- tutorial, check one:T9:30;T10:30;T11:30;R10:30;R11:30;R12:30.
- begin each problem on a new page \& clearly identify each question.
- use words to describe your procedures \& to interpret your results.
- put boxes around your final results.
- due on friday 15 november at START of lecture.

question \#	CONCEPT keywords \& MAIN formula/result
7.1. CO_{2}	concept
	result
\# 7.7.3	
\# 7.7.6	
\# 7.9.2	
\#7.9.7	

- problems for submission are indicated in bold.
- homework portfolios will also be graded on completeness \& presentation (clarity \& conciseness).
- maple integer arithmetic may be of some assistance in checking your answers here.

Section 7.1

- practice: \# 17 (especially if you need some hints on the question below.)

CO_{2} write and solve the ODEs for a mass/spring model of a molecule of CO_{2}. Denote the atomic masses to be m_{C}, m_{O} and the spring constant to be k. Treat only the vibrations of the atoms along the x-axis. The springs are such that the restoring force is zero if their length is 1 - this means that the force is proportional to the difference in the atom positions minus 1. In developing your ODEs, use a diagram like Figure 7.1.3b in the text to help your explanations. (Hint: your ODEs should be satisfied by $x_{1}=x_{2}=x_{3}=0$.)

Section 7.7

\#3 also, what is the fundamental matrix solution for which $\boldsymbol{\Phi}(T)=\mathbf{I}$? (this is a one-liner.)
\#6 use maple to multiply \& simplify (hint: use simplify (...,trig)) the matrix product $\boldsymbol{\Phi}(t) \boldsymbol{\Phi}^{-1}(T)$, compare with the matrix $\boldsymbol{\Phi}(t-T)$, and explain this amazing result.

Section 7.9

- practice: \# 1-12
\#2 derive the solution by finding a diagonalizing matrix.
\#7 derive the solution using the variation of parameters result (equation 29).

Computing Focus

example $\# \mathbf{1}$ of section 9.7 (really) - modify the two-component Runge-Kutta code to solve the ODEs of equation (4). The matlab plotting commands:

```
hold on
plot(y(:,1),y(:,2),'r')
plot(y(1,1),y(1,2),'rx')
plot(y(end,1),y(end,2),'ro')
```

produce a solution trajectory (red curve) on a phase plane with an X at the initial condition and an O at the end. By running this script for different IVs, reproduce Figure 9.7.1 on page 524. (Type help clf and help hold at the matlab prompt for info on how to control your plot window.)

