance of the vectors \vec{w}_{j} ?

NAME \& Places:

Year \& Programs:

E-Mail (req) \& Local Phone (opt):

Quantitative Courses:
linear algebra \& diff. equations
adv. calculus \& analysis
courses with computing
other quant courses

Matlab \& Maple - Experience:

Matlab \& Maple - Access:

Other Computing Experience:

Subjects of Interest:

Personal Course Objectives:
(sciences, engineering, economics, etc)
(yes/no)
(lab and/or home)
(software, programming languages, web design)
(specific areas of math, sciences, etc)

Mathematical Focus:
[] analysis/theory [] applications [] computing \& graphics

Familiarity Scale: I know it . . .
5 ... in my sleep!
$4 \ldots$ after a bit of thinking
$3 \ldots$ should I see it in class again
2 ... if I can wikipedia it
1 ... vaguely from a previous exam question I couldn't answer
0 . . . huh?
$-7 \ldots$ is a subject to be avoided at all costs

Mathematical Topics: use above scale
\square CALC: implicit (partial) differentiationCALC: multi-variable chain rule \& change of variables
\square CALC: multiple integralsCALC: theorems of Green \& Stokes
\square LIN ALG: solution methods for systems of linear equations
\square LIN ALG: existence \& uniqueness of solutions for systems of linear equationsLIN ALG: matrix eigenvalues \& eigenvectors
\square ODEs: solution methods for $2^{\text {nd }}$-order linear ODEs
\square ODEs: using initial conditions for $2^{n d}{ }_{\text {-order }}$ linear ODEs
\square ODEs: solution of linear ODE systems
\square ODEs: eigenvalues \& eigenfunctions
\square SERIES: deriving Fourier series
\square SERIES: solution of BVPs by Fourier series
\square COMPLEX: complex exponential notation
\square COMPLEX: complex contour integration
\square COMPLEX: Fourier transform integrals

