Homework \#1 • MATH 314 • Linear Algebra Review

- please respect page limits. Have each problem start at the top of a new page.
- submit your write-up into the Math314 box by 4pm, Friday 16 January.
- remember that webct is an open forum for discussion.
- please acknowledge collaborations \& assistance from colleagues.
- read the Guideline for assignments as posted on the class webpage.
- for this assignment, clearly written descriptions of your calculational steps are essential.
A) Linear Combinations (2 pages max, 10pts) Given the 3-component vectors

$$
\vec{w}_{1}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right) ; \quad \vec{w}_{2}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) ; \quad \vec{w}_{3}=\left(\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right) ; \quad \vec{b}=\left(\begin{array}{r}
1 \\
-3 \\
-1
\end{array}\right) ; \quad \vec{f}=\left(\begin{array}{r}
-2 \\
-1 \\
0
\end{array}\right)
$$

express the vector \vec{b} as a linear combination of the vector set $\mathcal{S}=\left\{\vec{w}_{j}\right\}_{j=1 \rightarrow 3}$. Give as many one sentence reasons as you can that explains why your representation is unique.
Finally, explain why the vector set $\mathcal{S}_{f}=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{f}\right\}$ is not linearly independent.
B) A Real Symmetric Matrix (3 pages max, 10pts) Given the $3 \times 3 \mathbb{R}$-valued matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

use Gaussian elimination (choose an efficient strategy) to solve the system of linear equations

$$
\mathbf{A} \vec{x}=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
1 \\
-3 \\
-1
\end{array}\right)=\vec{b}
$$

for the 3 -component vector \vec{x}.
Give all of the eigenvalues and eigenvectors of the matrix A. You need only present the detailed derivation for one of the eigenvectors.
Show that the set of eigenvectors are a mutually-orthogonal set. (Is this a surprise? Give a reference for your answer.) Redo the above linear solve for \vec{x} using the projection argument for an orthogonal basis set.
C) Complex-Valued Linear Algebra (2 pages max, 10pts) Find all of the eigenvalues and eigenvectors for the \mathbb{C}-valued matrix

$$
\mathbf{B}=\left[\begin{array}{rr}
1 & 2 i \\
-2 i & 1
\end{array}\right]
$$

and show that the projection argument can be used to give the solution to the linear system

$$
\mathbf{B} \vec{y}=\left[\begin{array}{rc}
1 & 2 i \\
-2 i & 1
\end{array}\right]\binom{y_{1}}{y_{2}}=\binom{2}{1} .
$$

