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3.3 Basis and dimension

The matrix-vector product Ax is equivalent to a linear combination of the columns
of the matrix A. If A has columns vi,vz,...,Vn, then

Ax =mvy +22v2 4+ TpVa-

The reader should write out a specific example if this is not clear (see Exercise
1). The quantities z1,%3,..., %5 are scalars and vi,vs,..., vV, are vectors; an ex-
pression such as z3vy + Zpv2 + cldots + T, vy, is called a Hnear combination of the
vectors vy, Va, . - ., Vp because the vectors are combined using the linear operations
of addition and scalar multiplication.

When A € R " is nonsingular, each b € R” can be written in a unique way
as a linear combination of the columns of A (that is, the equation Ax = b has a
unigue solution). The following definition is related.

Definition 3.23. Let V be o vector space, and suppose Vi,Vz,...,Va a7e vectors
in V with the property that each v € V can be written in a unique way as a lin-
ear combination of {v1,v2,...,vn}. Then {v1,V2,-..,Va} is called a basis of V.
Moreover, we say that n is the dimension of V.

A vector space can have many different bases, but it can be shown that each
contains the same number of vectors, so the concept of dimension is well-defined.
We now present several examples of bases.

Example 3.24. The standard basis for R" is {e1,e2,...,en}, where every entry
of e; is zero except the jth, which is one. Then we obviously have, for any x € R",

X = I1e1+ 2282+ -+ Tnkn,

and it is not hard to see that this representation is unique. For example, forx € R,

1 0 0
x=z | 0 | 4+z2| 1 | +23]| 0
0 1) 1

Example 8.25. An alternate basis for R? is {vy, V2, vs}, where

e 1 1

VE V2 Quw

vy = w , Vo = 0 . va=1| —75
1 _1 1

V3 V2 Ve

It may not be obvious to the reader why one would want to use this basis instead of
the much simpler basis {1, ez, e3}. However, it {5 easy to check that

<w.<m”0u J:..dww“Oﬂ d.w.d.wuoq
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and this property makes the basis {v1,Va, Va} almost as easy to use as {e1,es,e3}.
We ezplore this topic in the nert section.

Example 3.26. The set P, is the vector space of all polynomials of degree n or
less (see Exercise 8.1.8). The standard basis is {1,2,2%,...,2"}. To see that this
is indeed a basis, we first note that every polynomial p € P, can be written as o
linear combination of 1,z,22,...,z":

ﬁﬁﬁ.u ”n.c.u.lTﬁwanTnnHmnT...nTﬁ:H:

(this is just the definition of polynomial of degree n}. Showing that this representa-
tion is unique is a little subtle. If we alse hod

pl2) =do -1+ dyz + dox® + - - + dpz™,
then, subtraction would yield
{eo—dp)+(er—di)z+- -+ (cn—dy)z™ =0

for every z. However, a nonzero polynomial of degree n can have ot most n roots,
so gt Eeﬁ be the case that (co — do) + (¢1 — di)z + -+ + (e — dp)z™ is the zero
polynomial. That is, cg = dg,c1 = di,.-.,cn = d must hold.

Example 3.27. An alternate basis for Py is

1 1
1,0 —=,2°—x+ =
A ‘-z mv

(the advantage of this basis will be discussed in Ezample 3.59 in the next section). To
show that this is indeed o basis, we must show that, given any p{z) = co+ a1z +e222,
there is a unigue choice of the scalars ag,a1,az such that

1 1
ap-l4+a; Aalmv+§ Aamla+|v Hmo+nna+nw.ew.

6
This equation is equivalent to the three linear equations
1 1
o = 51 + g% = ‘o

a1 —az = €1,
a3 = C3.
The reader can easily verify that this system has a unigue solution, regardless of the
values of cp, 61,02. :

Example 3.28. Yet another basis for Py is {L1, L, L3}, where

Liz) =2 A - Wv (z—1),
Lo(z) = ~dz{z =1},
Ly(e) = 22 T - Wv .
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'f we write z1 = 0, zo = 1/2, and 23 = 1, then the property

e)={ § i3 (59)

wlds. From this property, the properties of a basis can be verified (see Ezercise 5).

There are two essential properties of a basis {v;,vz,...,v,} of a vector space
/. First, every vector in V can be represented as a linear combination of the basis
rectors. Second, this representation is unique. The following two definitions provide
:oncise ways to express these two properties.

Jefinition 3.29. Let V be a vector space, and suppose {vi1,vy,...,V,} i35 a col-
ection of vectors in V. The span of {vi,va,...,vn} is the set of all linear combi-
witions of these vectors:

span{vy,va,. .., vt = {aavi +aeva + -+ @nvy ¢ @1, 00,...,0, € R}

Thus, one of the praperties of a basis {vi,v2,...,v,} of a vector space V is
hat

V= m@mbﬁaafa_.ny .. “<._..L..

[he reader should also be aware that, for any vectors vy,vs,...,v, in a vector
pace V, span{vy, va,..., vy} is a subspace of V (possibly the entire space V, asin
he case of a basis).

Jefinition 3.30. A set of vectors {vy,va,...,va} i3 called linearly independent if
ke only scalars ¢1,¢2,. .., ¢q satisfying

1V +nu<u+...+ﬁ:<$”0
rec; =cp=---=¢p=0.

It can be shown that the unigueness part of the definition of a basis is equiva-
ent to the linear independence of the basis vectors. Therefore, a basis for a vector
pace is a linearly independent spanning set.

A third quality of a basis is the number of vectors in it—the dimension of the
rector space. It can be shown that any two of these properties imply the third.
Chat is, if ¥V has dimension n, then any two of the following statements about
V1,¥2,...,Vg} imply the third:

s k=mn;
o {vi,vs,...,Vy} is linearly independent;
e {vi,vo,...,Vg} spans V.
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Thus if {v1,va,...,Vk} is known to satisfy two of the above properties, then it is a
basis for V.

Before leaving the topic of basis, we wish to remind the reader of the fact
indicated in the opening paragraphs of this section, which is so fundamental that
we express it formally as a theorem.

Theorem 3.31. Let A be an n X n matriz. Then A is nonsingular if and only if
the columns of A form a basis for R".

Thus, when A is nonsingular, its columns form a basis for R®, and solving
Ax = b is equivalent to finding the weights that express b as o linear combination
of this basis. This fact answers the following important question.? Suppose we
have a basis v1,va,...,Vs for R™ and a vector b € R®. Then, of course, b is a
linear combination of the basis vectors. How do we find the weights in this linear
combination? How expensive is it to do so (that is, how much work is required)?
To find the scalars 1,22, . .., %5 in the equation

1V +X2Ve + -+ BpVe =D,

we define?®
A = [vi[val- - |va]

and solve
Ax=hb

via Gaussian elimination. The expense of computing x can be measured by count-
ing the number of arithmetic operations—the number of additions, subtractions,
multiplications, and divisions—required. The total number of operations required
to solve Ax = b is a polynomial in n, and it is convenient to report just the leading
term in the polynomial, which can be shown to be

(the lower-order terms are not very significant when n is large}. We usually express
this saying that the operation count is

2
o Zn®
()
(“on the order of (2/3)n%").
In the next section, we discuss a certain special type of basis for which it is
much easier to express a vector in terms of the basis.

91f the importance of this question is not apparent to the reader at this point, it will be after
he or she reads the next two sections.
10Thig notation means that A is the matrix whose columns are the vectors vi1,vz,..., ¥a.
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Exercises
1. (a) Let
3 -1 2 2
A= -1 W k , X = |M .
2 6 -3 3
Compute both Ax and
3 -1 2
2| -1]-2 31 +3 4|,
2 0 -3

and verify that they are equal.
{b) Let A € R"*" and x € R", and suppose the columns of A are

n
<:<w....n<=mm. ]

so that the (4, j)-entry of A is (v;);. Compute both (Ax); and (z,v, +
TaVs + 4+ TpVa)i, and verify that they are equal.

2. Is
1 1 2
0|, 11},]2
1 1 4

a basis for R*? (Hint: As explained in the last paragraphs of this section, the
three given vectors form a basis for R® if and only if Ax = b has a unique
solution for every b € R", where A is the 3 x 3 matrix whose columns are the
three given vectors.)

3. Is
1 1 1
of,l1],]2
1 1 1

a basis for R3? (See the hint for the previous exercise.)

4. Show that
{Z*+lLz+1,2%—z+1}

ig a basis for Pg, the space of polynomials of mmmﬂmm 2 or less. {Hint: <mumw.

directly that the definition holds.)

5. Show that {L, Ls, L3}, defined in Example 3.28, is a basts for P,. (Hint: Use
(3.9) to show that

p(z) = p(z1)L1(z) + p(z2)La(z) + p(ws) La{x}

holds for every p € Ps.)
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6. Let ¥ be the space of all continuous, complex-valued functions defined on the
real line:
V={f:R—> C : [iscontinuous}.
Define W to be the subspace of V spanned by e and ™", where i = /=1,
Show that {cos (z), sin ()} is another basis for W. (Hint: Use Euler’s formula:
e = cos {§) + isin {4)}.)

3.4 Orthogonal bases and projections

At the end of the last section, we discussed the question of expressing a vector in
terms of a given basis. This question is important. for the following reason, which
we can only describe in general terms at the moment: Many problems that are
posed in vector spaces admit a special basis, in terms of which the problem is easy
to solve. That is, for many problems, there exists a special basis with the property
that if all vectors are expressed in terms of that basis, then a very simple calculation
will produce the final solution. For this reason, it is important to be able to take a
vector (perhaps expressed in terms of a standard basis} and express it in terms of a
different basis. In the latter part of this section, we will study one type of problem
for which it is advantageous to use a special basis, and we will discuss another such
problem in the next section.

It is quite easy to express a vector in terms of a basis if that basis is erthogonal
We wish to describe the concept of an orthogonal basis and show some important
examples. Before we can do so, we must introduce the idea of an inner product,
which is a generalization of the Euclidean dot product.

The dot product plays a special role in the geometry of R? and R3. The
reason for this is the fact that two vectors X,y in R* or R3 are perpendicular if
and only if

x-y=0.
Indeed, one can show that

x -y = ||yl cos (8),

where 8 is the angle between the two vectors {(see Figure 3.2).
From elementary Euclidean geometry, we know that, if x and y are perpen-
dicular, then

lx +yI* = =1 +lly1I?
(the Pythagorean theorem). Using the dot product, we can give a purely algebraic
proof of the Pythagorean theorem. By definition,

[lull = vVu-u,

50

lx+yl? = (x+y)-(x+y)
=X-X+X-Yy+Yy-Xx+y-y
=xX'X+2X-¥+y-y
= |lx[? + 2x - ¥ + llyl%.
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Figure 3.2. The engle between two vectors.

This calculation shows that

I+ w1 = {xll® + [yl

holds if and only i x -y = 0.

Seen this way, the Pythagorean theorem is an algebraic property that can be
deduced in R™, n > 3, even though in those spaces we cannot visualize vectors or
what it means for vectors to be perpendicular. We prefer to use the word orthogonal
instead of perpendicular: Vectors x and y in R™ are orthogonal if x -y = 0.

In the course of solving differential equations, we deal with function spaces
in addition to Euclidean spaces, and our methods are heavily dependent on the
existence of an inner product—the analogue of the dot product in more general
vector spaces. Here is the definition:

Definition 3.32. Let V be a real vector space. A (real) inner product on V is o
function, usually denoted (-,-) or (-,-)v, taking twe vectors from V and producing
a real number. This function must satisfy the following three properties:

1. (u,v) = {v,u) for all vectors u ond v;

2. (am+ v, w) = afu, w) + f(v,w) and {w,au+ jv) = a(w,u} + g{w,v) for
oll vectors u, v, and w, and all real numbers o and J3;

3. {u,u) > 0 for all vectors u, and {u,u} =0 if and only if u 15 the zero vector.

It should be easy to check that these properties hold for the ordinary dot
product on Euclidean n-space.

Given an inner product space (a vector space with an inner product), we define
orthogonality just as in Euclidean space: two vectors are orthogonal if and only if
their dot product is zero. It can then be shown that the Pythagorean theorem holds
(see Exercise 3).
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An orthogonal basis for an inner product space V' is a basis {vi,v2,...,Va}
with the property that
i#j=>(vi,v;) =0
{that is, every vector in the basis is orthogonal to every other vector in the basis).
We now demonstrate the first special property of an orthogonal basis. Suppose

{v1,v2,...,va} is an orthogonal basis for an inner product space V and x is any
vector in V. Then there exist scalars ey, @3, ..., o, such that
X =V +a2Ve + -+ Vi (3.10)

To deduce the value of a;, we take the inner product of both sides of (3.10) with
Vi
(v, %) = (Vi,a1v1 + @ava + - - + 0 Vy)
= Quﬁd‘?a:.v —+ QwT\?éJv + -+ Q=ﬁ<mv<:v
= (i, Vi)

The last step follows from the fact that every inner product (v;, v;) vanishes except
{vi,v:). We then obtain

Vi, X .
Q= ﬁﬁlu.rulu 1= .._JM....._.;u
<w.u<-.v
e (v, (%) (V)
vi, X Ve, X Vn,X
x = vi+ vo + o+ ——5Vn. (3.11)
A<:.<Hv ' Aé.m,JGV Tw:qaq:v *
This formula shows that it is easy to express a vector in terms of an orthogonal
basis. Assuming that we compute (vi,v1), (v2,¥2),..,{¥n, ¥s) once and for all, it

requires just n inner products to find the weights in the linear combination. In the
case of Euclidean n-vectars, a dot product requires 2n — 1 arithmetic operations {r
multiplications and n — 1 additions), so the total cost is just

O(2n?).
¥f n is large, this is much less costly than the O{2n3/3) operations required for a
nonorthogonal basis. We also remark that if the basis is orthonormal—each basis
vector is normalized to have length one—then (3.11) simplifies to

x = {vi,x)vy + (vo,X)Va + o+ (Vy, X)Vn, (3.12)

Example 3.33. The basis {v,v2,v3} for R®, where

&
-

Vi=| /A |Ve= » V3 =

4
|

sk ©

S gjosi-
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is orthonormal, as can be verified directly. If

1
x=12]1,

3
then

X = AJJ. . Nvd&. + Tan . uﬁuqu + T.-w . Nué.m

2
= |mi<H - —v3 + Ovs.

TV V2

3.4.1 The L2 inner product

We have seen that functions can be regarded as vectors, at least in a formal sense:
functions can be added together and multiplied by scalars. (See Example 3.4 in
Section 3.1.) We will now show more directly that functions are not so different
from Euclidean vectors. In the process, we show that a suitable inner product can
be defined for functions.

Suppose we have a function g € C[e, bj—a continuous function defined on the
interval [a, b]. By sampling g on a grid, we can produce a vector that approximates
the function g. Let z; = a + iAz, Az = (b — a)/N, and define a vector G € RN by

G =g(z), i=0,1, .., N -1

Then & can be regarded as an approximation to g (see Figure 3.3). Given another
function f(z) and the corresponding vector F € RN, we have

N-1

M EG;

o

MU flz)glx:).

i=0

F-G

It

Refining the discretization (increasing N} leads to a sampled function that obviously
represents the original function more accurately. Therefore, we ask: What happens
to F- G as N = oo? The dot product

N-1
F-G=73" fz)g(e:)

i=0

does not converge to any value as N — o0, but a simple modification induces
convergence. We replace the ordinary dot product by the following scaled dot
product, for which we introduce a new notation:

N-1
(F.G) = 3 FGiAz.

i=0
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Figure 3.3. Approzimating o function g(z) by a vector G e RN.

Then, when F and G are sampled functions as above, we have

N1

b
(F,G)= M flzi)gla)Ax Iv\a f(z)g(z)dz as N = oco.

i—0

Based on this observation, we argue that a natural inner product (-,) on
Cla,b] is

(f,9) = \ #(5)g(z) da. (3.13)

Just as the dot product defines a norm on Euclidean n-space {lz]| = v x), s0 the
inner product (3.13} defines a norm for functions:

£
Il = VG = \ (@) e (3.14)

For completeness, we give the definition of norm. Norms measure the size or magni-
tude of vectors, and the definition is intended to describe abstractly the properties
that any reasonable notion of size ought to have.

Definition 3.34. Let V be a vector space. A norm on V is a real-valued function
with domain V, usually denoted by |} - || or |\ - |lv, and satisfying the following
properties:



