- tutorial, check one:T9:30;T10:30;T11:30;R10:30;R11:30;R12:30.
- begin each problem on a new page \& clearly identify each question.
- use words to describe your procedures \& to interpret your results.
- put boxes around your final results.
- due on friday 08 november at start of lecture.

question \#	CONCEPT keywords \& MAIN formula/result
\#7.4.2	concept
	result
\# 7.5.23	
\# 7.5.31	
\# 7.6.8	
\#7.8.11	
\#7.6.19	

- problems for submission are indicated in bold.
- homework portfolios will also be graded on completeness \& presentation (clarity \& conciseness).
- maple integer arithmetic may be of some assistance here.

Section 7.4

\#2 clarity of the presentation is most important here. Address part d) in 2-3 sentences.

Section 7.5

- practice: \# 1-4, 15-18
\#23 small twist on the standard problem. You will have to use the logic as outlined in problem \#19.
\#31 include two small matlab/maple direction fields (no code printouts, just fully labelled plots).

Section 7.6

- practice: \# 4-7
\#8 also calculate the solution in a phase-shifted form.

Section 7.7

- practice: \# 7-9

Section 7.8

- practice: \# 7-8
\#11 highlight clearly the linear algebraic solves which are encountered in constructing the solution. (How many distinct solves are there?) This is a 3×3 problem, you must clearly indicate the logic of your solution method, but you should not present all of the arithmetic details.

Computing Focus

\#19 of section 7.6 - produce four direction fields (no code, just labelled plots). Also clearly explain how you determined the transition values.

