- tutorial, check one:T9:30;T10:30;T11:30;R10:30;R11:30;R12:30.
- begin each problem on a new page \& clearly identify each question.
- use words to describe your procedures \& to interpret your results.
- put boxes around your final results.
- due on friday 29 november at START of lecture.

question \#	CONCEPT keywords \& MAIN formula/result
\#9.2.21/22	concept
	result
\# 9.3.9	
\# 9.4.6	

- problems for submission are indicated in bold.
- homework portfolios will also be graded on completeness \& presentation (clarity \& conciseness).

Section 9.1

- practice: this section should be very reminiscent of section 7.5.

Section 9.2

- essential idea: even though one cannot find $x(t), y(t)$ explicitly, one can sometimes find the graph (x, y) of the phase plane trajectories.
- practice: \# 10-14, especially parts a) \& c).
\#21/22 do only part a). Then modify the matlab ODE solver code10Fd.m (from 08 November) to solve \#21 and verify numerically that the graph of the function $H(x(t), y(t))$ is indeed a constant in t for any solution. You need only to produce one plot that shows $x(t), y(t)$ and $H(x(t), y(t))$ as functions of time for one initial value.
Matlab tip: in the script, $y(:, 1)$ and $y(:, 2)$ are column vectors holding the numerical solutions $x\left(t_{j}\right)$ and $y\left(t_{j}\right)$ at times t_{j} as output in the column vector t. You can easily do the arithmetic of column vectors by using ".*" and ". $\wedge 2$ " which act elementwise on vectors.

Section 9.3

- be sure to understand the table 9.3 .1 in terms of the stability. The type refers to the phase plane plots in sections 9.1 and 9.2.
- practice: \# 5-7 (a,b,c)
\#9 parts a), b), c) only. Organize your work in a clear format.

Section 9.4

- practice: \# 1-2
\#6 do parts a), b), c); produce hand sketches for d); e) is optional; but take part f) seriously. In particular, this problem is a model for an effect known as mutual symbiosis - compare the stable steady-state you find to the logistic steady-state if both $x y$-terms in the ODE are absent! (See the class website for a biology link.)

Section 9.5

- reading: the method of first integrals (equations 13 and 22) is important to know and understand. Many will find the subject of this section interesting.

